Pengembanagn In-Wheel Brushless Dc Motor Sebagai Sistem Powertrain Pada Skuter Elektrik

Ida Bagus Putu Putra, Mahartana (2021) Pengembanagn In-Wheel Brushless Dc Motor Sebagai Sistem Powertrain Pada Skuter Elektrik. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111950080004-Master_Thesis.pdf] Text
02111950080004-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (15MB) | Request a copy

Abstract

Direct-Drive motor atau lebih dikenal dengan In-Wheel Hub Motor (WHM) adalah salah satu tipe penggerak elektrik yang mulai popular digunakan pada berbagai tipe kendaraan listrik. Keunggulan utama dari tipe penggerak ini adalah terintegrasi langsung pada roda sehingga sistem transmisi konvensional berupa belt atau rantai tidak diperlukan lagi. Keunggulan lain dari tipe motor ini adalah torsi instan pada saat berakselerasi dan juga dalam menanjak sehingga cocok untuk aplikasi kendaraan berkecepatan rendah. Disisi lain, perfoma kendaraan dengan spesifikasi rentang kecepatan yang lebar masih menjadi permintaan utama di pasar otomotif agar para kostumer dapat beralih secara mulus dari kendaraan berbasis ICE ke kendaraan berbasis listrik. Maka dari itu pendekatan desain terbaru dari WHM perlu dilakukan untuk memenuhi permintaan spesifikasi pasar.
Dalam penelitian ini telah dilakukan sebuah studi optimasi desain WHM Optimum yang digunakan untuk menggantikan motor penggerak WHM 0.65 KW referensi dari produk skuter elektrik eksisting. Proses optimasi diawali dengan studi reverse-engineering dari performa elektrik skuter secara keseluruhan kemudian dilanjutkan dengan pengujian dan pemodelan FEA dari WHM 0.65KW referensi. Konfigurasi 42slot dan 40 Pole dipilih untuk WHM Optimum. Proses Optimasi dilakukan melalui proses analisa sensivitas, pembangunan MOP dengan mengimplementasikan ANN dan pencarian desain optimum dengan menggunakan algoritma genetika. Parameter geometri seperti: tooth width, airgap, magnet length,magnet thickness, slot opening, slot depth, rotor yoke dipilih sebagai input parameter dan respon kinerja motor yang dikaji sebagai parameter output adalah efficiency, torque density, power factor, output power, total loss dan ripple torque. Desain terbaik dari optimasi multiobjektif ini diinterpretasikan melalui pareto front yang kemudian divalidasi menggunakan perangkat lunak MotorCad. Hasil prediksi kinerja berdasarkan ANN menunjukkan nilai Cop rata-rata diatas 0.9% yang menunjukan keakuratan metode ini dalam memprediksi hubungan linear dan non-linear antara parameter geometri motor dengan respon kinerja. Nilai optimum geometri WHM menunjukkan besar tooth width, airgap, magnet length,magnet thickness, slot opening, slot depth, rotor yoke berturut-turut 7.05 mm, 0.751mm, 30mm, 3mm, 3.2mm, 13mm, 6.024 mm. Hasil simulasi kinerja secara kurva torsi dan kecepatan menunjukkan WHM optimum memiliki peningkatan performa torsi maksimum dan kecepatan maksimum dari WHM referensi 91.1 % dan 89 %. Simulasi duty cycle pada WHM optimum menunjukkan motor mampu memenuhi kebutuhan torsi dan kecepatan disemua rentang mode pengendaraan di WLTP duty cycle class 1 dengan kecepatan maksimum sebear 65 km/jam, namun pada mode operasi pengendaraan WLTP duty cycle class 2 motor WHM optimum hanya mampu memenuhi kecepatan maksimum 80 Km/jam, akibat batasan temperatur kerja pada magnet dan gulungan. Meskipun demikian, perfoma skuter eksisting dengan WHM optimum telah berhasil meningkatkan performa dari rentang kecepatan yang dapat dihasilkan.
======================================================================================================
Motor or known as in-wheel hub motor (WHM) is an electric machine that is gaining popularity in various types of electric vehicles application. The main advantage of this machine is integrated directly on the wheels, hence a conventional transmission system of belt or chain were no longer needed. Another benefit of this machine is the instantaneous torque for accelerating and climbing, thus suitable for low-speed application. On other hand, the wide speed range performance is still highly demanded in the market to help the costumers to seamlessly transitioning from ICE based vehicle to Electric base. Therefore a new design approached of WHM need to be conducted in order to fullfill the required specification.
In this research, an optimization study has been carried out on the Optimum WHM design which was used to replace the 0.65 KW WHM driving motor as a reference from an existing electric scooter product. The optimization process began with a reverse-engineering study of the overall performance of the electric scooter, then an independent test and FEA modeling of the 0.65KW WHM reference is conducted. 42-slot and 40-Pole configuration were selected for Optimum WHM. The optimization process was carried out through sensitivity analysis, MOP development by implementing ANN, and search the optimum design using genetic algorithm. Geometric parameters such as: tooth width, airgap, magnet length, magnet thickness, slot opening, slot depth, rotor yoke were selected as input parameters; and the output parameters were efficiency, torque density, power factor, output power, total loss, and ripple torque. The best design of this multi-objective optimization was interpreted through the Pareto front which was then validated using MotorCad software. The results of performance predictions based on ANN show an average Cop value above 0.9% which indicates the accuracy of this method in predicting linear and non-linear relationships between motor geometry parameters and performance responses. The optimum value of WHM geometry shows the sizes of tooth width, airgap, magnet length, magnet thickness, slot opening, slot depth, rotor yoke are 7.05 mm, 0.751mm, 30mm, 3mm, 3.2mm, 13mm, 6.024 mm, respectively. The simulation result of the torque curve and speed shows the optimum WHM performance was improve by 91.1% and 89% at maximum torque and maximum speed compared to the reference WHM. The duty cycle simulation of optimum WHM shows the motor is capable to meet the torque and speed requirements in all range of driving modes in the WLTP duty cycle class 1 with a maximum speed of 65 km/hour. However, in the WLTP duty cycle class 2 driving operation mode, the optimum WHM motor only meet the maximum speed of 80 Km/hour, due to working temperature limit on magnet and coil. This result is still acceptable since the wide speed range performance has been achieved.
Key words : WHM 0.65 KW reference, WHM optimum, MOP ANN, Genetic Algorithm, Duty Cycle

Item Type: Thesis (Masters)
Uncontrolled Keywords: WHM 0.65 KW Referensi, WHM Optimum, MOP ANN, Algoritma Genetika, Duty Cycle ================================================================= WHM 0.65 KW reference, WHM optimum, MOP ANN, Genetic Algorithm, Duty Cycle
Subjects: T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL448 Electric motorcycles
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21101-(S2) Master Thesis
Depositing User: Ida Bagus Putu Putra Mahartana
Date Deposited: 25 Aug 2021 02:12
Last Modified: 25 Aug 2021 02:12
URI: http://repository.its.ac.id/id/eprint/89997

Actions (login required)

View Item View Item