CFD Analysis Of Photovoltaic - Thermal (PV/T) Cooling System Using Phase Change Material (PCM) Based Cooler Tank And Solar Collector

Kamil, Muhammad Suyuthi Akhsani (2022) CFD Analysis Of Photovoltaic - Thermal (PV/T) Cooling System Using Phase Change Material (PCM) Based Cooler Tank And Solar Collector. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 04211841000031-Undergraduate_Thesis.pdf] Text
04211841000031-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2024.

Download (4MB) | Request a copy

Abstract

Efisiensi panel fotovoltaik dipengaruhi oleh suhu sel fotovoltaik di dalam panel. Oleh karena itu, suhu lingkungan mempengaruhi efisiensi panel fotovoltaik. Selama operasi, panel fotovoltaik juga mengalami kenaikan suhu akibat radiasi matahari dan rendahnya konversi energi foton menjadi energi listrik. Untuk mengurangi suhu sel fotovoltaik dan meningkatkan efisiensinya, panas yang dihasilkan oleh sel fotovoltaik perlu didinginkan. Dalam penelitian ini, panas dari sel fotovoltaik diserap oleh material berubah fasa (PCM) yang memanfaatkan kalor laten untuk menyerap kalor dari sel. Kemudian kalor yang diserap dibawa oleh feedwater sehingga memanaskannya. Sistem ini disebut sistem photovoltaic thermal dengan material berubah fasa(PVT-PCM). Simulasi computational fluid dynamics (CFD) dilakukan untuk menganalisis distribusi temperatur panel fotovoltaik, material berubah fasa, dan air pendingin. PVT-PCM dalam penelitian ini ditujukan untuk aplikasi reverse osmosis, sehingga laju aliran massa air pendingin diatur pada kisaran 50-100 GPD. Berdasarkan simulasi, PV memiliki penurunan suhu yang besar ketika mengalami laju aliran massa yang tinggi yaitu 0,0044 kg/s. Dibandingkan dengan PV tanpa pendinginan, sistem PVT-PCM memiliki penurunan suhu tertinggi pada penyinaran matahari 1000 W/m2 yang dapat menurunkan suhu PV hingga 12,24% dan meningkatkan efisiensi PV hingga 3,83%.
================================================================================================
Photovoltaic panel efficiency is influenced by the temperature of the photovoltaic cell within the panel. Therefore, ambient temperature is affecting the efficiency of the photovoltaic panel. During operation, the photovoltaic panel is also experiencing temperature increase due to the solar radiation and low conversion of photon energy to electrical energy. To reduce the temperature of the photovoltaic cell and increase its efficiency, the heat generated by the photovoltaic cell needs to be cooled down. In this research, the heat from the photovoltaic cell is absorbed by phase change material which utilizes the latent heat to absorb heat from the cell. Then the absorbed heat is carried by feedwater thus heating the feedwater. This system is called a photovoltaic thermal phase change material based (PVT-PCM) system. A computational fluid dynamic (CFD) simulation is done to analyze the temperature distribution of photovoltaic panel, phase change material, and feedwater. PVT-PCM in this research is intended for reverse osmosis application, thus the mass flow rate of the feedwater is set in range of 50-100 GPD. Based on the simulation, the PV has great temperature reduction when it is subjected to high mass flow rate which is 0.0044 kg/s. As compared with the PV without any cooling, PVT-PCM system has the highest temperature reduction at solar irradiance of 1000 W/m2 which can reduce the PV temperature up to 12,24% and increase the PV efficiency to 3,83%.

Item Type: Thesis (Other)
Uncontrolled Keywords: Computational Fluid Dynamics, Phase Change Material, Photovoltaic Thermal.
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA357 Computational fluid dynamics. Fluid Mechanics
Divisions: Faculty of Marine Technology (MARTECH) > Marine Engineering > 36202-(S1) Undergraduate Thesis
Depositing User: Muhammad Suyuthi Akhsani Kamil
Date Deposited: 11 Feb 2022 04:01
Last Modified: 01 Nov 2022 00:49
URI: http://repository.its.ac.id/id/eprint/93294

Actions (login required)

View Item View Item