Alfiyan, Allif (2021) Segmentasi Jalan Berbasis Superpixel Pada Data Video Dengan Metode Faster Regional – Convolutional Neural Network. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
| ![[thumbnail of 06111740000097-Undergraduate_Thesis.pdf]](http://repository.its.ac.id/style/images/fileicons/text.png) | Text 06111740000097-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (1MB) | Request a copy | 
| ![[thumbnail of 06111740000097-Undergraduate_Thesis.pdf]](http://repository.its.ac.id/style/images/fileicons/text.png) | Text 06111740000097-Undergraduate_Thesis.pdf Restricted to Repository staff only Download (1MB) | Request a copy | 
Abstract
Segmentasi citra pada umumnya merupakan proses pengolahan citra yang mempartisi citra menjadi beberapa wilayah (region) atau objek. Segmentasi citra dapat dimanfaatkan dalam berbagai bidang pekerjaan, salah satu bentuk dalam penerapan segmentasi citra yaitu segmentasi jalan, dimana proses segmentasi jalan dapat mendorong perkembangan teknologi kendali otomatis. Dengan segmentasi jalan, kendaraan mampu mengenali mana jalan yang dapat dilalui kendaraan, dan mana yang tidak. Salah satu bentuk segmentasi jalan yang dapat digunakan adalah segmentasi jalan berbasis superpixel dengan dukungan metode Faster Regional – Convolutional Neural Network (Faster R – CNN) pada Deep Learning. Metode Faster R – CNN sendiri merupakan pengembangan algoritma klasifikasi yang menggabungkan Fast Regional – Convolutional Neural Network (Fast R-CNN) dengan Region Proposal Network (RPN). Alur segmentasi jalan pada penelitian ini adalah input data video, akuisi data video, segmentasi superpixel, segmentasi jalan dengan metode Faster R – CNN dan penyatuan kembali frame menjadi data video. Pada tahap training, penelitian ini menggunakan data citra jalan dari KITTI dataset yang terdiri dari 289 citra. Sedangkan pada tahap testing menggunakan tiga buah video dokumentasi perjalanan yang diambil oleh penulis secara manual. Berdasarkan tahap uji coba yang dilakukan, didapatkan rata-rata nilai Accuracy sebesar 95,15% dan rata-rata nilai F-measure sebesar 93,59%.
================================================================================================
Image segmentation is generally an image processing process that 
partitions an image into several regions or objects. Image 
segmentation can be used in various fields of work, one of the forms 
in  the  application  of  image  segmentation  is  road  segmentation, 
where the road segmentation process can encourage the 
development of automatic control technology. With road 
segmentation, vehicles  are able  to recognize which  roads  can  be 
passed by vehicles, and which are not. One form of road 
segmentation that can be used is superpixel-based road 
segmentation with the support of the Faster Regional – 
Convolutional Neural Network (Faster R – CNN) method in Deep 
Learning.  The  Faster  R  –  CNN  method  itself  is  a  classification 
algorithm development that combines the Fast Regional – 
Convolutional  Neural  Network  (Fast  R-CNN)  with  the  Region 
Proposal Network (RPN). The road segmentation flow in this study 
is video data input, video data acquisition, superpixel 
segmentation, road segmentation with Faster R - CNN method and 
reunification of frames into video data. At the training stage, this 
research uses road image data from the KITTI dataset consisting 
of  289  images.  Meanwhile,  at  the  testing  stage,  three  travel 
documentation  videos  were  taken  by  the  author  manually.  Based 
on the trial phase, the average Accuracy value was 95.15% and the 
F-measure average was 93.59%.
| Item Type: | Thesis (Undergraduate) | 
|---|---|
| Uncontrolled Keywords: | road segmentation, Superpixel – Based Segmentation, Faster Regional – Convolutional Neural Network, Deep Learning, segmentasi jalan | 
| Subjects: | Q Science > QA Mathematics Q Science > QA Mathematics > QA336 Artificial Intelligence Q Science > QA Mathematics > QA76.6 Computer programming. Q Science > QA Mathematics > QA76.87 Neural networks (Computer Science) | 
| Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis | 
| Depositing User: | Allif Alfiyan | 
| Date Deposited: | 28 Aug 2021 17:59 | 
| Last Modified: | 19 May 2025 02:06 | 
| URI: | http://repository.its.ac.id/id/eprint/90254 | 
Actions (login required)
|  | View Item |