Pemodelan Defleksi Spar Model I-Beam Dengan Integrasi Numerik Sebagai Metode Penunjang Proses Desain Turbin Angin

Ulhaq, Dhiya Aldifa (2022) Pemodelan Defleksi Spar Model I-Beam Dengan Integrasi Numerik Sebagai Metode Penunjang Proses Desain Turbin Angin. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111640000205-Undergraduate_Thesis.pdf] Text
02111640000205-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2024.

Download (8MB) | Request a copy

Abstract

Material laminated composite semakin banyak digunakan dalam berbagai macam struktur, salah satunya struktur spar pada turbin angin. Material ini menawarkan berbagai keuntungan seperti kekuatan dan kekakuan yang tinggi, bobot yang lebih rendah, kemampuan untuk memvariasikan orientasi serat dan pola susun, serta ketahanan terhadap korosi dari elektrokimia. Tetapi, bahan laminated composite yang difabrikasi ini memiliki potensi masalah baru, salah satunya kegagalan karena defleksi yang terlalu besar. Sehingga, dibutuhkan analisis defleksi dari susunan laminated composite ketika ingin digunakan sebagai material penyusun spar turbin angin. Analisis ini dibutuhkan untuk dapat menentukan dimensi struktur, jenis material komposit, dan orientasi serat yang tepat pada tahap proses desain turbin angin. Sehingga, perancang dapat menjaga defleksi spar tidak membuat blade menabrak tower turbin angin dan tetap beroperasional dengan baik.
Metode perhitungan software 3D sangat membantu untuk analisis ini. Akan tetapi, proses desain software 3D memakan waktu yang cukup banyak dalam proses komputasinya. Untuk itu, dibutuhkan metode pendukung dalam proses desain, dimana perancang dapat mendapatkan perkiraan nilai defleksi berdasarkan susunan laminated composite yang ingin digunakan. Hal ini dapat membantu perancang dalam menentukan struktur, jenis, dan arah serat yang dibutuhkan sebelum dianalisis lebih teliti lagi menggunakan software 3D. Sehingga, proses perancangan blade dapat menjadi lebih cepat. Untuk mencapai hal tersebut, penelitian ini menyusun model MATLAB yang dapat menghitung defleksi spar berdasarkan input berupa nilai dimensi spar, material properties dari komposit, dan arah seratnya. Penelitian dimulai dengan studi literatur untuk memahami teori defleksi pada laminated composite, kemudian menggambarkan proses perhitungan defleksi ke dalam code MATLAB. Pada code ini, spar turbin angin dimodelkan menjadi sebuah cantilever I-beam. Model MATLAB yang sudah dibuat diuji keakuratannya dengan proses validasi dalam dua tahap. Tahap pertama yaitu membandingkan hasil perhitungan model dengan hasil perhitungan rumus analitis, dan tahap kedua adalah membandingkan hasil perhitungan model dengan hasil perhitungan penelitian terdahulu. Setelah model tervalidasi, model digunakan dalam studi kasus AVATAR untuk menghitung defleksi spar turbin angin menggunakan tiga material berbeda yaitu S-Glass/Epoksi, TC35/Epoksi dan M55/Epoksi dengan arah serat yang sama. Hasil perhitungan yang diperoleh menunjukkan material mana yang memberikan performa paling baik, sekaligus menunjukkan keefektifan model MATLAB dalam membantu proses desain spar turbin angin.
Pemodelan MATLAB yang disusun pada penelitian ini memiliki akurasi yang cukup baik dalam menghitung nilai defleksi akibat pembebanan pada spar turbin angin. Model dapat melalui proses validasi dengan perbedaan nilai hanya sekitar 2-3% dari hasil perhitungan pada penelitian terdahulu. Model dapat memberikan nilai defleksi baik ke arah axial maupun tangensial, dan juga dapat menghitung pengaruh variasi orientasi terhadap nilai defleksi spar. Pada studi kasus AVATAR yang dijalankan, model memberikan hasil perhitungan yang menunjukkan bahwa material M55/Epoksi memberikan performa yang lebih baik dari ketiga material yang diuji. Namun, model masih memiliki keterbatasan seperti hanya dapat menghitung defleksi secara spesifik pada spar, dan hanya dapat mensimulasikan material komposit yang disusun secara symmetrical. Ini dapat dioptimasi dan dikembangkan pada penelitian selanjutnya. Code MATLAB yang disusun saat ini diharapkan dapat digunakan dalam penelitian seputar mendesain spar turbin angin, analisis defleksi turbin angin, dan sebagainya.
====================================================================================================
Laminated composites are increasingly being used in various structures, one of which is the spar structure in wind turbines. This material offers various advantages such as high strength and stiffness, lighter weight, ability to vary fiber orientation and stacking pattern, and resistance to electrochemical corrosion. However, this fabricated laminated composite material has the potential for new problems, one of which is failure due to too large a deflection. Thus, it is necessary to analyze the deflection of the laminated composite arrangement when it is going to be used as a wind turbine spar material. This analysis is required to determine the structure dimensions, the type of composite material, and the correct fiber orientation at during the wind turbine design process. Therefore, the designer can prevent the deflection of the spars from causing the blades to hit the wind turbine tower and keeping it operates properly.
The 3D software is very helpful for this analysis. However, the 3D software design takes quite a lot of time in the computational process. For this reason, a supporting method is needed, where wind turbine designers can get an estimate value of the deflection based on the composition of the laminated composite that they want to use. This could assist the designer in determining the structure, material type, and fiber direction before going through a more detailed analysis using 3D software. Thus, the blade design process could be much faster. To achieve it, this study developed a MATLAB model that can calculate spar deflection based on inputs in the form of spar dimension values, material properties of the composite, and fiber direction. The research began with a literature study to understand the theory of deflection in laminated composites, then described the process of calculating the deflection into MATLAB code. In this code, the wind turbine spar is modeled as a cantilever I-beam. The MATLAB model accuracy then tested through a two stage validation processes. The first stage is by comparing the results of the model calculations with the results of the analytical formula calculations, and the second stage is by comparing the results of the model calculations with the previous research calculations. After the model is validated, the model then used in the AVATAR case study to calculate the wind turbine spar deflection using three different materials, namely S-Glass/Epoxy, TC35/Epoxy and M55/Epoxy with the same fiber direction. The calculation results obtained indicate which material provides the best performance, as well as shows the effectiveness of the MATLAB model in assisting the wind turbine spar design process.
The MATLAB model compiled in this study has a fairly good accuracy in calculating the deflection value due to loading on the wind turbine spar. The model went through a validation process with a difference in value of only about 2-3% when compared to calculations in previous studies. The model can calculate deflection values both in the axial and tangential directions, and can also calculate the effect of various fiber orientations towards the spar deflection value. In the AVATAR case study, the model gave results which showed that the M55/Epoxy material gave better performance out of all tested materials. However, the model still has limitations such as only able to calculate the deflection specifically on the spar, and can only simulate symmetrically arranged composite materials. This can be optimized and developed in future research. The current MATLAB code is expected to be of use in research regarding wind turbine spar design, wind turbine deflection analysis, and so on.

Item Type: Thesis (Other)
Uncontrolled Keywords: Cantilever I-Beam, Deflection, Laminated composite, Spar, Defleksi
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA169.5 Failure analysis
T Technology > TA Engineering (General). Civil engineering (General) > TA418.9 Composite materials. Laminated materials.
T Technology > TA Engineering (General). Civil engineering (General) > TA645 Structural analysis (Engineering)
T Technology > TJ Mechanical engineering and machinery > TJ230 Machine design
T Technology > TJ Mechanical engineering and machinery > TJ266 Turbines. Turbomachines (General)
T Technology > TJ Mechanical engineering and machinery > TJ820 Wind power
T Technology > TJ Mechanical engineering and machinery > TJ828 Wind turbines
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1001 Production of electric energy or power
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: DHIYA ALDIFA ULHAQ
Date Deposited: 22 Feb 2022 03:29
Last Modified: 02 Nov 2022 04:31
URI: http://repository.its.ac.id/id/eprint/94703

Actions (login required)

View Item View Item