

RSS 388.41312 Bay a-1 2010

TUGAS AKHIR - RC 1380

ANALISA DAN KOORDINASI SINYAL ANTAR SIMPANG PADA RUAS JALAN DIPONEGORO SURABAYA

EMAL ZAIN MUZAMBEH TUN BAYASUT NRP 3105 100 128

Dosen Pembimbing Budi Rahardjo, ST, MT

JURUSAN TEKNIK SIPIL
Fakultas Teknik Sipil dan Perencanaan
Institut Teknologi Sepuluh Nopember
Surabaya 2010

PERPUSTAKAAN

I T S

Tgi. Torima

4-2-2010

Torima Dari

4

Agenda Prp. 364

FINAL PROJECT - RC 1380

ANALYSIS AND COORDINATION OF INTER-CROSS SIGNAL AT DIPONEGORO STREET SURABAYA

EMAL ZAIN MUZAMBEH TUN BAYASUT NRP 3105 100 128

Supervisor Budi Rahardjo, ST, MT

CIVIL ENGINEERING DEPARTEMENT Faculty of Civil Engineering and Planing Sepuluh Nopember Institute of Technology Surabaya 2010

ANALISA DAN KOORDINASI SINYAL ANTAR SIMPANG PADA RUAS JALAN DIPONEGORO SURABAYA

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada

Bidang Studi Manajemen Transportasi Program Studi S-1 Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember

Oleh:

Emal Zain MTB Nrp. 3105 100 128

Disetujui oleh Pembimbing Tugas Akhir:

Nip. 132 304 937

SURABAYA, JANUARI 2010

ANALISA DAN KOORDINASI SINYAL ANTAR SIMPANG PADA RUAS JALAN DIPONEGORO SURABAYA

Nama Mahasiswa : Emal Zain MTB NRP : 3105 100 128

Jurusan : Teknik Sipil FTSP-ITS Dosen Pembimbing : Budi Rahardjo, S.T., M.T

Abstrak

Banyaknya persimpangan di kota besar seperti Surabaya ternyata menimbulkan permasalahan tersendiri, terlebih pada jarak antar simpang yang pendek seperti pada ruas Jalan Diponegoro Surabaya. Terdapat empat simpang yang berada dalam jarak 930 meter pada ruas Jalan Diponegoro. Permasalahan yang terjadi adalah kendaraan yang terkadang harus selalu berhenti pada tiap simpang karena selalu mendapat sinyal merah. Tentu saja hal ini menimbulkan ketidaknyamanan pengendara.

Pengumpulan data dilakukan dengan cara survey langsung pada keempat simpang. Adapun data yang diambil adalah volume kendaraan yang melalui tiap simpang, waktu sinyal, kecepatan tempuh kendaraan yang melalui keempat simpang, dan geometrik simpang. Data yang diperoleh digunakan untuk mendapatkan kondisi eksisting terjenuh yang akan menjadi acuan dalam merencanakan waktu siklus baru dengan memperhatikan teori koordinasi. Kinerja terbaik pada setiap simpang kemudian dikoordinasikan menggunakan waktu offset antar simpang.

Dari hasil analisa, diketahui bahwa keempat simpang pada ruas Jalan Diponegoro belum terkoordinasi. Untuk itu, dilakukanlah beberapa perencanaan untuk melakukan koordinasi sinyal antar simpang pada keempat simpang tersebut. Perencanaan yang dilakukan adalah menentukan waktu siklus baru yang sama untuk semua simpang. Dari tujuh perencanaan, didapatkan waktu siklus baru sebesar 130 detik. Waktu siklus semua simpang disamakan untuk mempermudah koordinasi sinyal. Dari kecepatan rencana sesuai regulasi batas maksimum kendaraan dalam kota sebesar 40 km/jam, didapatkan waktu offset sebesar 84 detik untuk kedua arah. Sedangkan untuk bandwidth yang dihasilkan dari diagram koordinasi, didapat bandwidth sebesar 56 detik untuk arah dari Utara dan 33 detik dari arah Selatan

Kata Kunci: Koordinasi Sinyal Antar Simpang, Waktu Offset, Bandwidth, Jalan Diponegoro

ANALYSIS AND COORDINATION OF INTER-CROSS SIGNAL AT DIPONEGORO STREET SURABAYA

Name of Student : Emal Zain MTB NOS : 3105 100 128

Departement : Teknik Sipil FTSP-ITS Supervisor : Budi Rahardjo, S.T., M.T

Abstract

A lot of crossing in a big city like Surabaya had caused its own problems, especially in the distance between the intersection of the short segments as in Diponegoro Street Surabaya. There are four intersection that is within 930 meters on the sides Diponegoro Street. Problems happens is that sometimes vehicles must always stop at every intersection because it is always a red signal. Of course this is causing inconvenience motorists.

The data was collected by direct survey of the four intersection. The retrieved data is the volume of vehicles passing through each intersection, the time signal, the speed of vehicles travel through the fourth intersection, and the geometric intersection. The data obtained are used to obtain the saturatest existing conditions will be the reference in the new planning cycle time by considering the theory of coordination. The best performance at every intersection and then coordinated using the time offset between the intersection.

From the results of the analysis, note that the fourth segment intersection at Jalan Diponegoro not yet coordinated. For that, dilakukanlah some planning to coordinate inter-cross signal at the fourth intersection. Planning is done is to determine the new cycle time equal to the intersection. From seven planning, acquired a new cycle time for 130 seconds. Cycle time of all cross equated to facilitate the coordination of signals. From

the speed of the plan 40 km/ hours as maximum speed limit regulation of vehicles in the city, found the time offset of 84 seconds for both directions. As for bandwidth generated from the diagram, obtained from the North direction of bandwidth is 56 seconds and from the south is 33 seconds.

Key Words: Inter-Cross Signal Coordination, Offset Time, Bandwidth, Diponegoro Street

KATA PENGANTAR

Puji syukur hanya kepada Allah Swt, Tuhan Semesta Alam yang selalu melimpahkan rahmanNya kepada setiap makhluk. Akhirnya Tugas Akhir berjudul Analisa dan Koordinasi Sinyal Antar Simpang pada Ruas Jalan Diponegoro Surabaya ini berhasil diselesaikan.

Tugas Akhir ini dimaksudkan untuk mengkoordinasikan empat simpang pada ruas Jalan Diponegoro Suroboyo, agar pengendara lebih nyaman dengan perjalanan menerus tanpa terkena banyak sinyal merah.

Banyak pihak yang telah berkontibusi pada penyelesaian Tugas Akhir ini. Dalam kesempatan ini, penulis ingin menghaturkan terimakasih kepada:

- 1. Bapak Budi Rahardjo, ST. MT, Bapak Pembimbing yang selalu memberi ilmu dan semangatnya.
- 2. Bapak Anak Agung Gde Kartika, ST. MSc, Pembimbing proposal yang telah mengarahkan Tugas Akhir ini.
- 3. Ibu Ir. Hera Widiastuti, MT; Bapak Cahya Buana, ST. MT; dan Bapak Istiar, ST. MT yang telah memberikan masukan dan banyak perbaikan pada Tugas Akhir ini.
- 4. Para Dosen dan Karyawan di Laboratorium Perhubungan dan Bahan Konstruksi Jalan untuk senyum semangatnya.
- 5. Para Surveyor dan Koordinator yang banyak membantu mendapatkan data Tugas Akhir ini.
- 6. Rekan-rekan S-48 yang saling mendukung untuk sama-sama menyelesaikan Tugas Akhir.
- 7. Kru ITS Online, anak-anak jurnalis yang selalu memberi inspirasi.
- 8. Serta semua pihak yang tidak dapat penulis sebutkan di sini.

Akhir kata, semoga Tugas Akhir ini dapat memberikan manfaat pada kondisi lalu lintas di Surabaya secara langsung dan juga pada penelitian-penelitian selanjutnya.

Surabaya, Januari 2010

DAFTAR ISI

Halaman Juduli
Lembar Pengesahaniii
Abstrakv
KATA PENGANTARix
DAFTAR ISIxi
DAFTAR TABELxv
DAFTAR GAMBARxvi
DAFTAR LAMPIRANxix
BAB I PENDAHULUAN1
1.1 Latar Belakang Masalah 1
1.2 Perumusan Masalah2
1.3 Tujuan Penelitian2
1.4 Batasan Masalah3
1.5 Manfaat Penelitian3
1.6 Lokasi Studi4
BAB II TINJAUAN PUSTAKA7
2.1 Persimpangan7
2.1.1 Jenis-jenis Persimpangan7
2.1.2 Persinggungan di Persimpangan8
2.2 Lampu Lalu Lintas9
2.3 Simpang Bersinyal
2.4 Koordinasi Simpang Bersinyal11
2.4.1 Syarat Koordinasi Sinyal13
2.4.2 Offset dan Bandwidth14
2.4.3 Konsep Dasar Koordinasi Lampu Lalu Lintas 14
2.4.4 Keuntungan dan Efek Negatif Koordinasi16
2.5 Teori MKJI
2.5.1 Karakteristik Sinyal Lalu Lintas
2.5.2 Arus Jenuh Lalu Lintas20
2.5.3 Kapasitas

2.5.4 Panjang Antrian	23
2.5.5 Tundaan	25
BAB III METODOLOGI	27
3.1 Umum	
3.2 Metode Pengerjaan	27
3.2.1 Garis Besar Pengerjaan	27
3.2.2 Metode Perencanaan Waktu Siklus Baru	28
3.2.3 Metode Pengkoordinasian	29
3.3 Jenis Data	31
3.3.1 Data Primer	31
3.3.2 Data Sekunder	32
3.4 Pengambilan Data Primer	32
3.4.1 Volume Kendaraan	
3.4.2 Waktu Sinyal	
3.4.3 Geometrik Simpang	40
3.4.4 Hambatan Samping	40
BAB IV PENGUMPULAN DATA	41
4.1 Data Primer	41
4.1.1 Geometrik Simpang	41
4.1.2 Tata Guna Lahan	42
4.1.3 Waktu Sinyal dan Fase Pergerakan	
4.1.4 Volume Simpang	
4.2 Data Sekunder	
BAB V ANALISA DATA DAN PERENCANAAN	55
5.1 Analisa Koordinasi Kondisi Eksisting	
5.2 Analisa Kinerja Simpang Kondisi Eksisting	56
5.3 Perencanaan Waktu Siklus Baru	61
5.3.1 Perencanaan I	
5.3.2 Perencanaan II	
5.3.3 Perencanaan III	
5.3.4 Perencanaan IV	
5 2 5 Dorangenan V	

5.3.6 Perencanaan VI	69
5.3.7 Perencanaan VII	70
5.4 Penilaian Perencanaan Kinerja Terbaik	73
5.4 Koordinasi Sinyal Antar Simpang	78
BAB VI KESIMPULAN DAN SARAN	81
6.1 Kesimpulan	85
6.2 Saran	
DAFTAR PUSTAKA	xxi
BIODATA PENULIS	xxiii
LAMPIRAN	

DAFTAR TABEL

Tabel 2.1	Waktu Antar Hijau	19
Tabel 2.2	Nilai Ekivalen Mobil Penumpang	20
Tabel 2.3	Faktor Penyesuaian Ukuran Kota	21
Tabel 2.4	Faktor Hambatan Samping fase terlindung	
	(F _{SF})	22
Tabel 4.1	Lebar efektif semua pendekat	
Tabel 4.2	Tata guna lahan semua simpang	43
Tabel 4.3	Fase pergerakan dan waktu sinyal simpang I	44
Tabel 4.4	Fase pergerakan dan waktu sinyal simpang II	45
Tabel 4.5	Fase pergerakan dan waktu sinyal simpang III	46
Tabel 4.6	Fase pergerakan dan waktu sinyal simpang IV	47
Tabel 4.7	Volume simpang I (pagi)	48
Tabel 4.8	Volume simpang II (pagi)	49
Tabel 4.9	Volume simpang III (pagi)	49
Tabel 4.10	Volume simpang IV (pagi)	50
Tabel 4.11	Volume simpang I (sore)	51
Tabel 4.12	Volume simpang II (sore)	.51
Tabel 4.13	Volume simpang III (sore)	.52
Tabel 4.14	Volume simpang IV (sore)	. 53
Tabel 5.1	Kinerja Simpang Peak Hour Pagi (Eksisting)	.58
Tabel 5.2	Kinerja Simpang Peak Hour Sore (Eksisting)	.59
Tabel 5.3	Kinerja Arus Utama pada Peak Hour Pagi	.60
Tabel 5.4	Kinerja Arus Utama pada Peak Hour Sore	.60
Tabel 5.5	Pemilihan Kinerja TerjenuhKondis Eksisting	.61
Tabel 5.6	Perhitungan Waktu Siklus Terkoordinasi	. 62
Tabel 5.7	Kinerja Simpang Perencanaan I	. 64
Tabel 5.8	Kinerja Simpang Perencanaan II	.65
Tabel 5.9	Kinerja Simpang Perencanaan III	. 66

Tabel 5.10	Kinerja Simpang Perencanaan IV	67
Tabel 5.11	Kinerja Simpang Perencanaan V	68
Tabel 5.12	Kinerja Simpang Perencanaan VI	69
Tabel 5.13	Perubahan We pada Simpang II dan IV	70
Tabel 5.14	Perubahan Waktu Hijau Simpang II	72
Tabel 5.15	Kinerja Simpang Perencanaan VII	72
Tabel 5.16	Kinerja Arus Utama Perencanaan I	74
Tabel 5.17	Kinerja Arus Utama Perencanaan II	74
Tabel 5.18	Kinerja Arus Utama Perencanaan III	.75
Tabel 5.19	Kinerja Arus Utama Perencanaan IV	.75
Tabel 5.20	Kinerja Arus Utama Perencanaan V	.76
Tabel 5.21	Kinerja Arus Utama Perencanaan VI	76
Tabel 5.22	Kinerja Arus Utama Perencanaan VII	.77
Tabel 5.23	Pemilihan Perencanaan dengan Kinerja	
	Terbaik	.78
Tabel 5.24	Perubahan Pergerakan Fase Satu Simpang I	79
Tabel 5.25	Perubahan Pergerakan Fase Satu Simpang II	80

DAFTAR GAMBAR

Gambar 1.1 Lokasi Jalan Diponegoro di Kota Surabaya4
Gambar 1.2 Ruas Jalan Diponegoro yang menjadi objek
studi5
Gambar 1.3 Lokasi simpang yang di koordinasi5
Gambar 2.1 Titik Konflik pada Simpang Empat Lengan 8
Gambar 2.2 Konflik-konflik pada simpang bersinyal empat
lengan10
Gambar 2.3 Prinsip Koordinasi Sinyal dan Green Wave 12
Gambar 2.4 Offset dan Bandwidth dalam Diagram
Koordinasi14
Gambar 3.1 Bagan Alir Metodologi Pengerjaan30
Gambar 3.2 Contoh Form Survey Volume Kendaraan pada
Simpang34
Gambar 3.3 Posisi Surveyor di Simpang I38
Gambar 3.4 Posisi surveyor di Simpang II39
Gambar 3.5 Posisi Surveyor di Simpang III dan IV39
Gambar 5.1 Diagram Aliran Platoon Pada Kondisi
Eksisting57
Gambar 5.2 Perubahan Geometrik pada Simpang II71
Gambar 5.3 Perubahan Geometrik pada Simpang IV71
Gambar 5.4 Perubahan Pergerakan Fase 1 Simpang I80
Gambar 5.5 Perubahan Pergerakan Fase 1 Simpang II81
Gambar 5.6 Diagram Aliran Platoon Rencana Arah Utara-
Selatan82
Gambar 5.7 Diagram Aliran Platoon Rencana Arah
Selatan-Utara83

DAFTAR LAMPIRAN

Lampiran A	Gambar Geometrik Simpang
	Formulir SIG I Kondisi Eksisting Pagi
	Formulir SIG I Perencanaan VII
Lampiran D	Formulir SIG II Kondisi Eksisting Pagi
Lampiran E	Formulir SIG II Kondisi Eksisting Sore
Lampiran F	Formulir SIG IV dan SIG V Eksisting Pagi
Lampiran G	Formulir SIG IV dan SIG V Eksisting Sore
Lampiran H	Formulir SIG IV dan SIG V Perencanaan I (Tipikal
	Semua Perencanaan)

BAB I PENDAHULUAN

1.1 Latar Belakang Masalah

Keberadaan persimpangan tidak dapat dihindari pada sistem transportasi perkotaan. Hal ini pulalah yang terjadi pada kota Surabaya. Sebagai kota terbesar kedua di Indonesia dengan jumlah penduduk mencapai lima juta jiwa pada siang hari (Agam, 2008), akan timbul permasalahan pada saat semua orang bergerak bersamaan. Persimpangan pun menjadi salah satu bagian yang harus diperhatikan dalam rangka melancarkan arus transportasi di perkotaan. Oleh karena itu, keberadaaanya harus dikelola sedemikian rupa sehingga didapatkan kelancaran pergerakan yang diharapkan.

Hal yang dapat dilakukan untuk memperoleh kelancaran pergerakan tersebut adalah dengan menghilangkan konflik atau benturan pada persimpangan. Cara yang dapat digunakan adalah dengan mengatur pergerakan yang terjadi pada persimpangan. Adapun fasilitas yang dapat difungsikan adalah lampu lalu lintas (traffic light).

Meski demikian, banyaknya persimpangan yang terdapat di kota besar seperti Surabaya mampu menimbulkan permasalahan tersendiri. Hal tersebut terjadi pada beberapa ruas jalan yang memiliki banyak persimpangan, ditambah dengan jarak antar simpang yang pendek. Permasalahan yang terkadang terjadi adalah kendaaraan yang harus selalu berhenti pada tiap simpang karena selalu mendapat sinyal merah. Tentu saja hal ini menimbulkan ketidaknyamanan pengendara, disamping lamanya tundaan yang terjadi.

Kondisi inilah yang terjadi pada Jalan Diponegoro Surabaya yang menjadi objek studi. Dalam hal ini, Jalan Diponegoro menjadi jalan utama yang diprioritaskan kelancarannya karena hirarkinya yang merupakan jalan arteri primer dan volumenya yang lebih besar daripada jalan pendekat lainnya.

Terdapat empat simpang bersinyal yang berdekatan pada ruas tersebut. Keempatnya adalah simpang antara Jalan Diponegoro dengan Jalan Ciliwung (Simpang I), Jalan Bengawan (Simpang II), Jalan Musi (Simpang III), dan Jalan Raya Dr Soetomo (Simpang IV). Adapun jarak antar simpang yang terdapat pada ruas Jalan Diponegoro tersebut adalah 250 meter antara simpang I dan II, 460 meter antara simpang II dan III, dan 220 meter antara simpang III dan IV. Dengan jarak antar simpang yang dekat, pengendara kerap kali berhenti pada tiap simpangnya karena terkena sinyal merah.

Untuk itu, perlu dilakukan analisa terhadap koordinasi keempat simpang pada ruas Jalan Diponegoro tersebut. Penyelesaian yang dapat dilakukan adalah dengan mengkoordinasikan sinyal lampu lalulintas pada keempat simpang. Perlakuan ini dilakukan dengan mengutamakan jalur utama yang bervolume lebih besar sehingga dapat menghindari tundaan akibat lampu merah. Dengan demikian, kelambatan dan antrian panjang pun dapat diminimalisir.

1.2 Perumusan Masalah

Adapun rumusan masalah dalam penelitian ini adalah:

- Apakah keempat simpang di jalan Diponegoro sudah terkoordinasi?
- Bagaimanakah mengkoordinasikan keempat simpang?
- 3. Apakah keempat simpang menghasilkan kinerja lebih baik setelah dilakukan koordinasi sinyal antar simpang?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini diantaranya adalah:

- Mengevaluasi koordinasi antar simpang di Jalan Diponegoro.
- Mendapatkan koordinasi yang tepat untuk dapat mengurangi waktu tundaan dan antrian.
- Menganalisa perbedaan kondisi antara sebelum dan sesudah dikoordinasi.

1.4 Batasan Masalah

Sesuai dengan tujuan penelitian, agar pembahasan lebih jelas dan terarah, maka diberikan batasan-batasan penelitian yang meliputi hal-hal sebagai berikut:

- 1. Koordinasi tidak menyertakan persimpangan Jalan Kartini yang juga terdapat dalam ruas Jalan Diponegoro.
- 2. Penelitian dilakukan pada jenis kendaraan berat, kendaraan sedang, kendaran ringan, sepeda motor, dan kendaraan tak bermotor.
- 3. Metode penghitungan hanya menggunakan Manual Kapasitas Jalan Indonesia (MKJI) .
- Survei lalulintas dilakukan satu hari pada jam sibuk pagi dan sore.
- 5. Tidak merencanakan pelarangan gerakan belok kanan untuk menambah kapasitas.
- 6. Pola pengaturan waktu yang diterapkan hanya satu, tidak berubah-ubah (fixed time control).
- Tidak menghitung penghematan energi bahan bakar, pengurangan jumlah kecelakaan, dan dampak lingkungan.

1.5 Manfaat Penelitian

Sedangkan maanfaat dari dilakukannya penelitian ini adalah:

- 1. Terkoordinasinya pengaturan sinyal antar simpang di Jalan Diponegoro dengan lebih baik.
- 2. Mengetahui nilai perbandingan kinerja simpang sebelum dan sesudah dikoordinasikan.
- Sebagai alternatif masukan dan pertimbangan bagi instansi yang terkait yaitu Pemerintah Daerah Kota Surabaya dan Dinas Perhubungan Kota Surabaya untuk melakukan tindakan yang tepat sehingga kinerja koordinasi simpang tersebut menjadi lebih baik.

1.6 Lokasi Studi

Lokasi studi yang akan menjadi objek pembahasan adalah empat simpang yang terdapat pada ruas Jalan Diponegoro, Surabaya.

- · Simpang yang akan dikoordinasikan
 - (I) Simpang Jalan Diponegoro dengan Jalan Ciliwung
 - (II) Simpang Jalan Diponegoro dengan Jalan Bengawan
 - (III) Simpang Jalan Diponegoro dengan Jalan Musi
 - (IV) Simpang Jalan Diponegoro dengan Jalan Dr Soetomo
- Jalan Diponegoro merupakan jalur utama yang diprioritaskan
- Lokasi Jalan Diponegoro

Gambar 1.1 Lokasi Jalan Diponegoro di Kota Surabaya (Sumber: www.suarasurabaya.net)

· Ruas jalan yang distudi

Gambar 1.2 Ruas Jalan Diponegoro yang menjadi objek studi (Sumber: Peta Surabaya, PT Karya Pembina Swajaya)

Lokasi persimpangan di Jalan Diponegoro

Gambar 1.3 Lokasi simpang yang di koordinasi (Sumber: Peta Surabaya, PT Karya Pembina Swajaya)

BAB II TINJAUAN PUSTAKA

2.1 Persimpangan

Persimpangan merupakan bagian yang tidak terpisahkan dari semua sistem jalan. Ketika berkendara di dalam kota, orang dapat melihat bahwa kebanyakan jalan di daerah perkotaan biasanya memiliki persimpangan, di mana pengemudi dapat memutuskan untuk jalan terus atau berbelok dan pindah jalan.

Menurut Departemen Perhubungan Direktorat Jenderal Perhubungan Darat (1996), persimpangan adalah simpul pada jaringan jalan di mana jalan-jalan bertemu dan lintasan kendaraan berpotongan. Lalu lintas pada masing-masing kaki persimpangan bergerak secara bersama-sama dengan lalu lintas lainnya. Persimpangan-persimpangan merupakan faktor-faktor yang paling penting dalam menentukan kapasitas dan waktu perjalanan pada suatu jaringan jalan, khususnya di daerah-daerah perkotaan.

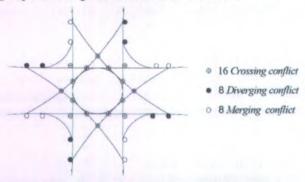
Karena persimpangan harus dimanfaatkan bersama-sama oleh setiap orang yang ingin menggunakannya, maka persimpangan tersebut harus dirancang dengan hati-hati, dengan mempertimbangkan efisiensi, keselamatan, kecepatan, biaya operasi, dan kapasitas. Pergerakan lalu lintas yang terjadi dan urutan-urutannya dapat ditangani dengan berbagai cara, tergantung pada jenis persimpangan yang dibutuhkan (C. Jotin Khisty, 2003)

Khisty (2003) menambahkan, persimpangan dibuat dengan tujuan untuk mengurangi potensi konflik diantara kendaraan (termasuk pejalan kaki) dan sekaligus menyediakan kenyamanan maksimum dan kemudahan pergerakan bagi kendaraan.

2.1.1 Jenis-jenis Persimpangan

Secara umum terdapat tiga jenis persimpangan, yaitu persimpangan sebidang, pembagian jalur jalan tanpa ramp, dan simpang susun atau *interchange* (Khisty, 2003). Sedangkan

menurut F.D. Hobbs (1995), terdapat tiga tipe umum pertemuan jalan, yaitu pertemuan jalan sebidang, pertemuan jalan tak sebidang, dan kombinasi antara keduanya.


Persimpangan sebidang (intersection at grade) adalah persimpangan di mana dua jalan atau lebih bergabung pada satu bidang datar, dengan tiap jalan raya mengarah keluar dari sebuah persimpangan dan membentuk bagian darinya (Khisty, 2003).

2.1.2 Persinggungan di Persimpangan

Lintasan kendaraan pada simpang akan menimbulkan titik konflik yang berdasarkan alih gerak kendaraan terdapat 4 (empat) jenis dasar titik konflik yaitu berpencar (diverging), bergabung (merging), berpotongan (crossing), dan berjalinan (weaving).

Jumlah potensial titik konflik pada simpang tergantung dari jumlah arah gerakan, jumlah lengan simpang, jumlah lajur dari setiap lengan simpang dan pengaturan simpang. Pada titik konflik tersebut berpotensial terjadinya kecelakaan dan kemacetan lalu lintas.

Pada simpang empat lengan, titik-titik konflik yang terjadi terdiri dari 16 titik *crossing*, 8 titik *diverging* dan 8 titik *merging* seperti ditunjukan dalam Gambar 2.1.

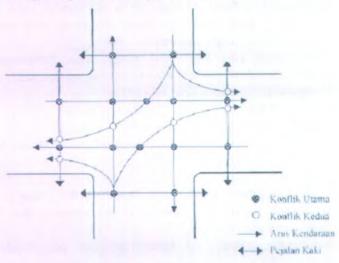
Gambar 2.1 Titik Konflik pada Simpang Empat Lengan (Sumber: Khisty, 2003)

2.2 Lampu Lalu Lintas

Satu metode yang paling penting dan efektif untuk mengatur lalu lintas di persimpangan adalah dengan menggunakan lampu lalu lintas. Menurut C. Jotin Khisty (2003), lampu lalu lintas adalah sebuah alat elektrik (dengan sistem pengatur waktu) yang memberikan hak jalan pada satu arus lalu lintas atau lebih sehingga aliran lalu lintas ini bisa melewat persimpangan dengan aman dan efisien.

Clarkson H. Oglesby (1999) menyebutkan bahwa setiap pemasangan lampu lalu lintas bertujuan untuk memenuhi satu atau lebih fungsi-fungsi yang tersebut di bawah ini:

- 1. Mendapatkan gerakan lalu lintas yang teratur.
- 2. Meningkatkan kapasitas lalu lintas pada perempatan jalan.
- 3. Mengurangi frekuensi jenis kecelakaan tertentu.
- Mengkoordinasikan lalu lintas di bawah kondisi jarak sinyal yang cukup baik, sehingga aliran lalu lintas tetap berjalan menerus pada kecepatan tertentu.
- 5. Memutuskan arus lalu lintas tinggi agar memungkinkan adanya penyebrangan kendaraan lain atau pejalan kaki.
- 6. Mengatur penggunaan jalur lalu lintas.
- 7. Sebagai pengendali ramp pada jalan masuk menuju jalan bebas hambatan (*entrance freeway*).
- 8. Memutuskan arus lalu lintas bagi lewatnya kendaraan darurat (*ambulance*) atau pada jembatan gerak.


Di lain pihak, Clarkson H. Oglesby (1999) menyebutkan bahwa terdapat hal-hal yang kurang menguntungkan dari lampu lalu lintas, antara lain adalah:

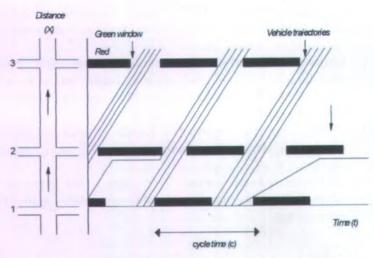
- Kehilangan waktu yang berlebihan pada pengemudi atau pejalan kaki.
- 2. Pelanggaran terhadap indikasi sinyal umumnya sama seperti pada pemasangan khusus.
- 3. Pengalihan lalu lintas pada rute yag kurang menguntungkan.
- 4. Meningkatkan frekuensi kecelakan, terutama tumbukan bagian belakang kendaraan dengan pejalan kaki.

2.3 Simpang Bersinyal

Simpang-simpang bersinyal merupakan bagian dari sistem kendali waktu tetap yang dirangkai atau sinyal aktual kendaraan terisolir. Simpang bersinyal biasanya memerlukan metode dan perangkat lunak khusus dalam analisanya.

Kapasitas simpang dapat ditingkatkan dengan menerapkan aturan prioritas sehingga simpang dapat digunakan secara bergantian. Pada jam-jam sibuk hambatan yang tinggi dapat terjadi, untuk mengatasi hal itu pengendalian dapat dibantu oleh petugas lalu lintas namun bila volume lalu lintas meningkat sepanjang waktu diperlukan sistem pengendalian untuk seluruh waktu (full time) yang dapat bekerja secara otomatis. Pengendalian tersebut dapat digunakan alat pemberi isyarat lalu intas (traffic signal) atau sinyal lalu lintas.

Gambar 2.2 Konflik-konflik pada simpang bersinyal empat lengan (Sumber: MKJI, 1997)


Menurut MKJI (1997), pada umumnya penggunaan sinyal lalu lintas pada persimpangan dipergunakan untuk satu atau lebih alasan berikut ini.

- Untuk menghindari kemacetan simpang akibat adanya konflik arus lalu lintas, sehingga terjamin bahwa suatu kapasitas tertentu dapat dipertahankan, bahkan selama kondisi lalu lintas jam puncak.
- Untuk memberi kesempatan kepada kendaraan dan/atau pejalan kaki dari jalan simpang (kecil) untuk memotong jalan utama.
- Untuk mengurangi jumlah kecelakaan lalu lintas akibat tabrakan antara kendaraan-kendaraan dari arah yang bértentangan.

2.4 Koordinasi Simpang Bersinval

Koordinasi sinyal antar simpang diperlukan untuk mengoptimalkan kapasitas jaringan jalan karena dengan adanya koordinasi sinyal ini diharapkan tundaan (*delay*) yang dialami kendaraan dapat berkurang dan menghindarkan antrian kendaraan yang panjang. Kendaraan yang telah bergerak meninggalkan satu simpang diupayakan tidak mendapati sinyal merah pada simpang berikutnya, sehingga dapat terus berjalan dengan kecepatan normal. Sistem sinyal terkoordinasi mempunyai indikasi sebagai salah satu bentuk manajemen transportasi yang dapat memberikan keuntungan berupa efisiensi biaya operasional (Sandra Chitra Amelia, 2008 dikutip dari Arouffy, 2002)

Menurut Taylor dkk, (1996) koordinasi antar simpang bersinyal merupakan salah satu jalan untuk mengurangi tundaan dan antrian. Adapun prinsip koordinasi simpang bersinyal menurut Taylor ditunjukan dalam Gambar 2.3 berikut.

Gambar 2.3 Prinsip Koordinasi Sinyal dan Green Wave (Sumber: Taylor dkk (1996), Understanding Traffic System)

Dari Gambar 2.3 di atas, terdapat hal-hal yang perlu diperhatikan dalam mengkoordinasikan sinyal, yaitu:

 Waktu siklus pada sinyal tiap simpang diusahakan sama, hal ini untuk mempermudah menentukan selisih nyala sinyal hijau dari simpang yang satu dengan simpang berikutnya.

 Sebaiknya pola pengaturan simpang yang dipergunakan adalah fixed time signal, karena koordinasi sinyal dilakukan secara terus menerus.

Sistem koordinasi sinyal dibagi menjadi empat macam sebagai berikut ini:

1. Sistem serentak (simultaneous system), semua indikasi warna pada suatu koridor jalan menyala pada saat yang sama.

 Sistem berganti-ganti (alternate system), sistem dimana semua indikasi sinyal berganti pada waktu yang sama, tetapi sinyal atau kelompok sinyal pada simpang didekatnya memperlihatkan warna yang berlawanan. 3. Sistem progresif sederhana (simple progressive system), berpedoman pada siklus yang umum tetapi dilengkapi dengan indikasi sinyal jalan secara terpisah.

4. Sistem progresif fleksibel (flexible progressive system), memiliki mekanisme pengendali induk yang mengatur pengendali pada tiap sinyal. Pengendalian ini tidak hanya memberikan koordinasi yang baik diantara sinyal-sinyal tetapi juga memungkinkan panjang siklus dan pengambilan silkus pada interval di sepanjang hari.

2.4.1 Syarat Koordinasi Sinyal

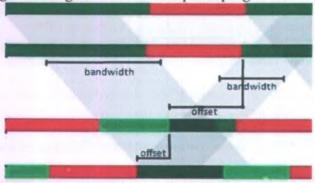
Pada situasi di mana terdapat beberapa sinyal yang mempunyai jarak yang cukup dekat, diperlukan koordianasi sinyal sehingga kendaraan dapat bergerak secara efisien melalui kumpulan sinyal-sinyal tersebut.

Pada umumnya, kendaraan yang keluar dari suatu sinyal akan tetap mempertahankan grupnya hingga sinyal berikutnya. Jarak di mana kendaraan akan tetap mempertahankan grupnya adalah sekitar 300 meter (McShane dan Roess, 1990).

Untuk mengkoordinasikan beberapa sinyal, diperlukan beberapa syarat yang harus dipenuhi (McShane dan Roess, 1990), yaitu:

- Jarak antar simpang yang dikoordinasikan tidak lebih dari 800 meter. Jika lebih dari 800 meter maka kordinasi sinyal tidak akan efektif lagi.
- 2. Semua sinyal harus mempunyai panjang waktu siklus (cycle time) yang sama.
- Umumnya digunakan pada jaringan jalan utama (arteri, kolektor) dan juga dapat digunakan untuk jaringan jalan yang berbentuk grid.
- 4. Terdapat sekelompok kendaraan (platoon) sebagai akibat lampu lalu lintas di bagian hulu.

Selain itu, Taylor, dkk (1996) juga mengisyaratkan bahwa fungsi dari sistem koordinasi sinyal adalah mengikuti volume lalu


lintas maksimum untuk melewati simpang tanpa berhenti dengan mulai waktu hijau (green periods) pada simpang berikutnya mengikuti kedatangan dari kelompok (platoon).

2.4.2 Offset dan Bandwidth

Offset merupakan perbedaan waktu antara dimulainya sinyal hijau pada simpang pertama dan awal hijau pada simpang setelahnya (C.S. Papacostas, 2005). Waktu offset dapat dihitung melalui diagram koordinasi. Namun, waktu offset juga dapat digunakan untuk memulai membentuk lintasan koordinasi.

Sedangkan bandwidth adalah perbedaan waktu dalam lintasan paralel sinyal hijau antara lintasan pertama dan lintasan terakhir (C.S. Papacostas, 2005). Keduanya berada dalam kecepatan yang konstan dan merupakan platoon yang tidak terganggu sinyal merah sama sekali.

Untuk lebih jelasnya, *offset* dan *bandwidth* dapat dilihat pada gambar diagram koordinasi empa simpang di bawah ini.

Gambar 2.4 Offset dan Bandwidth dalam Diagram Koordinasi

2.4.3 Konsep dasar koordinasi lampu lalu lintas

Menurut Pedoman Sistem Pengendalian Lalu Lintas Terpusat No.AJ401/1/7/1991 Keputusan Direktur Jendral Perhubungan Darat, dasar pendekatan dari perencanaan sistem terkoordinasi pengaturan lalu lintas sepanjang suatu jalan arteri adalah bahwa kendaraan-kendaraan yang lewat jalan tersebut akan melaju dalam bentuk iring-iringan dari satu simpang ke simpang berikutnya. Berdasarkan kecepatan gerak iring-iringan tersebut, interval lampu dan lama lampu hijau menyala di satu simpang dan di simpang berikutnya dapat ditentukan, sehingga iring-iringan tersebut dapat melaju terus tanpa hambatan sepanjang jalan yang lampu pengatur lalu lintasnya terkoordinasikan.

1. Koordinasi pada jalan satu arah dan jalan dua arah

Bentuk paling sederhana dari satu koordiansi pengaturan lampu lalu lintas adalah pada suatu jalan satu arah di mana tidak ada lalu lintas yang dapat masuk ke dalam ruas jalan tersebut dia antara dua persimpangan. Lampu lalu lintas bagi penyebarangan pejalan kaki pada ruas jalan tersebut diatur sedemikian rupa sehingga arus lalu lintas kendaraan yang bergerak dengan kecepatan tertentu seolah-olah tidak mengalami hambatan.

Kesulitan muncul seandainya jalan tersebut harus melayani lalu lintas dua arah. Jika pengaturan untuk penyebrang jalan diterapkan berdasarkan parameter pergerakan arus lalu lintas dari satu arah tertentu, maka arus lalu lintas arah berlawanan akan menderita kerugian. Kecuali jika lokasi penyebrangan tepat berada di tengah-tengah ruas jalan tersebut.

2. Diagram waktu jarak

Konsep koordinasi pengaturan lampu lalu lintas biasanya dapat digambarkan dalam bentuk DiagramWaktu-jarak (*Time Distance Diagram*) seperti diperlihatkan pada Gambar 2.3. Diagram waktu-jarak adalah visualisasi dua dimensi dari beberapa simpang yang terkoordiansi sebagai fungsi jarak dan pola indikasi lampu lalu lintas di masing-masing simpang yang bersangkutan sebagai fungsi waktu.

3. Metode koordinasi lampu lalu lintas

- Pola pengaturan waktu tetap (Fixed Time Control). Pola pengaturan waktu yang diterapkan hanya satu, tidak berubah-ubah. Pola pengaturan tersbut merupakan pola pengaturan yang paling cocok untuk kondisi jalan atau jaringan jalan yang terkordinasikan. Pola-pola pengaturan tersebut ditetapkan berdasarkan data-data dan kondisi dari jalan atau jaringan yang bersangkutan.
- Pola pengaturan waktu berubah berdasarkan kondisi lalu lintas. Pola pengaturan waktu yang diterapkan tidak hanya satu tetapi diubah-ubah sesuai dengan kondisi lalu lintas yang ada. Biasanya ada tiga pola yang diterapkan yang sudah secara umum ditetapkan berdasarkan kondisi lalu lintas sibuk pagi (morning peak condition), kondisi lalu lintas sibuk sore (evening peak condition), dan kondisi lalu lintas di antara kedua periode waktu tersebut (off peak condition).
- Pola pengaturan waktu berubah sesuai kondisi lalu lintas (traffic responsive system). Pola pengaturan waktu yang diterapkan dapat berubah-ubah setiap waktu sesuai dengan perkiraan kondisi lalu lintas yang ada pada waktu yang bersangkutan. Pola-pola tersebut ditetapkan berdasarkan perkiraan kedatangan kendaraan yang dilakukan beberapa saat sebelum penerapannya. Sudah barang tentu metode ini hanya dapat diterapkan dengan peralatan-peralatan yang lengkap.

2.4.4 Keuntungan dan Efek Negatif Sistem Terkoordinasi

Masih menurut Pedoman Sistem Pengendalian Lalu Lintas Terpusat No.AJ401/1/7/1991 Keputusan Direktur Jendral Perhubungan Darat, terdapat beberapa hal yang harus diperhatikan dalam mengkoordinasikan lalu lintas dalam perkotaan, beberapa diantaranya adalah keuntungan dan efek negatif dari penerapan sistem tersebut.

Dalam penerapan sistem pengaturan terkoordinasi, beberapa keuntungannya adalah:

- Diperolehnya waktu perjalanan total yang lebih singkat bagi kendaraan-kendaraan dengan karakteristik tertentu
- Penurunan derajat polusi udara dan suara
- Penurunan konsumsi energi bahan bakar
- Penurunan angka kecelakaan

Di samping keuntungan-keuntungan yang dapat diperoleh dari penerapan sistem pengaturan lalu lintas terkoordinasi ini, perlu pula diperhatikan akibat negatifnya, seperti:

- Kemungkinan terjadi waktu perjalanan yang lebih panjang bagi lalu lintas kendaraan yang karakteristik operasinya berbeda dengan karakteristik operasi kendaraan yang diatur secara terkoordinasi.
- Manfaat penerapan sistem ini akan berkurang jika mempertimbangkan jenis lalu lintas lain seperti pejalan kaki, sepeda, dan angkutan umum. Umumnya, keuntungan lebih besar akan diperoleh jika sistem ini diterapkan di suatu jaringan jalan arteri utama dibandingkan dengan jaringan jalan yang memiliki banyak hambatan.
- Koordinsai lampu lalu lintas pada jalan arteri utama akan efektif jika satu simpang dengan simpang yang lain berjarak kurang lebih 800 meter. Jika jarak lebih dari itu, maka keefektivannya akan berkurang.

2.5 Teori MKJI

2.5.1 Karakteristik Sinyal Lalu Lintas

Penggunaan sinyal dengan lampu tiga warna (hijau, kuning, merah) diterapkan untuk memisahkan lintasan dari gerakan-gerakan lalu lintas yang saling bertentangan dalam dimensi waktu.

1. Fase Sinyal

Pemilihan fase pergerakan tergantung dari banyaknya konflik utama, yaitu konflik yang terjadi pada volume kendaraan yang cukup besar. Menurut MKJI, 1997 Jika fase sinyal tidak diketahui, maka pengaturan dengan dua fase sebaiknya digunakan sebagai kasus dasar. Pemisahan gerakan-gerakan belok kanan biasanya hanya dilakukan berdasarkan pertimbangan kapasitas kalau gerakan membelok melibihi 200 smp/jam.

2. Waktu Antar Hijau dan Waktu Hilang

Waktu antar hijau adalah periode kuning dan merah semua anatara dua fase yang berurutan, arti dari keduanya sebagai berikut ini:

- a. Panjang waktu kuning pada sinyal lalu lintas perkotaan di Indonesia menurut MKJI, 1997 adalah 3,0 detik.
- b. Waktu merah semua pendekat adalah waktu dimana sinyal merah menyala bersamaan dalam semua pendekat yang dilayani oleh dua fase sinyal yang berurutan. Fungsi dari waktu merah semua adalah memberi kesempatan bagi kendaraan terakhir (melewati garis henti pada akhir sinyal kuning) berangkat sebelum kedatangan kendaraan pertama dari fase berikutnya.

Waktu hilang (lost time) adalah jumlah semua periode antar hijau dalam siklus yang lengkap. Waktu hilang dapat diperoleh dari beda antara waktu siklus dengan jumlah waktu hijau dalam semua fase.

> LTI = Σ (semua merah + kuning) Sumber : MKJI, 1997 (Hal : 2 – 44)

Ketentuan waktu antar hijau berdasarkan ukuran simpang menurut MKJI (1997) dapat dilihat pada Tabel 2.1.

Tabel 2.1 Waktu Antar Hijau

Ukuran simpang	Lebar jalan Rata-rata	Nilai normal waktu antar hijau		
Kecil	6 – 9 m	4 detik/fase		
Sedang	10 – 14 m	5 detik/fase		
Besar	>15 m	> 6 detik/fase		

Sumber: MKJI, 1997 (Hal: 2 – 43)

3. Waktu Siklus dan Waktu Hijau

Waktu siklus adalah urutan lengkap dari indikasi sinyal (antara dua saat permulaan hijau yang berurutan di dalam pendekat yang sama). Waktu siklus yang paling rendah akan menyebabkan kesulitan bagi pejalan kaki untuk menyebrang, sedangkan waktu siklus yang lebih besar menyebabkan memanjangnya antrian kendaraan dan bertambahnya tundaan, sehingga akan mengurangi kapasitas keseluruhan simpang.

a. Waktu siklus sebelum penyesuaian

Cua =
$$\frac{(1.5xLTI + 5)}{(1 - \sum FR)}$$
....(2.1)

Sumber: MKJI, 1997 (Hal: 2 - 59)

Dengan:

Cua = waktu siklus sebelum penyesuaian

LTI = waktu hilang total per siklus

FR = rasio arus simpang

b. Waktu hijau (gi)

Waktu hijau untuk masing-masing fase:

$$gi = (Cua-LTI) \times PRi (detik) \dots (2.2)$$

Sumber: MKJI, 1997 (Hal: 2 – 60)

PRi= Rasio fase FR/∑FR

c. Waktu siklus yang disesuaikan (c)

 $c = \Sigma g + LTI (detik) \dots (2.3)$

Sumber: MKJI, 1997 (Hal: 2-60)

2.5.2 Arus Jenuh Lalu lintas

Arus lalu lintas untuk setiap gerakan (belok kiri, lurus, dan belok kanan) dikonversi dari kendaraan per jam menjadi satuan mobil penumpang (smp) per jam dengan menggunakan ekivalen kendaraan penumpang (emp) untuk masing-masing pendekat terlindung dan terlawan. Nilai konversi untuk setiap jenis kendaraan dapat dilihat pada Tabel 2.2 sebagai berikut.

Tabel 2.2 Nilai Ekivalen Mobil Penumpang

Jenis Kendaraan	Terlindung	Terlawa n	
Kendaraan ringan (LV)	1,0	1,0	
Kendaraan berat (HV)	1,3	1,3	
Sepeda motor (MC	0,2	0,4	

Sumber: MKJI, 1997 (Hal: 2 - 10)

Rumus yang digunakan dari MKJI (1997) untuk menghitung arus jenuh lalu lintas adalah sebagai berikut :

1. Menentukan arus jenuh dasar (So) untuk setiap pendekat, untuk pendekat tipe P (arus terlindung).

Sumber: MKJI, 1997 (Hal: 2 – 49)

dengan: We = Lebar efektif

2. Menghitung nilai arus jenuh S yang dinyatakan sebagai hasil perkalian dari arus jenuh dasar untuk keadaan standar, dengan faktor penyesuaian (F) untuk penyimpangan dari kondisi sebenarnya, dari suatu kondisi-kondisi yang telah ditetapkan :

$$S = S_O \times F_{CS} \times F_{SF} \times F_G \times F_P \times F_{RT} \times F_{LT}$$
 (2.5)

Sumber: MKJI, 1997 (Hal: 2 – 56)

Dengan:

 $S_0 = Arus jenuh dasar$

F_{CS} = Faktor penyesuaian ukuran kota

F_{SF} = Faktor penyesuaian tipe lingkungan jalan, hambatan samping, dan kendaraan tak bermotor

 F_G = Faktor penyesuaian untuk kelandaian

F_P = Faktor penyesuaian parkir

F_{RT} = Faktor penyesuaian belok kanan

F_{LT} = Faktor penyesuaian belok kiri

Dengan nilai faktor penyesuaian sebagai berikut ini.

a. Faktor penyesuaian ukuran kota (F_{CS})

Faktor penyesuaian ini dibagi menjadi 5 macam menurut jumlah penduduk dan diperoleh dari Tabel 2.3 berikut.

Tabel 2.3 Faktor Penyesuaian Ukuran Kota

Ukuran kota (cs)	Jumlah penduduk (juta)	Faktor penyesuaian ukuran kota (F _{CS})		
Sangat kecil	<0,1	0,82		
Kecil	0,1-0,5	0,88		
Sedang	0,5 – 1,0	0,94		
Besar	1,0-3,0	1,00		
Sangat besar	>3,0	1,05		

Sumber: MKJI, 1997 (Hal: 2 – 53)

b. Faktor penyesuaian hambatan samping (F_{SF})

Faktor penyesuaian hambatan samping ditentukan dari Tabel 2.4 sebagai fungsi dari jenis lingkungan jalan, tingkat hambatan samping dan rasio kendaraan tak bermotor.

Tabel 2.4 Faktor Hambatan Samping fase terlindung (FSF)

Tipe	Hambatan	Rasio Kendaraan Tak Bermotor					
Lingkungan	Samping	0,00	0,05	0,10	0,15	0,20	>0,25
Komersial	Tinggi	0,93	0,91	0,88	0,87	0,85	0,81
	Sedang	0,94	0,92	0,89	0,88	0,86	0,82
	Rendah	0,95	0,93	0,90	0,89	0,87	0,83
Pemukiman	Tinggi	0,96	0,94	0,92	0,89	0,86	0,84
	Sedang	0,97	0,95	0,93	0,90	0,87	0,85
	Rendah	0,98	0,93	0,94	0,91	0,88	0,86
Akses Terbatas		1,00	0,98	0,95	0,93	0,90	0,88

Sumber: MKJI, 1997 (Hal: 2-53)

c. Faktor penyesuaian parkir (F_P)

Faktor penyesuain parkir dapat dihitung dari rumus berikut, yang mencakup pengaruh panjang waktu hijau :

$$F_P = \left[(L_p - 3) - \frac{(W_a - 2)x(L_p / 3 - g)}{W_A} \right]$$

Sumber: MKJI, 1997 (Hal: 2 - 54)

d. Faktor penyesuaian belok kanan (F_{RT})

Faktor penyesuain belok kanan ditentukan sebagai fungsi dari rasio kendaraan belok kanan, dihitung dengan rumus:

$$F_{RT} = 1.0 + P_{RT} \times 0.26$$

Sumber: MKJI,1997 (Hal: 2-55)

e. Faktor penyesuaian belok kiri (F_{LT})

Faktor penyesuain belok kiri dapat dihitung dengan menggunakan rumus (hanya berlaku untuk pendekat tipe terlindung (P) tanpa LTOR):

$$F_{LT} = 1.0 - P_{LT} \times 0.16$$

Sumber: MKJI,1997 (2 - 56)

2.5.3 Kapasitas

Kapasitas pada persimpangan didasarkan pada konsep dan angka arus aliran jenuh (Saturation Flow). Angka Saturation Flow didefinisikan sebagai angka maksimum arus yang dapat melewati pendekat pertemuan jalan menurut kontrol lalu lintas yang berlaku dan kondisi jalan Satuation Flow dinyatakan dalam unit kendaraan per jam pada waktu lampu hijau, di mana hitungan kapasitas masing-masing pendekat adalah:

 $C = S \times cg \text{ (smp/jam)} \dots (2.6)$

Sumber: MKJI,1997 (Hal: 2 – 61)

Dengan:

C = kapasitas

S = arus jenuh

g = waktu hijau

c = waktu siklus

dan derajat kejenuhan masing-masing diperoleh dari :

$$DS = \frac{Q}{C} \tag{2.7}$$

Sumber: MKJI,1997 (Hal: 2-61)

Dengan:

DS = derajat kejenuhan

Q = arus lalu lintas pada pendekat tersebut (smp/jam)

C = kapasitas

2.5.4 Panjang Antrian

Panjang Antrian adalah panjang antrian kendaraan dalam suatu pendekat dan antrian dalam jumlah kendaraan yang antri dalam suatu pendekat (kendaraan,smp).

Untuk menghitung jumlah antrian smp (NQ1):

1. Untuk DS > 0.5 maka:

$$NQ_1 = 0.25 \times C \times \left[(DS - 1) + \sqrt{(DS - 1)^2 + \frac{8x(DS - 0.5)}{C}} \right] \dots (2.8)$$

Sumber: MKJI,1997 (Hal: 2-64)

Dengan:

NQ₁ = jumlah smp yang tertinggal dari fase hijau sebelumnya (smp)

2. Untuk DS ≤ 0.5 maka NQ₁ = 0

Untuk menghitung antrian smp yang datang selama fase merah (NQ2):

$$NQ_2 = c \times \frac{1 - GR}{1 - GR \times DS} \times \frac{Q}{3600}$$
 (2.9)

Sumber: MKJI,1997 (Hal: 2-65)

NQ₂= jumlah smp yang datang selama fase merah (smp)

GR = rasio hijau

c = waktu siklus

Qmasuk = arus lalu lintas pada tempat masuk luar LTOR (smp/jam)

Penyesuaian arus:

$$Qpeny = \sum (Qmasuk - Qkeluar (smp/jam)(2.10)$$

Sumber: MKJI,1997 (Hal: 2-65)

Jumlah kendaraan antrian:

$$NQ = NQ_1 + NQ_2 \text{ (smp)} \dots (2.11)$$

Sumber: MKJI,1997 (Hal: 2-65)

Panjang antrian:

$$QL = \frac{NQ_{\text{max}}x20}{W_{\text{maxuk}}}$$
(m)(2.12)

Sumber: MKJI,1997 (Hal: 2-65)

Kendaraan terhenti:

Angka henti (NS) masing-masing pendekat:

NS =
$$0.9x \frac{NQ}{Qxc} x360 \text{ (smp/jam)}....(2.13)$$

Sumber: MKJI,1997 (Hal: 2 - 67)

Jumlah kendaraan terhenti (Nsv) masing-masing pendekat:

 $Nsv = Q \times Ns (smp/jam) \dots (2.14)$

Sumber: MKJI,1997 (Hal: 2-67))

Angka henti seluruh simpang:

Ns total =
$$\frac{\sum Nsv}{Qtotal}$$
(2.15)

Sumber: MKJI,1997 (Hal: 2 - 67)

2.5.5 Tundaan

Tundaan adalah waktu tempuh tambahan yang diperlukan untuk melewati simpang bila dibandingkan dengan situasi tanpa simpang.

1. Menghitung tundaan lalu lintas

Tundaan lalu lintas rata-rata untuk setiap pendekat akibat pengaruh timbal balik dengan gerakan-gerakan lainnya pada simpang berdasarkan MKJI,1997 sebagai berikut:

DT j = (cxA)
$$\left(\frac{NQ1x3600}{C}\right)$$
 (det/smp)(2.16)

Sumber: MKJI,1997 (Hal: 2 – 68)

Dengan:

DT = tundaan lalu lintas rata-rata untuk pendekat j

C = waktu siklus yang disesuaikan (det)

$$A = \frac{0.5x(1 - GR)^2}{(1 - GRxDS)}$$
 (2.17)

Sumber: MKJI,1997 (Hal: 2 - 68)

A = konstanta

2. Menentukan tundaan geometri rata-rata (DG)

Tundaan geometri untuk masing-masing pendekat akibat pengaruh perlambatan dan percepatan ketika menunggu giliran pada suatu simpang atau ketika dihentikan oleh lampu merah.

 $DG_j = (1-Psv) \times (Psvx4) (det/smp) \dots (2.18)$

Sumber: MKJI, 1997 (Hal: 2-69)

Dengan:

DGj = tundaan geometri rata-rata untuk pendekat j

Psv = rasio kendaraan terhenti pada suatu pendekat

3. Menghitung tundaan geometri gerakan belok kiri langsung (LTOR).

Tundaan lalu lintas dengan belok kiri langsung (LTOR) diasumsikan tundaan geometri rata-rata = 6 detik

4. Menghitung tundaan rata-rata (det/jam)

Tundaan rata-rata dihitung dengan menjumlahkan tundaan lalu lintas (DT) dan tundaan geometri rata-rata untuk pendekat j (DGj)

5. Menghitung tundaan total

Tundaan Total dalam detik dengan mengalihkan tundaan ratarata dengan arus lalu lintas.

6. Menghitung tundaan rata-rata untuk seluruh simpang (D1)

Tundaan rata-rata untuk seluruh simpang (D1) dihitung dengan membagi jumlah nilai tundaan pada kolom 16 dengan jumlah arus total (Qtot) dalam smp/jam.

$$D1 = \sum \frac{(QxD)}{Qtot} (det/smp)....(2.19)$$

Sumber: MKJI,1997 (Hal: 2-69)

Tundaan rata-rata dapat digunakan sebagai indikator tingkat pelayanan dari masing-masing pendekat demikian juga dari suatu simpang secara keseluruhan.

BAB III METODOLOGI

3.1 Umum

Secara umum, inti dari dibuatnya metode penelitian adalah untuk menguraikan bagaimana tata cara analisa dan perencanaan ini dilakukan. Tujuan dari adanya metodologi ini adalah untuk mempermudah pelaksanaan dalam melakukan pekerjaan guna memperoleh pemecahan masalah dengan maksud dan tujuan yang telah ditetapkan. Selain itu, metodologi juga disusun dengan prosedur kerja yang sistematis, teratur, dan tertib, sehingga dapat diterjemahkan secara ilmiah.

3.2 Metode Pengerjaan

3.2.1 Garis Besar Pengerjaan

Secara garis besar, metodologi yang digunakan dalam menyelesaikan permasalahan pengkoordinasian sinyal antar simpang kali ini adalah:

- Tahap persiapan, berupa studi kepustakaan mengenai halhal yang berhubungan dengan pengkoordinasian antar simpang yang dapat diperoleh dari berbagai literatur dan internet.
- Tahap pengumpulan data, di mana data diperoleh dengan survey lapangan berupa kondisi lingkungan, geometrik jalan, volume kendaraan yang melewati simpang, dan waktu sinyal pada tiap simpang.
- Tahap analisa data dari survey yang didapat di lapangan. Dari analisa ini, dapat langusng diperoleh kondisi keempat simpang apakah telah terkoordinasi. Dari analisa ini juga akan didapatkan kinerja simpang pada kondisi eksisting.
- 4. Perencanaan *cycle time* baru yang didasarkan pada kondisi terjenuh saat eksisting. Perencanaan dilakukan

dengan memperhatikan teori koordinasi persimpangan dan rumusan dalam MKJI. Diharapkan *cycle time* baru dapat memberi kinerja simpang yang lebih baik.

 Merencanakan koordinasi antar simpang dari cycle time baru yang telah didapat dengan menggunakan waktu offset yang telah ditentukan sebelumnya.

Sedangkan gambaran lebih jelas berupa bagan alir proses pengerjaan tugas akhir kali ini dapat dilihat pada Gambar 3.1.

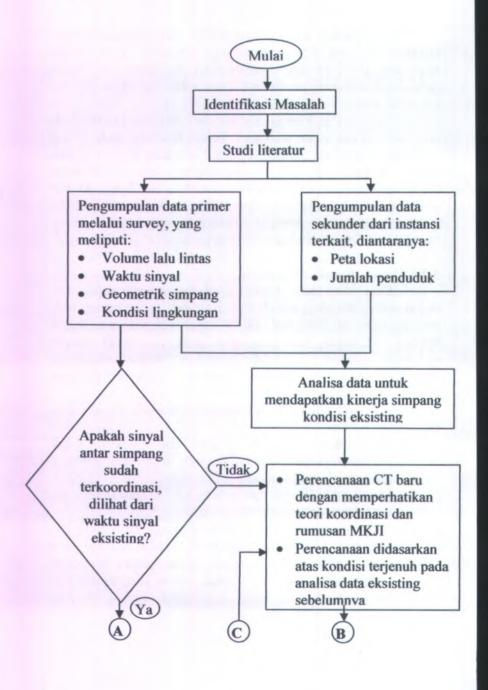
3.2.2 Metode Perencanaan Waktu Siklus Baru

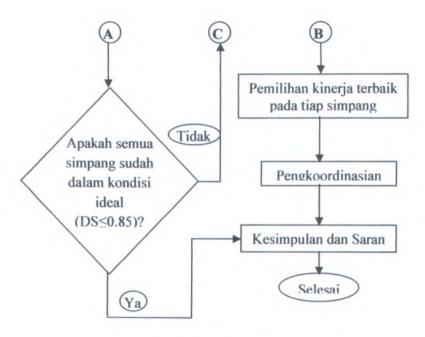
Untuk mendapatkan *cycle time* baru, akan dilakukan beberapa perencanaan. Hal ini dilakukan untuk mengetahui karakteristik kinerja simpang yang didasarkan pada *cycle time* yang berbeda-beda. Kinerja terbaik akan dipilih, untuk selanjutnya *cycle time* terpilih digunakan dalam mengkoordinasikan simpang. Dalam kasus ini sedikitnya akan dilakukan lima perencanaan, yaitu:

- Perencanaan waktu siklus Simpang I, kemudian ketiga simpang lainnya direncanakan dengan waktu siklus dari Simpang I.
- Perencanaan waktu siklus Simpang II, kemudian ketiga simpang lainnya direncanakan dengan waktu siklus dari Simpang II.
- Perencanaan waktu siklus Simpang III, kemudian ketiga simpang lainnya direncanakan dengan waktu siklus dari Simpang III.
- Perencanaan waktu siklus Simpang IV, kemudian ketiga simpang lainnya direncanakan dengan waktu siklus dari Simpang IV.
- Dari waktu siklus masing-masing simpang, diambil ratarata dari keempatnya dan waktu siklus rata-rata tersebut direncanakan pada semua simpang.

Perencanaan terbaik akan dipilih menggunakan metode pembobotan pada tiga jenis kinerja simpang, yaitu Derajat Kejenuhan (DS), Panjang Antrian (QL), dan Tundaan (Delay). Adapun pembobotannya adalah 0,5 untuk DS, 0,2 untuk QL, dan 0,3 untuk Delay.

Nilai ketiga kinerja diambil dari rata-rata kinerja pada arus maksimum atau arus-arus besar (mayor) pada setiap simpangnya. Kinerja dengan nilai terkecil atau kinerja terbaik akan mendapat prioritas utama yang ditandai oleh nominal angka kecil. Hasil pemilihan merupakan jumlah bobot ketiga kinerja setelah dikalikan dengan angka prioritas.


Perencanaan terpilih merupakan perencanaan yang memiliki nilai hasil pemilihan yang terkecil.


3.2.3 Metode Pengkoordinasian

Data yang perlu diketahui sebelum mengkoordinasikan sinyal semua simpang adalah waktu tempuh dari simpang hulu menuju simpang hilir dan waktu sinyal perencanaan. Waktu tempuh didapatkan dari pembagian jarak ruas jalan dengan kecepatan rencana yang telah ditentukan. Waktu tempuh ini digunakan untuk membentuk lintasan aliran iring-iringan (platoon) kendaraan.

Adapun urutan tahap pengkoordinasian sinyal antar simpang ini adalah:

- Menyiapkan diagram ruang dan waktu untuk pengkoordinasian. Sumbu x untuk waktu dan sumbu y untuk jarak antar simpang
- Membentuk lintasan dari hulu ke hilir dengan kemiringan berdasar waktu tempuh kendaraan.
- 3. Meletakkan waktu sinyal semua simpang pada diagram
- 4. Menyesuaikan waktu hijau pada lintasan *platoon* yang telah dibuat dengan cara menggeser secara horizontal sampai waktu hijau berada pada lintasan yang tepat.
- 5. Penyesuain berlaku sama untuk semua simpang dan juga arah arus sebaliknya.

Gambar 3.1 Bagan Alir Metodologi Pengerjaan

3.3 Jenis Data

Data-data yang dibutuhkan dalam kasus kali ini adalah data primer dan data sekunder. Data primer diperoleh dari survey lapangan. Sedangkan data sekunder didapat dari instansi terkait dan data penelitian lainnya yang berhubungan dengan ruas jalan tersebut.

3.3.1 Data Primer

Data primer yaitu data yang diperoleh langsung dari pengamatan di lokasi penelitian pada keempat simpang, yang meliputi:

- Volume kendaraan yang melewati setiap lengan simpang, di mana dalam hal ini dilakukan pencatatan kendaraan berdasarkan jenis dan arah pergerakan.
- Jumlah fase dan waktu sinyal pada masing-masing simpang.
- Kondisi geometrik, pembagian jalur, dan jarak antar simpang.
- 4. Lingkungan simpang yang diamati secara visual

3.3.2 Data Sekunder

Data sekunder adalah data yang diperoleh dari beberapa instansi terkait dan dari beberapa penelitian tentang ruas jalan yang distudi sebelumnya. Data-data sekunder tersebut berupa data geometrik jalan dan jarak antar simpang sebagai pembanding dengan hasil survey lapangan dan data jumlah penduduk kota.

3.4 Pengambilan Data Primer

Pengambilan data primer dilakukan dengan melakukan pencatatan dan pengamatan langsung di lapangan. Berikut diuraikan beberapa metode pengambilan data yang dibutuhkan.

3.4.1 Volume Kendaraan

Untuk mendapatkan volume kendaraan, diharapkan survey dilakukan dengan serentak pada semua simpang. Berikut beberapa hal yang perlu diperhatikan dalam survey volume kendaraan.

1. Waktu survey

Hari yang diambil untuk melakukan survey adalah satu hari sibuk antara Selasa hingga Kamis. Sedangkan waktu yang diambil adalah waktu yang diperkirakan terjadi volume lalu lintas besar. Dalam hal ini terdapat dua pembagian waktu dalam sehari, yaitu:

- Pagi (06.00-08.00) WIB
- Sore (16.00-18.00) WIB

Penghitungan dilakukan per 15 menit.

Dalam menentukan waktu survey, terdapat beberapa kondisi tertentu yang harus dihindari, yaitu:

- Libur, mogok kerja, pekan raya, kunjungan pejabat negara, dan acara khusus yang dapat mempengaruhi ruas jalan studi
- · Cuaca yang tidak normal
- Halangan di jalan seperti kecelakaan dan perbaikan jalan

2. Klasifikasi tipe kendaraan.

Kendaraan tipe kendaraan yang diamati disesuaikan dengan metode penghitungan, yang mana dikelompokkan dalam empat kategori, yaitu:

a. Kendaraan Ringan (Light Vehicle/LV)

Adalah semua jenis kendaraan bermotor beroda empat yang termasuk didalamnya:

- Mobil penumpang, yaitu kendaraan bermotor beroda empat yang digunakan untuk mengangkut penumpang dengan maksimum sepuluh (10) orang termasuk pengemudi (Sedan, Station Wagon, Jeep, Combi, Opelet, Minibus)
- Pick-up, mobil hantaran dan mikro truck, dimana kendaraan beroda empat dan dipakai untuk angkutan barang dengan berat total (kendaraan + barang) kurang dari 2,5 ton.

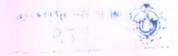
b. Kendaraan Berat (Heavy Vehicle /HV)

Yang termasuk kedalam kelompok kendaraan ini diantaranya sebagai berikut ini.

- Mikro Bus: semua kendaraan yng dignakan untuk angkutan penumpang dengan jumlah tempat duduk 20 buah termasuk pengemudi.
- Bus: semua kendaraan yang digunakan untuk angkutan penumpang dengan jumlah tempat duduk sebanyak 40 atau lebih termasuk pengemudi.

 Truck: semua kendaraan angkutan bermotor beroda empat atau lebih dengan berat total lebih dari 2,5 ton. Termasuk disini adalah Truck 2-as, Truck 3-as, Truck Tanki, Mobil Gandeng, Semi Trailer, dan Trailer.

c. Sepeda Motor


Kendaraan bermoor beroda dua dengan jumlah penumpang maksimum 2 orang termasuk pengemudi. Termasuk disini adalah sepeda motor, scooter, sepeda kumbang dan sebagainya.

d. Kendaraan Tak Bermotor (Un Motorized/UM) Kendaraan yang tidak meggunakan motor sebagai tenaga penggeraknya, termasuk didalamnya adalah sepeda, delman dokar, bendi, dan becak.

Untuk lebih jelasnya terkait waktu dan jenis kendaraan, dapat dilihat dalam form survey yang akan digunakan dalam proses pencatatan volume kendaraan nanti. Form dalam bentuk tabel dapat dilihat dalam Gambar 3.2

Hari, tanggal	: Jalan Diponegoro : Selasa, 5 Mei 200 : 05.30-07.30 : Selatan	dan Jalan Ciliwun	g (simpang I)	
waktu	Jumlah kendaraan			
Wakis	LV	HV	MC	UM
05.30-05.45				
05.45-06.00				
06.00-06.15				
00.00 00.13				1111
06.15-06.30				
TOTAL BOLES				
06.15-06.30 06.30-06.45				
06.15-06.30				

Gambar 3.2 Contoh Form Survey Volume Kendaraan pada Simpang

3. Metode Survey

Metode yang digunakan untuk memperoleh volume kendaraan adalah dengan menggunakan surveyor yang mencatat volume secara manual. Surveyor ditempatkan pada masingmasing lengan simpang untuk mencatat volume masing-masing pergerakan. Adapun perinciannya adalah sebagai berikut.

a. Simpang Jalan Diponegoro dengan Jalan Ciliwung

Setidaknya dibutuhkan 10 surveyor pada simpang pertama ini. Untuk simpang I Jalan Diponegoro dengan Jalan Ciliwung diberi kode A. Adapun pembagiannya adalah:

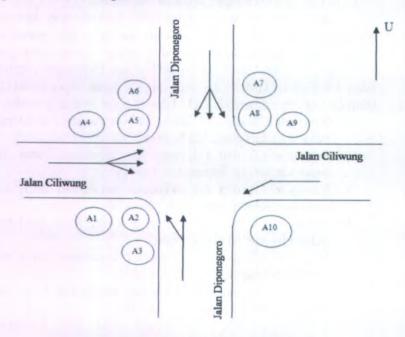
- Surveyor A1, mencatat kendaraan lurus dari pendekat Selatan berupa Light Vehicle (LV) dan Heavy Vehicle (HV).
- Surveyor A2, mencatat kendaraan lurus dari pendekat Selatan berupa Motor Cycle (MC) dan Un Motorized (UM)
- 3. Surveyor A3, mencatat kendaraan belok kiri dari pendekat Selatan berupa LV, HV, MC, dan UM; serta mencatat kendaraan belok kanan dari pendekat Utara berupa MC dan UM
- Surveyor A4, mencatat kendaraan belok kiri dari pendekat Barat berupa LV, HV, MC, dan UM; serta mencatat kendaraan belok kanan dari pendekat Utara berupa LV dan HV
- 5. Surveyor A5, mencatat kendaraan belok kanan dari pendekat Barat berupa LV dan HV
- 6. Surveyor A6, mencatat kendaraan belok kanan dari pendekat Barat berupa MC dan UM
- 7. Surveyor A7, mencatat kendaraan lurus dari pendekat Utara berupa LV dan HV
- 8. Surveyor A8, mencatat kendaraan lurus dari pendekat Utara berupa MC dan UM
- Surveyor A9, mencatat semua jenis kendaraan belok kiri dari pendekat Utara dan mencatat semua jenis kendaraan lurus dari pendekat Barat

10. Surveyor 10, mencatat kendaraan belok kiri dari pendekat Timur berupa semua jenis kendaraan.

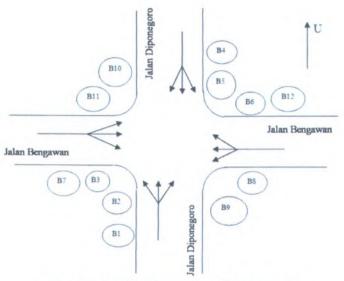
b. Simpang Jalan Diponegoro dengan Jalan Bengawan

Setidaknya dibutuhkan 12 surveyor pada simpang kedua ini. Untuk simpang II Jalan Diponegoro dengan Jalan Bengawan diberi kode B. Adapun pembagiannya adalah:

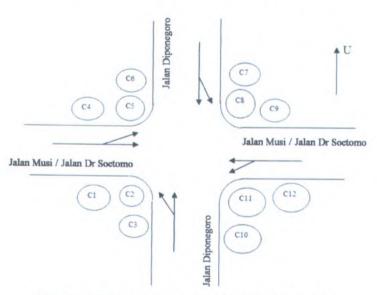
- Surveyor B1, mencatat semua jenis kendaraan belok kanan dari pendekat Selatan
- 2. Surveyor B2, mencatat kendaraan lurus dari pendekat Selatan berupa LV dan HV
- Surveyor B3, mencatat kendaraan lurus dari pendekat Selatan berupa MC dan UM
- Surveyor B4, mencatat semua jenis kendaraan belok kanan dari pendekat Utara
- 5. Surveyor B5, mencatat kendaraan lurus dari pendekat Utara berupa LV dan HV
- 6. Surveyor B6, mencatat kendaraan lurus dari pendekat Utara berupa MC dan UM
- Surveyor B7, mencatat semua jenis kendaraan belok kiri dari pendekat Selatan dan mencatat kendaraan lurus dari pendekat Timur berupa LV dan HV
- 8. Surveyor B8, mencatat kendaraan lurus dari pendekat Timur berupa MC dan UM; serta mencatat kendaraan belok kanan dari pendekat Barat berupa MC dan UM
- Surveyor B9, mencatat kendaraan belok kanan dari pendekat Barat berupa LV dan HV; serta mencatat semua jenis kendaraan belok kiri dari pendekat Timur
- Surveyor B10, mencatat semua jenis kendaraan belok kiri dari pendekat Barat dan mencatat kendaraan belok kanan dari pendekat Timur berupa LV dan HV
- Surveyor B11, mencatat kendaraan belok kanan dari pendekat Timur berupa MC dan UM; serta mencatat kendaraan lurus dari pendekat Barat berupa MC dan UM


- Surveyor B12, mencatat kendaraan lurus dari pendekat Barat berupa LV dan HV; serta mencatat semua jenis kendaraan belok kiri dari pendekat Utara
- c. Simpang Jalan Diponegoro dengan Jalan Musi dan Simpang Jalan Diponegoro dengan Jalan Dr Soetomo

Karena kedua simpang memiliki jumlah fase dan arah pergerakan yang sama maka jumlah surveyor dan penetapan lokasinya juga sama. Setidaknya dibutuhkan 12 surveyor pada kedua simpang ini. Untuk simpang III Jalan Diponegoro dengan Jalan Musi diberi kode C dan simpang IV Jalan Diponegoro dan Jalan Dr Soetomo diberi kode D. Adapun pembagiannya adalah:


- 1. Surveyor C1 dan D1, mencatat semua jenis kendaraan belok kiri dari pendekat Selatan
- 2. Surveyor C2 dan D2, mencatat kendaraan lurus dari pendekat Selatan berupa LV dan HV
- 3. Surveyor C3 dan D3, mencatat kendaraan lurus dari pendekat Selatan berupa MC dan UM
- 4. Surveyor C4 dan D4, mencatat semua jenis kendaraan belok kiri dari pendekat Barat
- 5. Surveyor C5 dan D5, mencatat kendaraan lurus dari pendekat Barat berupa LV dan HV
- Surveyor C6 dan D6, mencatat kendaraan lurus dari pendekat Barat berupa MC dan UM
- 7. Surveyor C7 dan D7, mencatat semua jenis kendaraan belok kiri dari pendekat Utara
- 8. Surveyor C8 dan D8, mencatat kendaraan lurus dari pendekat Utara berupa LV dan HV
- Surveyor C9 dan D9, mencatat kendaraan lurus dari pendekat Utara berupa MC dan UM
- Surveyor C10 dan D10, mencatat semua jenis kendaraan belok kiri dari pendekat Timur
- 11. Surveyor C11 dan D11, mencatat kendaraan lurus dari pendekat Timur berupa LV dan HV

12. Surveyor C12 dan D12, mencatat kendaraan lurus dari pendekat Timur berupa MC dan UM


Dari jumlah total keempat simpang, dibutuhkan setidaknya 46 surveyor. Untuk penempatan surveyor dapat dilihat pada Gambar 3.3, gambar 3.4, dan Gambar 3.5.

Gambar 3.3 Posisi Surveyor di Simpang I

Gambar 3.4 Posisi surveyor di Simpang II

Gambar 3.5 Posisi Surveyor di Simpang III dan IV

3.4.2 Waktu Sinyal

Survey waktu sinyal dilakukan untuk mengetahui pengaturan tiap-tiap waktu pada masing-masing simpang bersinyal. Survey ini dilakukan dengan pengukuran langsung di tiap kaki pada masing-masing simpang dengan menggunakan stopwatch. Data yang diambil adalah waktu siklus, waktu hijau, waktu merah, dan waktu antar hijau. Waktu siklus lapangan diperoleh dengan mencatat lamanya waktu suatu fase dari saat menyala, berhenti, hingga menyala kembali.

3.4.3 Geometrik Simpang

Survey geometrik simpang dilakukan untuk mengetahui keadaan di persimpangan secara geometrik. Cara yang dilakukan adalah pengukuran langsung di lapangan menggunakan alat ukur walking measure. Beberapa hal yang diukur adalah:

- Lebar pendekat
- Lebar masuk
- Lebar keluar
- Pembagian jalur
- · Ada atau tidaknya median dan lebarnya
- Jarak antar simpang

3.4.5 Hambatan Samping

Merupakan pengamatan terhadap penggunaan lahan di sekitar persimpangan. Berguna untuk perhitungan nantinya. Cara pengamatan yang dilakukan adalah pengamatan visual secara langsung di lapangan.

BAB IV PENGUMPULAN DATA

Sebagian besar data yang digunakan dalam analisa permasalahan dan perencanaan Tugas Akhir ini adalah data primer. Data primer merupakan data yang diambil langsung di lapangan, dalam hal ini lokasi studi di Jalan Diponegro. Adapun metode yang digunakan untuk mendapatkan data primer adalah melalui survey dan pengamatan langsung.

4.1 Data Primer

Terdapat empat data primer yang digunakan dalam analisa dan perencanaan. Data-data tersebut diantaranya adalah data geometrik simpang, tata guna lahan di sekitar simpang, waktu sinyal dan fase tiap simpang, serta volume kendaraan pada semua simpang.

4.1.1 Geometrik Simpang

Data geometrik simpang digunakan dalam perhitungan kinerja simpang menggunakan Manual Kapasitas Jalan Indonesia (MKJI). Adapun data tiap pendekat pada setiap simpang yang dipakai adalah lebar efektif (We).

Berikut lebar efektif kondisi eksisting pada setiap simpang yang didasarkan pada masing-masing pendekatnya, dapat dilihat pada tabel 4.1.

Untuk mengetahui lebar masuk dan lebar keluar setiap pendekat pada keempat simpang selengkapnya dapat dilihat pada gambar geometrik simpang pada lembar lampiran.

Sedangkan untuk Jarak antar simpang, didapatkan total jarak dari Simpang I ke Simpang IV atau dari ujung ke ujung sebesar 930 meter dengan rincian:

- Jarak Simpang I ke Simpang II = 250 meter
- Jarak Simpang II ke Simpang III = 460 meter
- Jarak Simpang III ke Simpang IV = 220 meter

Tabel 4.1 Lebar efektif semua pendekat

Simpang	Pendekat	Lebar Efektif (We) (meter)
	U-ST	10.90
1	U-RT	3.50
1	S	8.40
	T	2.80
	В	5.00
	U-ST	10.90
2	U-RT	4.50
	S-ST	8.40
	S-RT	4.00
	T	6.00
	В	4.50
	U	10.90
2	S	8.40
3	Т	3.00
	В	4.00
	U	8.40
4	S	8.40
4	T	6.50
	В	5.80

4.1.2 Tata Guna Lahan

Survey tata guna lahan dilakukan untuk mengetahui tipe lingkungan jalan dan kondisi hambatan samping pada tiap simpang. Selanjutnya, data dipakai sebagai masukan dalam perhitungan MKJI. Selengkapnya dapat dilihat pada Tabel 4.2.

Tabel 4.2 Tata guna lahan semua simpang

Sim- pang	Pende- kat	Gambaran Umum Lapangan	Tipe Lingkungan Jalan	Hambatan Samping
	U	Perkantoran dan Pelayanan Umum	СОМ	T
1	S	Perkantoran dan Pelayanan Umum	СОМ	T
	T	Pemukiman	RES	R
	В	Toko dan Pemukiman	COM	R
	U	Pelayanan Umum	COM	T
2	S	Pelayanan Umum	COM	T
2	T	Pemukiman	RES	R
	В	Toko dan Perkantoran	COM	T
	U	Toko, Perkantoran, Pelayanan Umum	СОМ	T
3	S	Toko, Perkantoran, Pelayanan Umum	СОМ	T
	T	Pemukiman	RES	R
	В	Pemukiman	RES	R
	U	Toko dan Perkantoran	COM	T
	S	Toko, Perkantoran, Pelayanan Umum	СОМ	T
4	Т	Toko, Perkantoran, dan Pemukiman	СОМ	T
	В	Toko, Perkantoran, dan Pemukiman	СОМ	T

COM: Komersial

T: Tinggi

RES: Pemukiman

R: Rendah

4.1.3 Waktu Sinyal dan Fase Pergerakan

Terdapat empat simpang yang akan dikoordinasikan dalam perencanaan ini. Pada kondisi eksisting, keempat simpang memiliki bentuk fase serta waktu sinyal yang berbeda-beda. Berikut ini akan digambarkan bentuk pergerakan setiap fasenya serta waktu sinyal berupa waktu hijau, waktu hilang perfase dan waktu siklus.

a. Simpang I (Jalan Diponegoro-Jalan Ciliwung)

Simpang ini memiliki dua fase di mana fase pertama terdiri dari dua pergerakan. Waktu siklus eksisting simpang ini adalah 128 detik. Selengkapnya dapat dilihat pada Tabel 4.3 berikut.

Tabel 4.3 Fase pergerakan dan waktu sinyal simpang I

Fase	Pergerakan	Hijau (dtk)	Antar Hijau(dtk)	Cycle Time (dtk)
	*	30		
1	< k	48	5	128
2	< h	40	5	

b. Simpang II (Jalan Diponegoro-Jalan Bengawan)

Simpang II memiliki tiga fase dengan waktu siklus sebesar 120 detik. Lebih jelasnya dapat dilihat pada Tabel 4.4 berikut ini.

Ta	Tabel 4.4 Fase pergerakan dan waktu sinyal simpang II					
Fase	Pergerakan	Hijau (dtk)	Antar Hijau (dtk)	Cycle Time (dtk)		
	$\overset{\checkmark}{\forall}$	8				
1		38	5			
	$\prec \downarrow$	20		120		
2	$\prec \downarrow$	23	5			
3	$\prec \downarrow$	24	5			

c. Simpang III (Jalan Diponegoro-Jalan Musi)

Simpang ini memiliki waktu siklus sebesar 96 detik dengan dua fase, di mana setiap fasenya memiliki waktu hijau yang sama. Selengkapnya dapat dilihat pada Tabel 4.5 berikut.

Tabel 4.5 Fase pergerakan dan waktu sinyal simpang III

Fase	Pergerakan	Hijau (dtk)	kuning (dtk)	Cycle Time (dtk)
1		43	5	
2		43	5	96

d. Simpang III (Jalan Diponegoro-Jalan Dr Soetomo)

Simpang IV memiliki kesamaan dengan Simpang III di mana tidak ada gerakan belok kanan pada setiap pendekatnya. Simpang ini memiliki dua fase dengan waktu siklus sebesar 86 detik. Agar lebih jelas, pergerakan tiap fase dan waktu siklusnya dapat dilihat pada Tabel 4.6 berikut.

Tabel 4.6 Fase pergerakan dan waktu sinyal simpang IV

Fase	Pergerakan	Hijau (dtk)	kuning (dtk)	Cycle Time (dtk)
1		45	5	
2		21	5	86

4.1.4 Volume Simpang

Survey volume simpang dilakukan dalam satu hari pada Kamis, 22 Oktober 2009. Data yang diambil adalah *peak hour* pagi dan sore. Survey dilaksanakan serentak pada keempat simpang untuk mendapatkan kondisi yang sama. Selengkapnya dapat dilihat pada tabel-tabel berikut ini.

a. Peak Hour Pagi

Untuk *peak hour* pagi, data diambil pada pukul 06.00-08.00 WIB. Hasil rekapitulasi semua simpang dapat dilihat pada tabel-tabel berikut ini.

Tabel 4.7 Volume simpang I (pagi

Pendekat	Kendaraan		Arah	
1 chuckat	Kenuaraan	LT/LTOR	ST	RT
	LV	15	503	170
Utara	HV	0	19	4
	MC	31	3905	224
	UM	14	85	9
Selatan	LV	441	534	
	HV	9	23	BETT !
	MC	1197	3454	
	UM	8	50	
	LV	16	7 37 8	
Timur	HV	0		
Timur	MC	128		
	UM	10		
	LV	39	38	233
Barat	HV	0	0	2
Darat	MC	77	123	2262
	UM	15	7	27

Tabel 4.8 Volume simpang II (pagi)

	1		Arah	
Pendekat	Kendaraan	LT/LTOR	ST	RT
Utara	LV	6	408	156
	HV	0	16	3
Utara	MC	44	3084	800
	UM	LT/LTOR ST 6 408 0 16 44 3084 6 101 68 478 3 17 329 3441 7 75 69 332 3 2 108 1149 2 7 21 1099 0 2 45 2504	9	
	LV	68	478	37
Selatan	HV	3	17	0
	MC	329	3441	53
	UM	7	75	4
	LV	69	332	82
Time	HV	3	2	2
Timur	MC	108	1149	179
	UM	2	7	10
Barat	LV	21	1099	409
	HV	0	2	4
	MC	45	2504	319
	UM	5	6	3

Tabel 4.9 Volume simpang III (pagi)

Pendekat	W. 1	Arah		
	Kendaraan	LT/LTOR	ST	RT
	LV	33	793	
Litera	HV	0	30	
Utara	MC	142	4770	1000
	UM	8	136	
	LV	207	501	1800

Tabel 4.9 (Lanjutan)

	HV	2	14	
Selatan	MC	77	4074	
	UM	6	152	-
	LV	45	309	
Timur	HV	0	0	
Timur	MC	104	302	
	UM	8	22	
	LV	63	298	
Danet	HV	0	0	
Barat	MC	33	432	ALC: NO
	UM	3	19	

Tabel 4.10 Volume simpang IV (pagi)

Pendekat	Kendaraan		Arah	
Tenuckat	Kendaraan	LT/LTOR	ST	RT
Utara	LV	92	697	
	HV	1	16	
Otara	MC	413	3955	
	UM	7	40	
	LV	21	560	
Selatan	HV	0	17	
Sciatari	MC	167	3700	
	UM	16	117	
	LV	71	876	
Timur	HV	2	6	
Tillui	MC	248	2984	
	UM	7	105	
	LV	384	890	
Barat	HV	2	1	
Darat	MC	427	2846	
	UM	25	38	

b. Peak Hour Sore

Untuk *peak hour* pagi, data diambil pada pukul 16.00-18.00 WIB. Selengkapnya dapat dilihat pada tabel-tabel berikut.

Tabel 4.11 Volume simpang I (sore)

Pendekat	Vandaman	Arah			
rendekat	Kendaraan	LT/LTOR	ST	RT	
	LV	29	719	289	
Utara	HV	0	13	3	
Otara	MC	38	3915	617	
	UM	3	50	12	
	LV	555	570	100	
Selatan	HV	15	20		
Sciatali	MC	934	3448	75.	
	UM	15	54	415.4	
	LV	51		10 - 15	
Timur	HV	0			
Timul	MC	213			
	UM	9			
	LV	46	29	264	
Barat	HV	1	0	0	
	MC	91	107	2080	
	UM	7	5	25	

Tabel 4.12 Volume simpang II (sore)

Pendekat	Kendaraan	Arah			
		LT/LTOR	ST	RT	
Utara	LV	19	748	291	
	HV	1	12	2	
	MC	40	3384	1646	
	UM	4	51	2	
Selatan	LV	79	517	58	

Tabel 4.12 (Lanjutan)

Selatan	HV	0	25	3
	MC	224	2949	62
	UM	12	71	2
	LV	19	336	108
Timur	HV	1	0	0
	MC	40	1539	146
	UM	4	9	2
Barat	LV	27	1104	222
	HV	0	0	3
	MC	51	381	382
	UM	10	3	4

Tabel 4.13 Volume simpang III (sore)

Pendekat	Kendaraan	Arah			
	Kendaraan	LT/LTOR	ST	RT	
	LV	61	1362		
Utara	HV	0	22	DE L	
Otara	MC	83	6130		
	UM	1	70		
0.11	LV	425	606		
Selatan	HV	3	18		
Scialan	MC	51	3579		
	UM	2	134		
	LV	132	427		
Timur	HV	0	0		
limur	MC	275	473		
	UM	5	12		
	LV	40	271		
Barat	HV	0	0		
	MC	37	395		
	UM	8	10		

Tabel 4.14 Volume simpang IV (sore)

Pendekat	Vandama	Arah			
	Kendaraan	LT/LTOR	ST	RT	
	LV	174	1333		
Litoro	HV	0	22		
Utara	MC	335	5622	1000	
	UM	3	28	100	
	LV	43	600		
Selatan	HV	1	32	10 /	
Selatan	MC	270	3038		
	UM	13	83	1 723	
	LV	117	1129		
Timur	HV	0	11	-	
1 imur	MC	376	3031	17.3	
	UM	3	101	II. B	
	LV	415	798	1- 71	
Barat	HV	4	1	18 71	
	MC	540	2045	1211	
	UM	38	46	EL VA	

4.2 Data Sekunder

Data sekunder dalam hal ini adalah jumlah penduduk kota Surabaya. Data ini didapat dari Badan Pusat Statistika Surabaya (BPS). Untuk tahun 2009, diperoleh data jumlah penduduk Surabaya sebesar 2.724.028 jiwa. Data ini digunakan sebagai masukan dalam perhitungan MKJI.

"Halaman ini sengaja dikosongkan"

BAB V ANALISA DATA DAN PERENCANAAN

Terdapat dua hal yang akan dilakukan pada bab ini. Pertama, menganalisa kondisi eksisting apakah keempat simpang sudah terkoordinasi. Selanjutnya, akan dianalisa kinerja semua simpang pada peak *hour pagi* dan *peak hour sore*. Data Kinerja terjenuh akan digunakan sebagai dasar semua perencanaan.

Langkah kedua adalah melakukan perencanaan waktu siklus baru dengan mengacu pada teori koordinasi. Waktu siklus yang akan dikoordinasikan adalah waktu siklus yang terpilih dari beberapa perencanaan yang dilakukan.

5.1 Analisa Koordinasi Kondisi Eksisting

Salah satu syarat bahwa beberapa simpang terkoordinasi adalah waktu siklus yang sama pada semua simpang tersebut. Dari data sinyal kondisi eksisting didapat waktu siklus untuk Simpang I adalah 128 detik, Simpang II sebesar 120 detik, Simpang III sebesar 96 detik dan 86 detik untuk Simpang IV. Dari data ini, jelas ruas tersebut tidak memenuhi syarat telah terkoordinasi karena memiliki waktu siklus yang berbeda-beda.

Untuk lebih jelasnya, akan dilakukan pembuktian melalui sebuah diagram aliran. Untuk membentuk diagram, perlu diketahui terlebih dahulu kecepatan *platoon* pada ruas tersebut, sehingga nantinya waktu dari simpang satu ke simpang lainnya dapat diketahui.

Dalam analisa ini serta dalam perencanaan nantinya akan digunakan kecepatan maksimum dalam kota sesuai dengan regulasi sebesar 40 km/jam. Kecepatan rencana ini dipilih karena pertimbangan bahwa dengan kecepatan lambat maka akan didapat waktu offset yang cukup panjang, sehingga kendaraan terakhir dalam *platoon* masih memiliki kesempatan untuk mendapat sinyal hijau, jadi tidak perlu menunggu dalam sinyal merah selama satu siklus lagi. Sedangkan kendaraan yang terlalu cepat hanya cukup menunggu waktu hijau dalam beberapa detik saja.

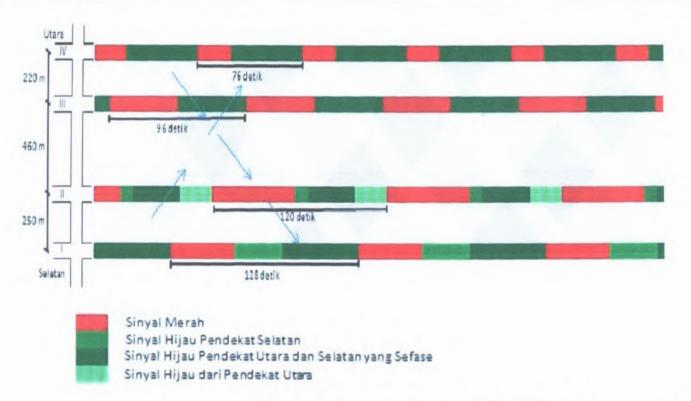
Dengan kecepatan tersebut, maka waktu *platoon* untuk berjalan dari satu simpang ke simpang lainnya bisa dihitung.

Waktu tempuh dari Utara ke Selatan

$$t = \frac{Jarak(S)}{Kecepa \tan(v)} = \frac{0.93km}{40km/jam} = 0.02325 jam = 84 \det ik$$

Waktu tempuh dari Selatan ke Utara

$$t = \frac{Jarak(S)}{Kecepa \tan(v)} = \frac{0.93km}{40km/jam} = 0.02325 jam = 84 \det ik$$


dengan menggunakan kecepatan tersebut serta *cycle time* yang telah diketahui maka diagram koordinasi dapat disusun seperti terlihat pada gambar 5.1.

Dari gambar 5.1, terlihat *cycle time* semua simpang berbeda-beda dan tidak sebanding. Hal ini menyebabkan selisih nyala sinyal hijau dari simpang yang satu dengan simpang berikutnya tidak tetap. Hubungan sinyal semua simpang pun menjadi acak, sehingga tidak terjadi koordinasi sinyal antar simpang.

5.2 Analisa Kinerja Simpang Kondisi Eksisting

Terdapat dua kinerja simpang yang dihitung dalam hal ini, yaitu pada saat *peak hours* pagi dan *peak hours* sore. Waktu yang memiliki kinerja terjenuh akan digunakan sebagai dasar untuk merencanakan *cycle time* baru yang lebih baik.

Kinerja simpang dihitung dengan menggunakan perhitungan Manual Kapsitas Jalan Indonesia (MKJI). Perhitungan dapat dilihat pada lampiran. Untuk resume hasil perhitungannya dapat dilihat pada Tabel 5.1 dan Tabel 5.2.

Gambar 5.1 Diagram Aliran Plato on pada Kondisi Eksisting

Tabel 5.1 Kineria Simpang Peak Hour Pagi (Eksisting)

Simpang	Pendekat	CT (dtk)	GT (dtk)	DS	QL (meter)	Delay (dtk)
	U-ST	128	78	0.218	127	14.9
	U-RT	128	30	0.486	137	46.1
I	S	128	48	0.722	164	39.9
	T	128	128	0	0	0
	В	128	40	0.914	204	63.9
	U-ST	120	50	0.424	127	28.6
	U-RT	120	20	0.764	98	61.2
11	S-ST	120	38	0.903	164	52.9
П	S-RT	120	8	0.327	50	51.0
	T	120	23	1.013	73	135.1
	В	120	24	3.191	173	4062.3
	U	96	43	0.689	127	26.0
III	S	96	43	0.642	164	25.2
III	T	96	43	0.477	227	22.4
	В	96	43	0.369	167	20.8
IV	U	76	45	0.544	164	13.4
	S	76	45	0.482	164	12.8
	T	76	21	1.493	212	933.3
	В	76	21	1.633	238	1187.1

Tabel 5.2 Kineria Simpang Peak Hour Sore (Eksisting)

Simpang	Pendekat	CT (dtk)	GT (dtk)	DS	QL (meter)	Delay (dtk)
	U-ST	128	78	0.421	127	17.0
	U-RT	128	30	0.909	171	81.7
I	S	128	48	0.731	216	40.2
	T	128	128	0	0	0
	В	128	40	0.906	180	62.3
	U-ST	120	50	0.581	127	31.2
TI	U-RT	120	2,0	1.488	307	955.2
	S-ST	120	38	0.776	216	44.1
II	S-RT	120	8	0.505	50	58.3
	T	120	23	1.155	230	354.3
	В	120	24	2.350	173	2516.3
	U	96	43	0.994	127	59.4
III	S	96	43	0.648	163	25.3
III	T	96	43	0.660	280	26.9
	В	96	43	0.336	160	20.4
	U	76	45	0.896	216	22.3
IV	S	76	45	0.455	216	12.5
IV	T	76	21	1.765	212	1425.2
	В	76	21	1.366	238	704.0

Dari dua data kinerja simpang tersebut, akan dipilih kinerja yang paling jenuh. Pemilihan dilakukan setelah menghitung kinerja rata-rata masing-masing *peak hour*. Adapun kinerja yang dihitung adalah kinerja yang terdapat pada arus-arus utama saja, yaitu arus dari Utara dan dari Selatan pada semua simpang. Selain itu, diketahui bahwa arus pendekat Timur dan barat pada Simpang IV ternyata memiliki volume yang hampir sama besar dengan arus utama. Selanjutnya, pendekat Timur dan Barat Simpang IV ini juga termasuk dalam arus utama (mayor). Adapun kinerja rata-rata tiap peak hour dapat dilihat pada tabel 5.3 dan Tabel 5.4 berikut.

Tabel 5.3 Kinerja Arus Utama pada Peak Hour Pagi

Simpang	Pendekat	Derajat Kejenuhan (DS)	Panjang Antrian (meter)	Delay (dtk)
1	U-ST	0.218	127	14.9
1	S	0.722	164	39.9
П	U-ST	0.424	127	28.6
11	S-ST	0.903	164	52.9
Ш	U	0.689	127	26.0
Ш	S	0.642	164	25.2
	U	0.544	164	13.4
IV	S	0.482	164	12.8
IV	T	1.493	212	933.3
	В	1.633	238	1187.1
Rata	-rata	0.775	165	233.4

Tabel 5.4 Kinerja Arus Utama pada Peak Hour Sore

Simpang	Pendekat	Derajat Kejenuhan (DS)	Panjang Antrian (meter)	Delay (dtk)	
1	U-ST	0.421	127	17.0	
1	S	0.731	216	40.2	
П	U-ST	0.581	127	31.2	
п	S-ST	0.776	216	44.1	
Ш	U	0.994	127	59.4	
111	S	0.648	163	25.3	
1	U	0.896	216	22.3	
IV	S	0.455	216	12.5	
14	T	1.765	212	1425.2	
	В	1.366	238	704.0	
Rata	a-rata	0.863	186	238.1	

Dari dua kinerja *peak hour* tersebut, akan dipilih kinerja terjenuh dengan melakukan pembobotan pada ketiga nilai kinerja. Untuk lebih jelasnya, dapat dilihat pada Tabel 5.5 di bawah ini.

Tabel 5.5 Pemilihan Kinerja Terjenuh Kondisi Eksisting

Peak	Nilai dan Pembobotan				ingk iliha	cat n (TP)	Hasil Pemilihan
Hour	DS	QL	Delay	DS QL Delay		Delay	(TP DSx0,5)+(TP QLx0,2)+(TPDelay x 0,3)
	0.5	0.2	0.3				QLx0,2)+(11 Delay x 0,3)
Pagi	0.775	165	233.4	1	1	1	1
Sore	0.863	186	238.1	2	2	2	2

Keterangan:

- Untuk pembobotan, nilai DS diberi bobot 0,5; 0,2 untuk Panjang Antrian (QL); dan 0,3 untuk Tundaan (delay).
- Tingkat pemilihan didasarkan pada nilai kinerja. Nilai kinerja yang kecil akan mendapatkan angka tingkat pemilihan yang kecil pula.
- Perencanaan terpilih adalah perencanaan dengan hasil pemilihan dengan angka terbesar, karena akan direncanakan dari peak hour terjenuh

Dari Tabel 5.5 di atas, terpilih *peak hour* sore yang memiliki angka terbesar dalam hasil pemilihan sebagai kinerja terjenuh. Selanjutnya, data volume simpang pada waktu sore sebagai *peak hour* pada hari tersebut digunakan untuk merencanakan *cycle time* baru dengan memperhatikan teori koordinasi.

5.3 Perencanaan Waktu Siklus Baru

Terdapat tujuh perencanaan waktu siklus baru dalam hal ini. Setiap perencanaan, sebelumnya didasarkan pada waktu siklus salah satu simpang yang telah dihitung. Kemudian simpang lain mengingkuti waktu siklus tersebut agar didapatkan waktu siklus yang sama.

Pada Perencanaan I akan direncanakan waktu siklus pada Simpang I, kemudian simpang lainnya akan mengikuti waktu siklus pada simpang satu. Begitu pula dengan Perencanaan II, III, dan IV. Untuk Perencanaan V digunakan waktu siklus yang sama untuk semua simpang, yang didapatkan dari waktu siklus rata-rata pada empat perencanaan sebelumnya. Perencanaan VI dicoba untuk menggunakan waktu siklus maksimum yang ditetapkan oleh Manual Kapasitas Jalan Indonesia (MKJI). Sedangkan Perencanaan VII dilakukan karena kinerja yang ada masih sangat buruk. Perencanaan VII dimungkinkan untuk melakukan tindakan yang dapat memperbaiki kinerja.

Adapun waktu siklus yang akan dipilih untuk merancang koordinasi sinyal adalah waktu siklus yang memiliki kinerja simpang rata-rata yang paling baik dari setiap perencanaan.

5.3.1 Perencanaan I

Pada perencanaan ini, waktu siklus dan waktu hijau semua simpang untuk kondisi terkoordinasi akan mengacu pada waktu siklus pada simpang I (Jalan Diponegoro—Jalan Ciliwung), yang terlebih dahulu akan direncanakan.

Selanjutnya, perhitungan penentuan waktu siklus dan waktu hijau dapat dilihat pada Tabel 5.3 di bawah ini. Sebab tipikal, perhitungan ini juga mewakili perencanaan lainnya.

Tabel 5.6 Perhitungan Waktu Siklus Terkoordinasi

U-ST	U-RT S		В
1556 416		1286	796
6059	1953	4687	2812
0.257 0.213		0.274	0.283
0.2	213	0.274	0.283
	0.77	0	
	10		
1	87		
48	21	27	28
	1556 6059 0.257 0.2	1556 416 6059 1953 0.257 0.213 0.213 0.77 10 87	1556 416 1286 6059 1953 4687 0.257 0.213 0.274 0.213 0.274 0.770 10 87

Tabel 5.6 Perhitungan waktu siklus Terkoordinasi (lanjutan)

Simpang II	U-ST	U-RT	S-ST	S-RT	T	В	
Q (smp)	1469	623	1139	74	781	1180	
S (smp)	6063	2511	4637	2208	3528	2511	
FR=Q/S	0.242	0.248	0.246	0.034	0.221	0.470	
FRcrit	0.	248	0.2	246	0.221	0.470	
∑FRcrit			1.1	85			
LTI (dtk)			1	5			
Cycle Time			8	7			
Green Time	24	15	15	6	13	29	
Simpang III	U	S	Т	В			
Q (smp)	2694	1345	522	350			
S (smp)	6054	4637	1764	2328			
FR=Q/S	0.445	0.290	0.296	0.150			
FRcrit	0.	445	0.2	296			
∑FRcrit		0.	741		1		
LTI (dtk)			10		1		
Cycle Time			87		1		
Green Time	46	46	31	31			
Simpang IV	U	S	T	В			
Q (smp)	2486	1249	1750	1208	1		
S (smp)	4687	4637	3588	3202	1		
FR=Q/S	0.530	0.269	0.488	0.377	1		
FRcrit	0.530 0.488						
∑FRcrit	1.018						
LTI (dtk)		10					
Cycle Time		87					
Green Time	40	40	37	37			

Dengan menggunakan MKJI, hasil perhitungan kinerja semua simpang dapat dilihat pada lembar lampiran. Untuk ringkasan hasil perhitungannya dapat dilihat pada Tabel 5.4 berikut.

Tabel 5.7 Kinerja Simpang Perencanaan I

Simpang	Pendekat	CT (dtk)	GT (dtk)	DS	QL (meter)	Delay (dtk)
	U-ST	87	48	0.466	127	15.7
	U-RT	87	21	0.870	126	55.4
I	S	87	27	0.870	216	38.9
	T	87	87	0.000	0	0
	В	87	28	0.870	132	42.4
	U-ST	87	24	0.878	101	40.6
	U-RT	87	15	1.432	307	838.6
П	S-ST	87	15	1.432	216	830.9
п	S-RT	87	6	0.488	40	42.5
	T	87	13	1.432	230	835.6
	В	87	29	1.432	173	828.0
	U	87	46	0.837	127	23.5
Ш	S	87	46	0.546	216	17.6
111	T	87	31	0.837	213	41.3
	В	87	31	0.426	116	24.8
	U	87	40	1.150	216	308.3
IV	S	87	40	0.584	216	21.6
10	T	87	37	1.150	212	312.4
	В	87	37	0.890	238	36.2

5.3.2 Perencanaan II

Pada perencanaan II, waktu siklus dan waktu hijau semua simpang untuk kondisi terkoordinasi akan mengacu pada waktu siklus pada simpang II (Jalan Diponegoro—Jalan Bengawan), yang terlebih dahulu akan direncanakan. Penentuan waktu siklus dan waktu hijau tipikal dengan Perencanaan I. Untuk ringkasan hasil perhitungannya dapat dilihat pada Tabel 5.5 di bawah ini.

Tabel 5.8 Kinerja Simpang Perencanaan II

Simpang	Pendekat	CT (dtk)	GT (dtk)	DS	QL (meter)	Delay (dtk)
	U-ST	100	57	0.451	127	16.4
	U-RT	100	25	0.856	137	57.0
I	S	100	32	0.856	216	41.6
	T	100	100	0	0	0
	В	100	33	0.856	160	44.5
	U-ST	100	30	0.807	127	39.5
	U-RT	100	18	1.394	307	776.4
	S-ST	100	18	1.394	216	768.5
II	S-RT	100	6	0.561	40	53.5
	T	100	16	1.394	230	773.4
	В	100	34	1.394	173	764.6
	U	100	45	0.998	127	64.9
III	S	100	45	0.651	216	26.4
111	T	100	45	0.651	293	27.1
	В	100	45	0.331	171	20.7
	U	100	53	1.009	216	73.1
IV	S	100	53	0.512	216	19.4
IV	T	100	37	1.303	212	594.9
	В	100	37	1.009	238	96.3

5.3.3 Perencanaan III

Pada perencanaan III, waktu siklus dan waktu hijau semua simpang untuk kondisi terkoordinasi akan mengacu pada waktu siklus pada simpang III (Jalan Diponegoro—Jalan Musi), yang terlebih dahulu akan direncanakan. Penentuan waktu siklus dan waktu hijau tipikal dengan Perencanaan I. Untuk ringkasan hasil perhitungannya dapat dilihat pada Tabel 5.6 di bawah ini.

Tabel 5.9 Kinerja Simpang Perencanaan III

Simpang	Pendekat	CT (dtk)	GT (dtk)	DS	QL (meter)	Delay (dtk)
	U-ST	77	43	0.460	127	14.0
	U-RT	77	19	0.885	114	55.4
I	S	77	24	0.885	216	37.3
	T	77	77	0	0	0
	В	77	25	0.885	128	41.5
П	U-ST	77	20	0.933	101	45.1
	U-RT	77	13	1.472	307	905.9
	S-ST	77	13	1.472	216	898.2
11	S-RT	77	6	0.432	40	35.4
	T	77	12	1.472	230	902.8
	В	77	25	1.472	173	896.1
	U	77	40	0.851	127	22.5
III	S	77	40	0.555	216	16.5
ш	T	77	27	0.851	200	40.5
	В	77	27	0.433	109	22.8
	U	77	35	1.170	216	340.9
IV	S	77	35	0.594	194	20.1
14	T	77	32	1.170	212	344.6
	В	77	32	0.906	214	35.9

5.3.4 Perencanaan IV

Pada perencanaan IV, waktu siklus dan waktu hijau semua simpang akan mengacu pada waktu siklus pada simpang IV (Jalan Diponegoro—Jalan Dr Soetomo), yang terlebih dahulu akan direncanakan. Penentuan waktu siklus dan waktu hijau tipikal dengan Perencanaan I. Untuk ringkasan hasil perhitungannya dapat dilihat pada Tabel 5.7 di bawah ini.

Tabel 5.10 Kinerja Simpang Perencanaan IV

Simpang	Pendekat	CT (dtk)	GT (dtk)	DS	QL (meter)	Delay (dtk)
	U-ST	80	44	0.467	127	14.8
	U-RT	80	19	0.880	114	55.2
I	S	80	25	0.880	216	37.7
	T	80	80	0	0	0
	В	80	26	0.880	136	41.7
П	U-ST	80	22	0.881	103	38.4
	U-RT	80	14	1.459	307	883.4
	S-ST	80	13	1.459	216	875.7
11	S-RT	80	5	0.538	30	42.5
	T	80	12	1.459	230	880.3
	В	80	26	1.459	173	873.4
	U	80	35	1.027	127	94.9
III	S	80	35	0.669	194	23.0
111	T	80	35	0.669	227	24.1
	В	80	35	0.340	135	17.8
	U	80	36	1.163	216	330.0
IV	S	80	36	0.591	206	20.6
	T	80	34	1.163	212	333.9
	В	80	34	0.900	228	35.9

5.3.5 Perencanaan V

Pada perencanaan kali ini, waktu siklus dan waktu hijau semua simpang adalah rata-rata dari waktu siklus keempat perencanaan sebelumnya. Dari perhitungan, didapatkan rata-rata waktu siklus adalah 86 detik. Penentuan waktu siklus dan waktu hijau, tipikal dengan Perencanaan I. Untuk ringkasan hasil perhitungannya dapat dilihat pada Tabel 5.8 di bawah ini.

Tabel 5.11 Kinerja Simpang Perencanaan V

Simpang	Pendekat	CT (dtk)	GT (dtk)	DS	QL (meter)	Delay (dtk)
	U-ST	86	48	0.460	127	15.2
	U-RT	86	21	0.872	126	55.3
I	S	86	27	0.872	216	38.7
	T	86	86	0.000	0	0
	В	86	28	0.872	144	42.3
п	U-ST	86	24	0.868	110	39.3
	U-RT	86	15	1.435	307	844.5
	S-ST	86	15	1.435	216	836.7
п	S-RT	86	6	0.482	40	41.7
	T	86	13	1.435	230	841.4
	В	86	28	1.435	173	833.9
	U	86	46	0.838	127	23.4
III	S	86	46	0.546	216	17.5
111	T	86	30	0.838	213	41.2
	В	86	30	0.426	116	24.6
	U	86	40	1.152	216	311.1
IV	S	86	40	0.585	216	21.5
1 4	T	86	36	1.152	212	315.2
0	В	86	36	0.892	238	36.1

5.3.6 Perencanaan VI

Pada perencanaan ini, waktu siklus dan waktu hijau semua simpang merupakan waktu siklus maksimum yang ditentukan oleh Manual Kapasitas Jalan Indonesia (MKJI), yaitu 130 detik. Penentuan waktu siklus dan waktu hijau, tipikal dengan Perencanaan I. Untuk ringkasan hasil perhitungannya dapat dilihat pada Tabel 5.9 di bawah ini.

Tabel 5.12 Kinerja Simpang Perencanaan VI

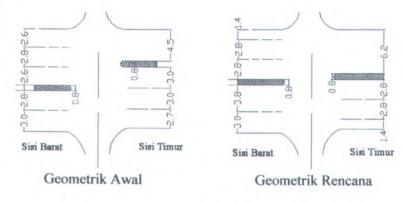
Simpang	Pendekat	CT (dtk)	GT (dtk)	DS	QL (meter)	Delay (dtk)
	U-ST	130	76	0.439	127	19.0
	U-RT	130	33	0.835	171	63.8
I	S	130	43	0.835	216	49.0
	T	130	130	0.000	0	0
	В	130	44	0.835	200	51.1
П	U-ST	130	42	0.750	127	45.1
	U-RT	130	24	1.340	307	691.4
	S-ST	130	24	1.340	216	683.2
11	S-RT	130	6	0.729	40	93.4
	T	130	21	1.340	230	688.5
	В	130	46	1.340	173	677.1
	U	130	72	0.802	127	28.9
III	S	130	72	0.523	216	22.2
111	T	130	48	0.802	347	49.1
	В	130	48	0.408	178	33.9
	U	130	63	1.103	216	235.3
IV	S	130	63	0.560	216	28.2
	T	130	57	1.103	212	241.0
	В	130	57	0.854	238	42.5

5.3.7 Perencanaan VII

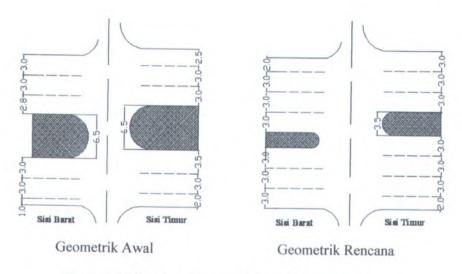
Perencanaan ini akan tetap menggunakan CT Maksimum yang ditentukan oleh MKJI, seperti pada perencanaan VI. Terdapat beberapa perubahan tambahan yang akan dilakukan pada perencanaan kali ini. Hal tersebut bertujuan untuk mendapatkan kinerja simpang yang mendekati ideal. Secara rinci, tidakan-tindakan yang akan dilakukan adalah:

- Perubahan proporsi lebar masuk dan lebar keluar pada pendekat Timur dan Barat Simpang II, untuk menambah besar lebar efektif. Dapat dilihat pada Tabel 5.11.
- Berhubung lebarnya median, maka dilakukan penambahan lebar masuk dan lebar keluar pada pendekat Timur dan Barat Simpang IV untuk menambah lebar efektif. Lihat Tabel 5. 11.
- Merekayasa proporsi besarnya waktu hijau pada Simpang II untuk memaksimalkan kinerja dengan metode trial and error.
 Tabel perubahan waktu hijau dapat dilihat pada Tabel 5.12.

Tabel 5.13 Perubahan We pada Simpang II dan IV


		Eksisting			Perencanaan		
Simpang	Pendekat		W keluar	We	W masuk	W keluar	We
II	Timur	6	5.8	5.8	7	6.8	6.8
п	Barat	8	4.5	4.5	7	6.2	6.2
IV	Timur	6.5	7	6.5	9	9	9
	Barat	6.8	8.5	6.8	9	9	9

^{*}Satuan dalam meter


Lebih jelas, perubahan geometrik dapat dilihat pada Gambar 5.2 dan 5.3.

^{*}Perlakuan untuk simpang II adalah pergeseran median

^{*}Perlakuan untuk simpang IV adalah pelebaran dengan memperkecil median.

Gambar 5.2 Perubahan Geometrik pada Simpang II

Gambar 5.3 Perubahan Geometrik pada Simpang IV

Tabel 5.14 Perubahan Waktu Hijau Simpang II

D d . l 4		Awal			Trial & error			
Pendekat	green	en DS QL		Delay	green	DS	QL	Delay
U-ST	47	0.670	127	39.8	56	0.562	127	32.0
U-RT	28	1.152	307	356.1	33	0.977	307	104.1
S-ST	27	1.183	216	401.0	33	0.968	216	81.5
S-RT	8	0.547	50	66.0	10	0.437	55	59.0
T	22	1.154	197	358.3	24	1.058	120	197.3
В	38	1.167	197	367.7	25	1.774	197	1470.3

*Pendekat Barat dikorbankan agar pendekat lainnya mendapat kinerja lebih baik

*Green Time awal didapat dengan menggunakan rumus MKJI, gi=(cua-LTI)xPRi

*Sedangkan *green time* rencana dilakukan dengan trial and error sehingga mendapatkan kinerja lebih baik pada arus utama

Adapun perhitungan penentuan waktu siklus dan waktu hijau dapat dilihat pada lembar lampiran. Untuk ringkasan hasilnya terdapat dalam Tabel 5.13 berikut.

Tabel 5.15 Kinerja Simpang Perencanaan VII

Simpang	Pendekat	CT (dtk)	GT (dtk)	DS	QL (meter)	Delay (dtk)
	U-ST	130	76	0.439	127	19.0
	U-RT	130	33	0.835	229	63.8
I	S	130	43	0.835	216	49.0
	T	130	130	0.000	0	63.8
	В	130	44	0.835	276	51.1
	U-ST	130	56	0.562	127	32
II	U-RT	130	33	0.977	307	104.1
	S-ST	130	33	0.968	216	81.5

Tabel 5.15 (lanjutan)

	S-RT	130	10	0.441	55	59
II	T	130	24	1.058	71	197.3
	В	130	25	1.774	197	1470.3
	U	130	72	0.802	127	28.9
III	S	130	72	0.523	216	22.2
ш	T	130	48	0.802	453	49.1
	В	130	48	0.408	251	33.9
	U	130	72	0.956	216	43.9
IV	S	130	72	0.486	216	21.6
1 V	T	130	48	0.956	212	60.9
	В	130	48	0.660	238	39.2

5.4 Penilaian Perencanaan Kinerja Terbaik

Pemilihan dilakukan setelah menghitung kinerja rata-rata masing-masing *peak hour*. Adapun kinerja yang dihitung adalah kinerja yang terdapat pada arus-arus utama saja, yaitu arus dari Utara dan dari Selatan pada semua simpang.

Selain itu, diketahui bahwa arus pendekat Timur dan barat pada Simpang IV ternyata memiliki volume yang hampir sama besar dengan arus utama. Selanjutnya, pendekat Timur dan

Barat Simpang IV ini juga termasuk dalam arus utama (mayor). Berikut adalah tabel kinerja rata-rata dari semua perencanaan untuk pergerakan arus utama (mayor).

Tabel 5.16 Kinerja Arus Utama Perencanaan I

Simpang	Pendekat	Pendekat Kejenuhan (DS) (n		Delay (dtk)	
	U-ST	0.466	127	15.7	
I	S	0.870	216	38.9	
п	U-ST	0.878	101	40.6	
II	S-ST	1.432	216	830.9	
III	U	0.837	127	23.5	
ш	S	0.546	216	17.6	
	U	1.150	216	308.3	
IV	S	0.584	216	21.6	
14	T	1.150	212	312.4	
	В	0.890	238	36.2	
Rata-rata		0.880	188	164.6	

Tabel 5.17 Kinerja Arus Utama Perencanaan II

Simpang	Pendekat	Derajat Kejenuhan (DS)	Panjang Antrian (meter)	Delay (dtk)	
T	U-ST	0.451	127	16.4	
1	S	0.856	216	41.6	
П	U-ST	0.807	127	39.5	
11	S-ST	1.394	216	768.5	
Ш	U	0.998	127	64.9	
111	S	0.651	216	26.4	
	U	1.009	216	73.1	
TV	S	0.512	216	19.4	
IV	T	1.303	212	594.9	
	В	1.009	238	96.3	
Rata-rata		0.899	191	174.1	

Tabel 5.18 Kinerja Arus Utama Perencanaan III

Simpang	Pendekat	Derajat Kejenuhan (DS)	Panjang Antrian (meter)	Delay (dtk)
	U-ST	0.460	127	14.0
I	S	0.885	216	37.3
11	U-ST	0.933	101	45.1
II	S-ST	1.472	216	898.2
III	U	0.851	127	22.5
111	S	0.555	216	16.5
	U	1.170	216	340.9
IV	S	0.594	194	20.1
IV	T	1.170	212	344.6
	В	0.906	214	35.9
Rata	-rata	0.899	184	177.5

Tabel 5.19 Kineria Arus Utama Perencanaan IV

Simpang	Pendekat	Pendekat Derajat Derajat Kejenuhan (DS)		Delay (dtk)	
I	U-ST	0.467	127	14.8	
1	S	0.880	216	37.7	
II	U-ST	0.881	127	38.4	
п	S-ST	1.459	216	875.7	
III	U	1.027	127	94.9	
Ш	S	0.669	194	23.0	
	U	1.163	216	330.0	
IV	S	0.591	206	20.6	
1 V	T	1.163	212	333.9	
	В	0.900	228	35.9	
Rata	a-rata	0.920	187	180.5	

Tabel 5.20 Kinerja Arus Utama Perencanaan V

Simpang	Pendekat	Derajat Kejenuhan (DS)	Panjang Antrian (meter)	Delay (dtk)	
	U-ST	0.460	127	15.2	
	S	0.872	216	38.7	
П	U-ST	0.868	110	39.3	
11	S-ST	1.435	216	836.7	
III	U	0.838	127	23.4	
ш	S	0.546	216	17.5	
	U	1.152	216	311.1	
IV	S	0.585	216	21.5	
14	T	1.152	212	315.2	
	В	0.892	238	36.1	
Rata-rata		0.880	189	165.5	

Tabel 5.21 Kinerja Arus Utama Perencanaan VI

Simpang	Pendekat	Derajat Kejenuhan (DS)	Panjang Antrian (meter)	Delay (dtk)
1	U-ST	0.439	127	19.0
	S	0.835	216	49.0
П	U-ST	0.750	127	45.1
п	S-ST	1.340	216	683.2
III	U	0.802	127	28.9
111	S	0.523	216	22.2
	U	1.103	216	235.3
IV	S	0.560	216	28.2
14	T	1.103	212	241.0
	В	0.854	238	42.5
Rata	a-rata	0.831	191	139.4

Tabel 5.22 Kineria Arus Utama Perencanaan VII

Simpang	Pendekat	Derajat Kejenuha (DS)	Panjang Antrian (meter)	Delay (dtk)
т.	U-ST	0.439	127	19.0
I	S	0.835	216	49.0
11	U-ST	0.562	127	32.0
II	S-ST	0.968	216	81.5
Ш	U	0.802	127	28.9
111	S	0.523	216	22.2
	U	0.956	216	43.9
IV	S	0.486	216	21.6
1 V	T	0.956	212	60.9
	В	0.660	238	39.2
Rata	a-rata	0.719	191	39.8

Setelah didapatkan rata-rata semua simpang pada setiap perencanaan, maka pemilihan kinerja terbaik dilakukan dengan penilaian khusus, adapun beberapa hal yang perlu diperhatikan dalam penilaian ini adalah:

- Bobot untuk kinerja Derajat Kejenuhan (DS), Panjang Antrian (QL), dan Tundaan (Delay) tidaklah sama. Dalam hal ini DS diberi bobot 0,5; QL memiliki bobot 0,2; dan bobot 0,3 untuk Delay.
- Untuk Tingkat Penilaian, akan diurutkan kinerja dari terkecil hingga kinerja terbesar dengan sebuah bilangan real. Kinerja terkecil akan mendapatkan angka atau bilangan kecil, dan berurutan seterusnya.
- Hasil penilaian merupakan jumlah dari ketiga jenis kinerja yang telah dikalikan dengan Tingkat Penilaian.
- Hasil penilaian terkecil adalah perencanaan terpilih yang akan digunakan untuk melakukan koordinasi.

Lebih jelasnya, perhitungan penilaian semua perencanaan dapat dilihat pada Tabel 5.22 berikut.

Tabel 5.23 Pemilihan Perencaaan dengan Kineria Terbaik

D	Per	Nilai dan Pembobotan			Tingkat Pemilihan (TP)		Hasil Pemilihan
Prncnan	DS 0.5	QL 0.2	Delay 0.3	DS	QL	Delay	(TP DSx0,5)+(TP QLx0,2)+(TPDelay x 0,3)
I	0.880	188	164.6	4	3	3	3.5
II	0.899	191	174.1	5	5	5	5
III	0.899	184	177.5	6	1	6	5
IV	0.920	187	180.5	7	2	7	6
V	0.880	189	165.5	3	4	4	3.5
VI	0.831	191	139.4	2	6	2	2.8
VII	0.719	191	39.8	1	7	1	2.2

5.5 Koordinasi Sinyal Antar Simpang

Koordinasi sinyal dilakukan dengan menggunakan waktu siklus dan waktu hijau dari perencanaan dengan kinerja terbaik. Setelah melalui proses pembobotan tiap kinerja pada semua perencanaan, terpilihlah Perencanaan VII karena memiliki kinerja simpang rata-rata yang lebih baik daripada perencanaan lainnya.

Dalam perencanaan ini, digunakan kecepatan maksimum dalam kota sesuai dengan regulasi sebesar 40 km/jam. Kecepatan rencana ini dipilih karena pertimbangan bahwa dengan kecepatan lambat maka akan didapat waktu offset yang cukup panjang, sehingga kendaraan terakhir dalam platoon masih memiliki kesempatan untuk mendapat sinyal hijau, jadi tidak perlu menunggu dalam sinyal merah selama satu siklus lagi. Sedangkan kendaraan yang terlalu cepat hanya cukup menunggu waktu hijau dalam beberapa detik saja.

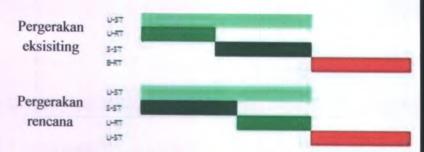
Dengan kecepatan yang sama, maka waktu *platoon* untuk berjalan dari Utara ke Selatan dan sebaliknya juga sama.

Waktu tempuh dari Utara ke Selatan dan Selatan ke Utara

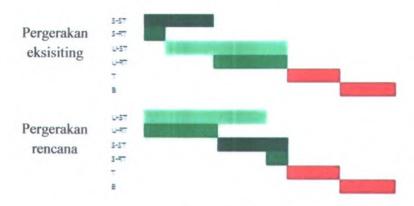
$$t = \frac{Jarak(S)}{Kecepa \tan(v)} = \frac{0.93km}{40km/jam} = 0.02325 jam = 84 \det ik$$

Waktu tempuh di atas digunakan sebagai waktu offset untuk menggambarkan lintasan pergerakan *platoon* pada diagram koordinasi. Setelah lintasan didapat, maka waktu hijau tiap simpangnya menyesuaikan dengan lintasan dengan menggeser secara horizontal.

Selain itu, terdapat kesulitan untuk mengkoordinasikan sinyal pada Simpang I dan Simpang II jika menggunakan pergerakan fase eksisting, terutama fase pertama. Untuk itu, direncanakan pergerakan baru pada fase pertama untuk masingmasing simpang tersebut. Lebih jelasnya, perubahan pergerakan dapat dilihat pada Tabel 5.14 dan Tabel 5.15.


Tabel 5.24 Perubahan Pergerakan Fase Satu Simpang I

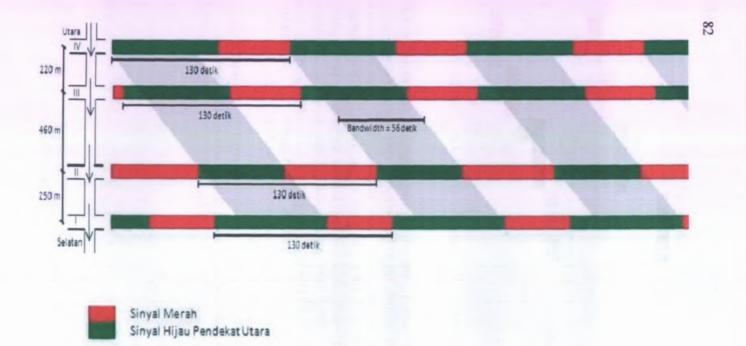
Fase	Pergerakan Eksisting	Pergerakan Rencana
1		< Å. Y →
	< h	₹.A.


Tabel 5.25 Perubahan Pergerakan Fase Satu Simpang II

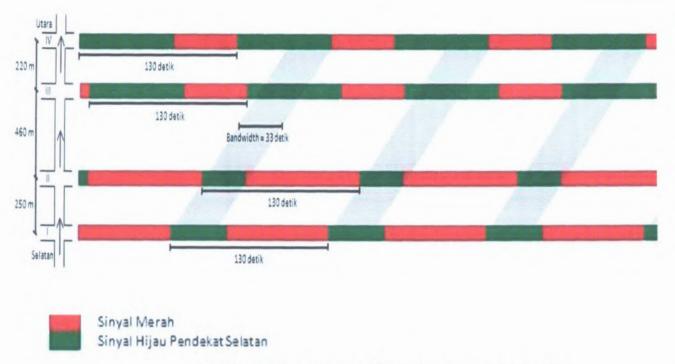
Fase	Pergerakan Eksisting	Pergerakan Rencana
1		★ ∀ >
	← ↓ →	★ ★ >

Untuk lebih jelasnya, dalam Gambar 5.4 dan gamber 5.5 di bawah ini ditunjukkan perubahan pergerakan pade fase 1 untuk Simpang I dan Simpang IV.

Gambar 5.4 Perubahan Pergerakan Fase 1 Simpang I



Gambar 5.5 Perubahan Pergerakan Fase 1 Simpang II


Besarnya lintasan adalah bandwidth, di mana syarat bandwidth adalah tidak boleh menyentuh sinyal merah untuk mendapatkan arus yang tidak terputus. Jika dalam diagram, terdapat lintasan yang mengenai sinyal merah, maka dilakukan pergesarn waktu siklus kembali sampai menemukan posisi yang tepat atau juga dengan memperkecil lintasan itu sendiri, sehingga syarat bandwidth pun terpenuhi.

Dari diagram lintasan pada Gambar 5.4, didapatkan *bandwidth* arah Utara-Selatan sebesar 56 detik. Sedangkan arah Selatan-Utara sebesar 33 detik.

Berikut diagram koordinasi sinyal untuk arus Utara-Selatan dan arus Selatan –utara, dengan waktu siklus baru:

Gambar 5.6 Diagram Aliran Platoon Rencana Arah Utara-Selatan

Gambar 5.7 Diagram Aliran Plato on Rencana Arah Selatan-Utara

Selain itu, terdapat beberapa hal yang dapat diringkas dari Koordinasi ini, diantaranya adalah:

- Meski memakai waktu siklus maksimum, beberapa pendekat seperti pendekat Timur dan pendekat Barat pada Simpang II dan IV masih menunjukkan kinerja yang buruk. Perlakuan khusus pun diberikan dengan mengubah besarnya lebar masuk dan lebar keluar pendekat (Simpang II) serta penambahan lebar (Simpang IV), keduanya untuk menambah lebar efektif sehingga kapasitas menjadi lebih besar.
- Semua simpang memiliki waktu siklus yang sama. Namun, keempatnya memiliki waktu hijau yang berbeda. Hal ini berpengaruh pada koordinasi sinyal di mana sebagian kendaraan nantinya akan ada yang tidak masuk dalam sistem koordinasi (tidak termasuk dalam bandwidth).

BAB VI KESIMPULAN DAN SARAN

6.1 Kesimpulan

Terdapat beberapa hal yang dapat disimpulkan dari analisa dan perencanaan yang telah dilakukan pada bab sebelumnya. Sekaligus untuk menjawab permasalahan di awal, disimpulkan bahwa:

- Keempat simpang pada ruas Jalan Diponegoro sebelumnya belum terkoordinasi. Kondisi ini terlihat dari waktu siklus keempat simpang yang berbeda-beda, di mana hal ini tidak memenuhi syarat sebagai simpang yang terkoordinasi.
- 2. Koordinasi keempat simpang dilakukan dengan menentukan waktu siklus yang sama terlebih dahulu. Dari tujuh perencanaan dipilih waktu siklus berkinerja terbaik sebesar 130 detik. Koordinasi sinyal dilakukan dengan menggunakan waktu offset yang telah didapat dari kecepatan rencana, dalam hal ini kecepatan yang dipakai adalah kecepata maksismum yang diizinkan dalam kota sesuai regulasi yang ada sebesar 40 km/jam.

Dari waktu offset dan waktu siklus tersebut akan terbentuk lintasan-lintasan aliran dari kedua simpang. Dari lintasan ini akan didapatkan *bandwidth*, yang mana memiliki syarat bahwa lintasan tidak boleh terkena sinyal merah. Bandwidth untuk arus Utara-Selatan adalah 56 detik, sedangkan arus Selatan-Utara sebesar 33 detik. Dalam hal ini, waktu siklus dapat digeser secara horizontal untuk mendapatkan koordinasi yang tepat.

3. Pada kondisi eksisting, rata-rata keempat simpang menunjukkan kinerja yang mendekati lewat jenuh. Bahkan untuk Simpang II dan Simpang IV, kinerja sudah lewat jenuh. Untuk *peak hour* dalam sehari terjadi pada sore hari. Sedangkan setelah dilakukan perencanaan

waktu siklus baru untuk koordinasi, kinerja semua simpang menjadi lebih baik. Hanya saja terdapat beberapa pendekat yang masih memiliki kinerja sangat buruk.

Lebih jelas, untuk kondisi eksisting pada saat *peak*, kinerja simpang rata-rata pada arus utama yang dikoordinasikan berupa Derajat Kejenuhan (DS), Panjang Antrian (QL), dan Tundaan (Delay) adalah 0,863 untuk DS, 186 meter untuk QL, dan Delay sebesar 238,1 detik. Sedangkan setelah dilakukan perencanaan waktu siklus berupa yang berdasar pada teori koordinasi, didapat DS sebesar 0,719, QL sebesar 191 meter, dan Delay sebesar 39,8 detik.

6.2 Saran

Dari kesimpulan yang dipaparkan sebelumnya, terdapat beberapa saran yang penulis usulkan, diantaranya:

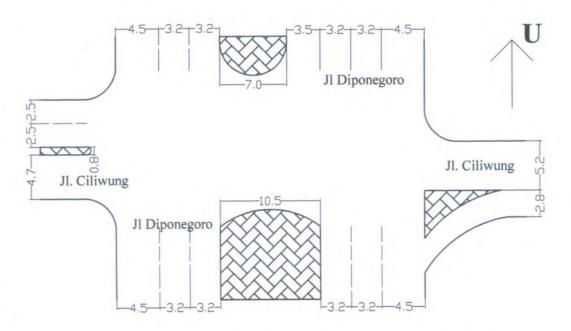
- Permasalahan terbesar pada koordinasi sinyal antar simpang pada ruas Jalan Diponegoro ini adalah pada Simpang II (Jalan Diponegoro-Jalan Bengawan), yang memiliki kinerja paling jenuh dibanding simpang lainnya, terutama untuk pendekat dari Barat. Untuk itu perlu dilakukan manajemen lalu lintas khusus untuk simpang ini.
- 2. Dari analisa kasus ruas Jalan Diponegoro ini, besarnya jumlah kendaraan tidak mampu ditampung oleh kapasitas simpang atau jalan yang ada. Seiring berjalannya waktu, jumlah kendaraan akan terus bertambah sedangkan kapasitas jalan tidak mungkin lagi untuk ditambah. Untuk itu, perlu sebuah kebijakan serius dan tegas dari pemerintah untuk menekan pertambahan jumlah kendaraan. Tentu saja hal ini dibarengi dengan penyediaan moda angkutan umum yang memadai.

DAFTAR PUSTAKA

- _____.1997.**Manual Kapasitas Jalan Indonesia**.Direktorat Jendral Bina Marga—Departemen Pekerjaan Umum
- Abdurrahman.2003.Koordinasi Simpang Bersinyal (Studi Simpang S.Parman-Belitung-P.Kemerdekaan dengan Simpang S.Parman-Bali-Tarakan Kota Banjarmasin).Surabaya:Tidak Dipublikasikan
- Agam, Y.NR.2008.**Asal Usul dan Cikal bakal Kota**Surabaya.<URL:http://rajaagam.wordpress.com/2008/09
 /30/asal-usul-kota surabaya.html>
- Chitra, A.S.2008.Analisis Koordinasi Sinyal Antar Simpang (Studi Kasus Pada Simpang Jl. Merdeka Jl. RE. Martadinata dan Jl. Merdeka Jl. Aceh Kota Bandung).

 VIRL:rac.uii.ac.id/server/document/Public/20 080801040308TUGAS%20AKHIR.pdf>
- Hobbs, F.D.1995.**Perencanaan dan Teknik Lalu Lintas**.Yogyakarta:Gadjah Mada University Press
- Keputusan Direktur Jendral Perhubungan Darat No:AJ 401/1/7.**Pedoman Sistem Pengendalian Lalu Lintas Terpusat**.Jakarta.1991
- Khisty, C.J. dan Lall, B.K.2003.**Dasar-dasar Rekayasa Transportasi Jilid 1**.Jakarta:Erlangga
- Khisty, C.J. dan Lall, B.K.2006.**Dasar-dasar Rekayasa Transportasi Jilid 2**.Jakarta:Erlangga
- Oglesby, C.H. dan Hicks, R.G.1999.**Teknik Jalan Raya Jilid**1.Jakarta:Erlangga
- Papacostas, C.S and Prevedouros, P.D.2005.**Transportation Engineering and Planing**.Singapura:Prentice Hall Inc

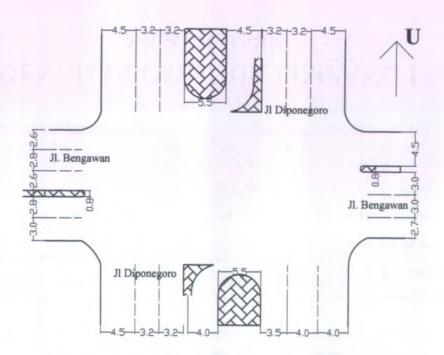
BIODATA PENULIS

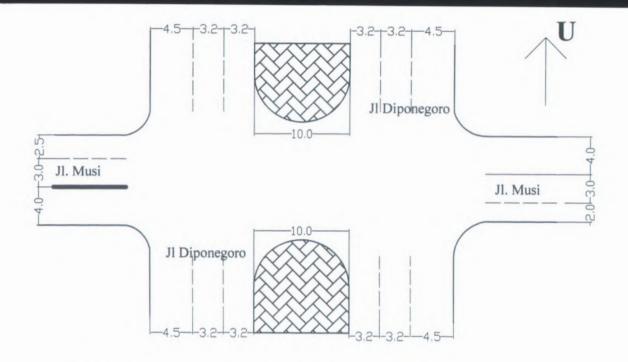


Penulis dilahirkan di Lebak Harjo, sebuah desa kecil dan damai di Pesisir Selatan Kabupaten Malang, pada 17 November 1988 lalu. Meski demikian, masa kecilnya penulis habiskan di salah satu pemukiman transmigrasi di Propinsi Riau. Memulai pendidikan formal di SDN 015 Kerinci Kanan, si bungsu dua bersaudara dari pasangan M Yasin dan Indarti ini kemudian melanjutkan ke SMPN 1 Pangkalan Kerinci dan SMAN 1

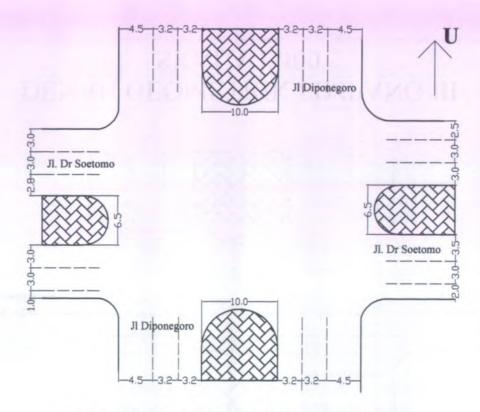
Pangkalan Kerinci, hingga akhirnya diterima di Jurusan Teknik Sipil FTSP ITS pada tahun 2005 melalui jalur SPMB.

Menempuh kuliah di Teknik Sipil, penulis tertarik pada manajemen transportasi dan akhirnya mengambil Bidang Perhubungan. Semasa kuliah, penulis pernah aktif di Kesatuan Aksi Mahasiswa Muslim Indonesia (KAMMI), sebuah organisasi kemahasiswaan ekstra kampus. Dalam kampus, penulis juga tercatat sebagai kru dari media pemberitaan website ITS Online dan Majalah ITS Point. Mengawali karirnya dalam bidang jurnalistik sebagai reporter di media kehumasan ITS tersebut, penulis juga pernah menjabat redaktur dan terakhir sebagai kordinator liputan.


LAMPIRAN A GAMBAR GEOMETRIK SIMPANG

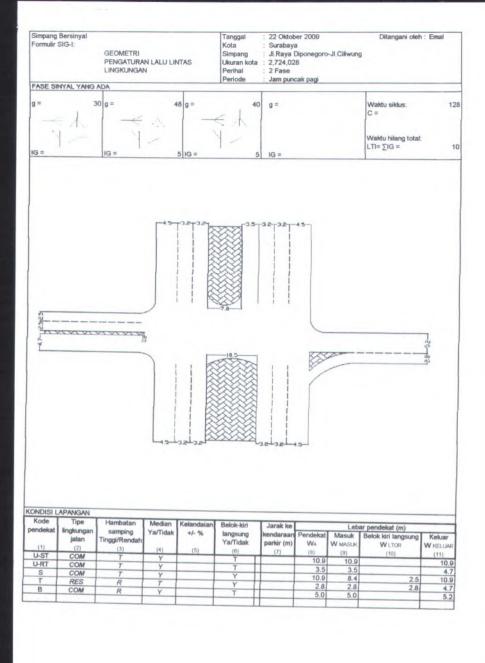


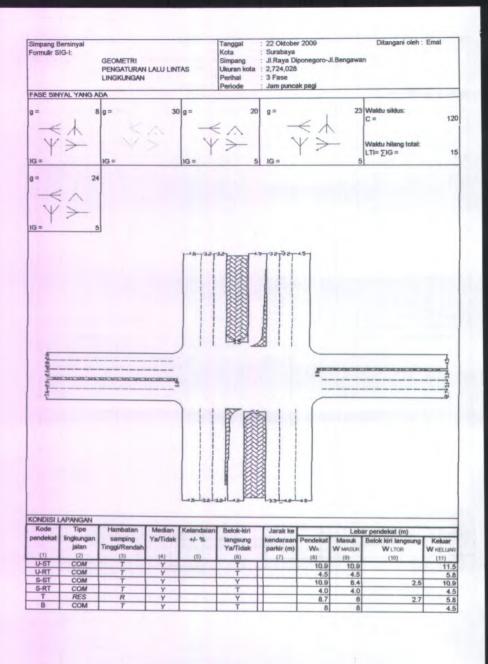
DENAH GEOMETRIK SIMPANG I SKALA 1:400

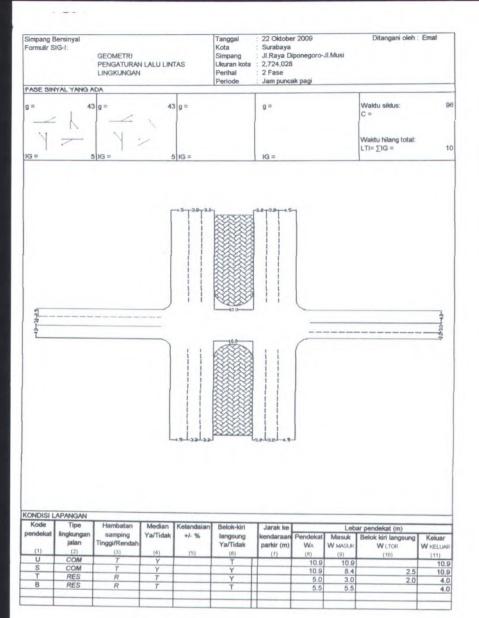


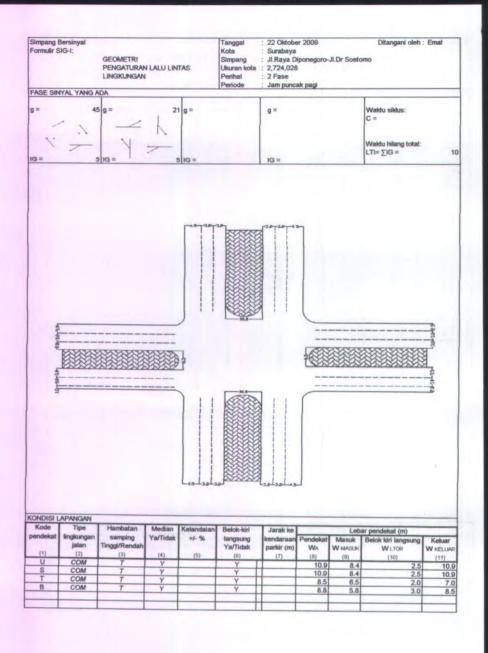
DENAH GEOMETRIK SIMPANG II SKALA 1:500

DENAH GEOMETRIK SIMPANG III SKALA 1:400




DENAH GEOMETRIK SIMPANG IV SKALA 1:500


LAMPIRAN B FORMULIR SIG I KONDISI EKSISTING PAGI


Tipikal untuk:

- Kondisi Eksisting Sore
- Perencanaan I-Perencanaan VI

LAMPIRAN C FORMULIR SIG I PERENCANAAN VII

Simpang Bersinyal Tanggal 22 Oktober 2009 Ditangani oleh : Emal Formulir SIG-I: Kota Surabaya GEOMETRI Simpang Jl.Raya Diponegoro-Jl.Ciliwung PENGATURAN LALU LINTAS Ukuran kota 2,724,028 LINGKUNGAN Perihal 2 Fase Periode Jam puncak sore FASE SINYAL YANG ADA g= g = g= Waktu sildus: C= Waktu hilang total: LTI= SIG = IG = IG = IG = 1G = 32-32-A STANDARD OF STAN KONDISI LAPANGAN Tipe Median Kelandaian Hambatan Belok-kiri Jarak ke Lebar pendekat (m) lingkungar samping Ya/Tidak +/- % langsung kendaraan Masuk Pendekat Belok kiri langsung Keluar jalan Tinggi/Renda Ya/Tidak parkir (m) WA W MASUR WLTOR W KELLIAR COM COM (11) U-ST 10.9 10.9 U-RT 3.5 3.5 6.4 2.8 5.0 10.9 4.7 5.2 4.5 RES 2.8 В

Simpang Bersinyal Formulir SIG-I:	GEOMETRI PENGATURAN LINGKUNGAN	LALU LINTAS	Tanggal Kota Simpang Ukuran kota Perihal Periode	22 Oktober 2009 Surabaya Jl. Raya Diponegoro-Jl 2,724,028 3 Fase Jam puncak sore	Ditangani oleh : Emal Bengawan
FASE SINYAL YAN	IG ADA				
g =	g =	g =		g =	20 Waktu siklus: C =
IG =	5 IG =	IG =		IG =	Waktu hilang total: LTI≕ ∑IG ≕
g =					
IG =					

KONDISI LAPANGAN Kode Tipe Median Kelandaian Belok-kiri Lebar pendekat (m)

Masuk
W MASUK
(9)

Masuk
W LTOR
(10) Tipe lingkungan jalan (2) COM COM COM COM RES COM Keluar W KELUAR (11) 11.5 5.8 10.9 4.5 6.8 6.2 pendekat samping Tinggi/Rendal Ya/Tidak +/- % langsung Ya/Tidak kendaraar parkir (m) Pendekat WA U-ST U-RT S-ST S-RT T (9) 10.9 4.5 6.4 4.0 (7) 10.9 4.5 10.9 4.0 4.5

Simpang E Formulir S		GEOMETRI PENGATURAN LINGKUNGAN		ras	Tanggal Kota Simpang Ukuran kota Perihal Periode		negoro-Jl.Musi	Ditangani oleh :	Ста
FASE SIN	IYAL YANG A	DA			Tr dilode	. van panan s			
g =		g =		g =		g =		Waktu siklus: C =	
G =		IG =		IG =		IG =		Waktu hilang total: LTI= ∑IG =	10
				4.5-7.2.9-3.		387387457			
- 45-45 - 45 - 45 - 45 - 45 - 45 - 45 -					10 p	28 22 45			-4×-00-97
Ť	LAPANGAN Tipe	Hambatan	Median	Kelandgian	10.00	Jarak ke		ehar nendekal (m)	-47016-927-
ONDISI I Kode endekat	Tipe lingkungan jalan	samping Tinggi/Rendah	Median Ya/Tidak	Kelandaiar	Belok-kiri langsung Ya/Tidak	Jarak ke kendaraan Pe	endekat Masuk Ww. W.w.S.		Keluar W KELUAR
ONDISI I Kode endekat	Tipe lingkungan jalan (2)	samping Tinggi/Rendah (3)	Ya/Tidak		langsung Ya/Tidak (6)	kendaraan Pe	WA WASL (8) (9)	Belok kiri langsung W LTOR (10)	
ONDISI I Kode lendekat	Tipe lingkungan jalan (2) COM	samping Tinggi/Rendah (3)	Ya/Tidak (4) Y	+/- %	langsung Ya/Tidak (6)	kendaraan Pe parkir (m)	wa Wasuk (8) (9) 10.9 10	Belok kiri langsung K W LTOR (10)	(11) 10.9
CONDISI II Kode vendekat	Tipe lingkungan jalan (2) COM COM	samping Tinggi/Rendah (3) T	Ya/Tidak (4) Y Y	+/- %	langsung Ya/Tidak (6) T	kendaraan Pe parkir (m)	mdekat Masul Wa W MASI (8) (9) 10.9 10 10.9 8	Belok kiri langsung W LTOR (10) 9 4 2.5	(11) 10.9 10.9
CONDISI II Kode vendekat	Tipe lingkungan jalan (2) COM	samping Tinggi/Rendah (3)	Ya/Tidak (4) Y	+/- %	langsung Ya/Tidak (6)	kendaraan Pe parkir (m)	mdekat Masul WA W MASA (8) (9) 10.9 10 10.9 8 5.0 3	Belok kiri langsung K W LTOR (10)	(11) 10.9

Simpang Bersin Formulir SIG-I:	GEOMETRI	N LALU LINTAS N	Simpang Ukuran kota	: 22 Oktober 2009 : Surabaya : Jl.Raya Diponegoro-Jl.D. : 2,724,028 : 2 Fase : Jam puncak sore	Ditangani oleh : Emal Or Soetomo	
FASE SINYAL'	YANG ADA					
g =	45 g =	21 g =		g =	Waldu sildus: C =	76
IG =	5 IG =	5 IG =		IG =	Waktu hilang total: LTI= ∑IG =	10

Kode	Tipe	Hambatan	Median	Kelandaian	Belok-kiri	Jarak ke		Leb	ar pendekat (m)	
pendekat (1)	lingkungan jalan	samping Tinggi/Rendah	Ya/Tidak	+/- %	langsung Ya/Tidak	parkir (m)	Pendekat WA	Masuk W MASUK	Belok kiri langsung W LTOR	Keluar W KELUAR
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
U	COM	T	Y		Y		10.9	8.4	2.5	10.9
S	COM	T	Y		Y		10.9		2.5	
T	COM	T	Y		Y		11.0	9.0	2.0	9.0
В	COM	T	Y		Υ		11.0	9.0	2.0	

LAMPIRAN D FORMULIR SIG II KONDISI EKSISTING PAGI

Tanggal: 22 Oktober 2009 Kota: Surabaya Simpang: Jl.Diponegoro-Jl.Ciliwung

Ditangani oleh:

Emal

Perihal: 2 Fase Periode: Jam puncak pagi

							ARUS	LALU LINT	AS BERMO	TOR (MV)						KEND, TAK	K BERMOTOR
		Kenda	araan ringa	n (LV)	Kend	daraan bera	t (HV)	Sep	eda Motor ((MC)	Ken	daraan bern	notor	Ra	sio	Arus	Rasio
Kode	Arah	emp terlin	dung =	1.0	emp terlin	dung =	1.3	emp terline	dung =	0.2		total		berb	elok	UM	UM/MV
Pendekat	Clair	emp terlay	wan =	1.0	emp terla	wan =	1.3	emp terlav	van =	0.4		MV					-1101111
		kend/jam	smp		kend/jam		/jam	kend/jam		/jam	kend/jam	smp		PLT	PRT	kend/	
		-	Terlindung		-	Terlindung			Terlindung		7	Terlindung		Rms. (13)	Rms. (14)	jam	Rms. (15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
U-ST	LT/LTOR	9		-			0	19	-	7	28		16	0.02		8	
	ST	302	302	302	11	15	15	2343	469	937	2656	785	1254			51	
	RT	0					0		0			0	0		0.00	0	
	Total	311	311	311	11	15	15	2362	472	945	2684	798	1270			59	0.02
U-RT	LT/LTOR	0				0	0	0	0	0	0	0	0	0.00		0	
	ST	0			0	0	0	0	0	0	0	0	0			0	
	RT	170	170	170	4	5	5	224	45	90	398	220	265		1.00	9	
	Total	170		170	4	5	5	224	45	90	398	220	265			9	0.02
S	LT/LTOR	441	441	441	9		12	1197	239	479	1647	692	932	0.36		8	
	ST	534	534	534	23	30	30	3454	691	1382	4011	1255	1946			50	
	RT	0				0	0	0	0	0	0	0	0		0.00	0	
	Total	975	975	975	32	42	42	4651	930	1860	5658	1947	2877			58	0.010
T	LT/LTOR	16	16	16	0	0	0	128	26	51	144	42	67	1.00		10	
	ST	0	0	0	0	0	0	0	0	0	0	0	0			0	
	RT	0			0	0	0	0	0	0	0	0	0		0.00	0	
	Total	16			0	0	0	128	26	51	144	42	67			10	0.06
В	LT/LTOR	39	39	39	0	Ō	0	77	15	31	116	54	70	0.07		15	
	ST	38	38	38	0	0	0	123	25	49	161	63	87			7	
	RT	233	233	233	2	3	3	2262	452	905	2497	688	1140		0.85	27	
	Total	310	310	310	2	3	3	2462	492	985	2774	805	1297		0.00	49	0.018

SIMPANG BERSINYAL

Formulir SIG-II: ARUS LALU LINTAS

Tanggal: 22 Oktober 2009 Kota: Surabaya Simpang: Jl.Diponegoro-Jl.Bengawan

Ditangani oleh:

Emal

Perihal: 3 Fase

Periode: Jam puncak pagi

							ARUS	LALU LINT	AS BERMO	TOR (MV)						KEND. TAI	K BERMOTOR
		Kenda	araan ringa	1 (LV)	Kend	laraan bera	t (HV)	Sep	eda Motor	(MC)	Ken	daraan berm	notor	Ra	sio	Arus	Rasio
Kode	Arah	emp terlin		1.0	emp terlin	dung =	1.3	emp terlin		0.2		total		berb	elok	UM	UM/MV
Pendekat	7119611	emp terla		1.0	emp terlay		1.3	emp terlay	van =	0.4		MV					
		kend/iam	smp	/jam	kend/jam	smp	/jam	kend/jam	smp	/jam	kend/jam	smp		PLT	PRT	kend/	
			Terlindung	Terlawan	· · · · · · · · · · · · · · · · · · ·	Terlindung	Terlawan	· · · · · · · · · · · · · · · · · · ·	Terlindung	Terlawan	Kerrarjarri	Terlindung	Terlawan	Rms. (13)	Rms. (14)	jam	Rms. (15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
U-ST	LT/LTOR	6		6								15	24	0.014		6	
	ST	408	408	408			21	3084	617	1234	3508	1046	1662			101	
	RT	0		0				_ 0		0			0		0.000		
	Total	414	414	414	16	21	21	3128	626	1251	3558	1060	1686			107	0.030
U-RT	LT/LTOR	0				0	0	0	0	0	0	0	0	0.000		0	
	ST	0		0		-	0		-	0			0			0	
	RT	156	156	156			4	800	160	320		320	480		1.000	9	
	Total	156	156	156		4	4	800	160	320		320	480			9	0.008
S-ST	LT/LTOR	68		68			4	329		132		138	204	0.104		7	
	ST	478	478	478		22	22	3441	688	1376	3936	1188	1877			75	
	RT	0		0			0			0		0	0		0.000	0	
	Total	546	546	546	20	26	26	3770	754	1508	4336	1326	2080			82	0.018
S-RT	LT/LTOR	0		0	0	0	0	0	0	0	0	0	0	0.000		0	
	ST	0		0		0	0			0	-	0	0		777	0	
	RT	37		37						21	90	48	58		1.000	4	
	Total	37		37		0	0	53	11	21	90	48	58			4	0.044
T	LT/LTOR	69		69		4	4	108	22	43		95	116	0.121		2	
	ST	332		332		3	3	1149	230	460		564	794			7	
	RT	82		82			3	179	36	72	263	120	156		0.154	10	
	Total	483	483	483	7	9	9	1436	287	574	1926	779	1067			19	0.010
В	LT/LTOR	21	21	21		0	0	45	9	18	66	30	39	0.063		5	
	ST	1099	1099	1099		3	3	2504	501	1002	3605	1602	2103			6	
	RT	409	409	409		5	5	319	64	128	732	478	542		0.226	3	
	Total	1529	1529	1529	6	8	8	2868	574	1147	4403	2110	2684			14	0.003

Tanggal: 22 Oktober 2009 Kota: Surabaya Simpang: Jl.Diponegoro-Jl.Musi

Ditangani oleh:

Emal

Perihal: 2 Fase

Periode: Jam puncak pagi

							ARUS	LALU LINT.	AS BERMO	TOR (MV)						KEND. TAK	BERMOTOR
		Kenda	araan ringar	n (LV)	Kend	laraan bera	t (HV)	Sep	eda Motor	(MC)	Ken	daraan bern	notor	Ra	sio	Arus	Rasio
Kode	Arah	emp terlin	dung =	1.0	emp terlin	dung =	1.3	emp terline	dung =	0.2		total		berb	elok	UM	UM/MV
Pendekat	Alan	emp terlay	wan =	1.0	emp terla	wan =	1.3	emp terlav	van =	0.4		MV					
		kend/jam	smp		kend/jam		/jam	kend/jam		/jam	kend/jam	smp	/jam	PLT	PRT	kend/	
		Kendrjann	Terlindung	Terlawan	Kendrjann	Terlindung	Terlawan	Keriarjerri	Terlindung	Terlawan	Kendijam	Terlindung	Terlawan	Rms. (13)	Rms. (14)	jam	Rms. (15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
U	LT/LTOR	33			0	0	0	142	28	57	175	61	90	0.033		8	
	ST	793	793	793	30	39	39	4770	954	1908	5593	1786	2740			136	
	RT	0		_ 0	0	0	0	0	0	0	0	0	0		0	0	
	Total	826	826	826	30	39	39	4912	982	1965	5768	1847	2830			144	0.025
S	LT/LTOR	207	207	207	2	3	3	77	15	31	286	225	240	0.144		6	
	ST	501	501	501	14	18	18	4074	815	1630	4589	1334	2149			152	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	Total	708	708	708	16	21	21	4151	830	1660	4875	1559	2389			158	0.032
T	LT/LTOR	45	45	45	0	0	0	104	21	42	149	66	87	0.151		8	
	ST	309	309	309	0	0	0	302	60	121	611	369	430			22	
	RT	0			0	0	0	0	0	0	0	0	0		0	0	
	Total	354	354	354	0	0	0	406	81	162	760	435	516			30	0.039
В	LT/LTOR	63	63	63	0	0	0	33	7	13	96	70	76	0.153		3	
	ST	298	298	298	0	0	0	432	86	173	730	384	471			19	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	Total	361	361	361	0	0	0	465	93	186	826	454	547			22	0.027

Tanggal: 22 Oktober 2009 Kota: Surabaya Simpang: Jl.Diponegoro-Jl. Dr Soetomo

Ditangani oleh:

Perihal: 2 Fase

Periode: Jam puncak pagi

Emal

		_					APUIO			TOP 000							
									AS BERMO							KEND. TAK	BERMOTOF
		Kenda	raan ringa	n (LV)	Kend	daraan bera	t (HV)	Sep	eda Motor		Ken	daraan bern	notor	Ra	sio	Arus	Rasio
Kode	Arah	emp terlin	dung =	1.0	emp terlin	ndung =	1.3	emp terline	dung =	0.2		total		berb	elok	UM	UM/MV
Pendekat	Aran	emp terlay	wan =	1.0	emp terla	wan =	1.3	emp terlay	van =	0.4		MV					
		Isam al Garas	smp	/jam	kend/iam	smp	/jam	kend/jam	smp	/jam	land flam	smp	/jam	PLT	PRT	kend/	
		kend/jam	Terlindung	Terlawan	Kend/jam	Terlindung	Terlawan	Kend/jam	Terlindung	Terlawan	kend/jam	Terlindung	Terlawan	Rms. (13)	Rms. (14)	jam	Rms. (15)
(1)	(2)	(3)	(4)	(5)	(8)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
U	LT/LTOR	92	92	92	1	1	1	413	83	165	506	176	259	0.10		7	
	ST	697	697	697	16	21	21	3955	791	1582	4668	1509	2300			40	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	Total	789	789	789	17	22	22	4368	874	1747	5174	1685	2558			47	0.008
S	LT/LTOR	21	21	21	0	0	0	167	33	67	188	54	88	0.04		16	
	ST	560	560	560	17	22	22	3700	740	1480	4277	1322	2062			117	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	Total	581	581	581	17	22	22	3867	773	1547	4465	1377	2150			133	0.030
T	LT/LTOR	71	71	71	2	3	3	248	50	99	321	123	173	0.08		7	
	ST	876	876	876	6	8	8	2984	597	1194	3866	1481	2077			105	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	Total	947	947	947	8	10	10	3232	646	1293	4187	1604	2250			112	0.02
В	LT/LTOR	384	384	384	2	3	3	427	85	171	813	472	557	0.24		25	
	ST	890	890	890	1	1	1	2846	569	1138	3737	1461	2030			38	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	Total	1274	1274	1274	3	4	4	3273	655	1309	4550	1933	2587			63	0.014

LAMPIRAN E FORMULIR SIG II KONDISI EKSISTING SORE

Tipikal untuk:

Semua Perencanaan

Tanggal: 22 Oktober 2009

Kota: Surabaya
Simpang: Jl.Diponegoro-Jl.Ciliwung

Ditangani oleh: Emal

Perihal: 2 Fase

Periode: Jam puncak sore

								LALU LINT	AS BERMO	TOR (MV)						KEND. TAK	BERMOTOR
			araan ringar			daraan bera			eda Motor	(MC)	Ken	daraan bern	notor	Ra	sio	Arus	Rasio
Kode	Arah	emp terlin	dung =	1.0	emp terlir	ndung =	1.3	emp terline	dung =	0.2		total		berb	elok	UM	UM/MV
Pendekat	Alan	emp terla	wan =	1.0	emp terla	wan =	1.3	emp terlay	van =	0.4		MV					
		kend/jam	smp		kend/jam		o/jam	kend/jam	smp	/jam	kend/jam	smp	/jam	PLT	PRT	kend/	
		Kendyjann	Terlindung	Terlawan	Kendajam	Terlindung	Terlawan	Kendijani	Terlindung	Terlawan	Kendijami	Terlindung	Terlawan	Rms. (13)	Rms. (14)	jam	Rms. (15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
U-ST	LT/LTOR	29					0	38	8	15	67	37	44	0.02		3	
	ST	719	719	719	13	17	17	3915	783	1566	4647	1519	2302			50	
	RT	0	0	0	0		0	0	0	0	0	0	0		0.00	0	
	Total	748	748	748	13	17	17	3953	791	1581	4714	1556	2346			53	0.01
U-RT	LT/LTOR	0	0	0	0	0	0	0	0	0	0	0	0	0.00		0	
	ST	0	0	0	0	0	0	0	0	0	0	0	0			0	
	RT	289	289	289			4	617	123	247	909	416	540		1.00	12	
	Total	289	289	289	3	4	4	617	123	247	909	416	540			12	0.013
S	LT/LTOR	555	555	555	15	20	20	934	187	374	1504	761	948	0.37		15	
	ST	570	570	570	20	26	26	3448	690	1379	4038	1286	1975			54	
	RT	0	0	0			0	0	0	0	0	0	0		0.00	0	
	Total	1125	1125	1125	35	46	46	4382	876	1753	5542	2047	2923			69	0.012
Ť	LT/LTOR	51	51	51	0	0	0	213	43	85	264	94	136	1.00		9	
	ST	0	0	0	0	0	0	0	0	0	0	0	0			0	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0.00	0	
	Total	51	51	51	0	0	0	213	43	85	264	94	136			9	0.034
В	LT/LTOR	46	46	46	1	1	1	91	18	36	138	66	84	0.08		7	
	ST	29	29	29	0	0	0	107	21	43	136	50	72			5	
	RT	264	264	264	0	0	0	2080	416	832	2344	680	1096		0.85	25	
	Total	339	339	339	1	1	1	2278	456	911	2618	796	1252			37	0.014

Tanggal: 22 Oktober 2009

Kota: Surabaya Simpang: Jl.Diponegoro-Jl.Bengawan

Ditangani oleh:

Emal

Perihal: 3 Fase
Periode: Jam puncak sore

							ARUS	LALU LINT	AS BERMO	TOR (MV)						KEND. TAK	K BERMOTOR
		Kenda	araan ringar	n (LV)	Kend	daraan bera	t (HV)	Sep	eda Motor	MC)	Ken	daraan berr	notor	Ra	sio	Arus	Rasio
Kode	Arah	emp terlin	dung =	1.0	emp terlin	ndung =	1.3	emp terlino		0.2		total		berb	elok	UM	UM/MV
Pendekat	Man	emp terlav	wan =	1.0	emp terla	wan =	1.3	emp terlav	van =	0.4		MV					
		kend/jam	smp		kend/jam		/jam	kend/jam	smp		kend/jam		/jam	PLT	PRT	kend/	
		Kondijani	Terlindung		,	Terlindung	Terlawan		Terlindung				Terlawan	Rms. (13)	Rms. (14)	jam	Rms. (15)
(1)	(2)	(3)	(4)	(5)	(8)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
U-ST	LT/LTOR	19				1	1	40	8	16	60		36	0.019		4	
	ST	748	748	748			16		677	1354	4144	1440	2117			51	
	RT	0					0		0	0	0	0	0		0.000	0	
	Total	767	767	767	13	17	17	3424	685	1370	4204	1469	2154			55	0.0
U-RT	LT/LTOR	0					0		0	0	0		0	0.000		0	
	ST	0					0		0	0	0		0			0	
	RT	291	291	291			3		329	658	1939	623	952		1.000	2	
	Total	291	291	291		3	3	1646	329	658	1939	623	952			2	0.0
S-ST	LT/LTOR	79	79				0		45	90	303		169	0.098		12	
	ST	517	517	517			33		590	1180	3491	1139	1729			71	
	RT	0					0		0	0	0	0	0		0.000	0	
	Total	596	596	596	25	33	33	3173	635	1269	3794	1263	1898			83	0.0
S-RT	LT/LTOR	0			0	0	0	0	0	0	0		0	0.000		0	
	ST	0					0		0	0	0		0			0	
	RT	58					4	62	12	25	123	74	87		1.000	2	
	Total	58	58			4	4	62	12	25	123		87			2	0.0
T	LT/LTOR	19	19	19	1	1	1	40	8	16	60	28	36	0.035		4	
	ST	336	336	336	0	0	0	1539	308	616	1875	644	952			9	
	RT	108	108			0	0		29	58	254	137	166		0.170	2	
	Total	463	463	463	1	1	1	1725	345	690	2189	809	1154			15	0.00
В	LT/LTOR	27	27	27	0	0	0	51	10	20	78	37	47	0.123		10	
	ST	1104	1104	1104	0	0	0	381	76	152	1485	1180	1256			3	
	RT	222	222			4	4	382	76	153	607	302	379		0.199	4	
	Total	1353	1353	1353	3	4	4	814	163	326	2170	1520	1683			17	0.00

Tanggal: 22 Oktober 2009 Kota: Surabaya Simpang: Jl.Diponegoro-Jl.Musi

Ditangani oleh:

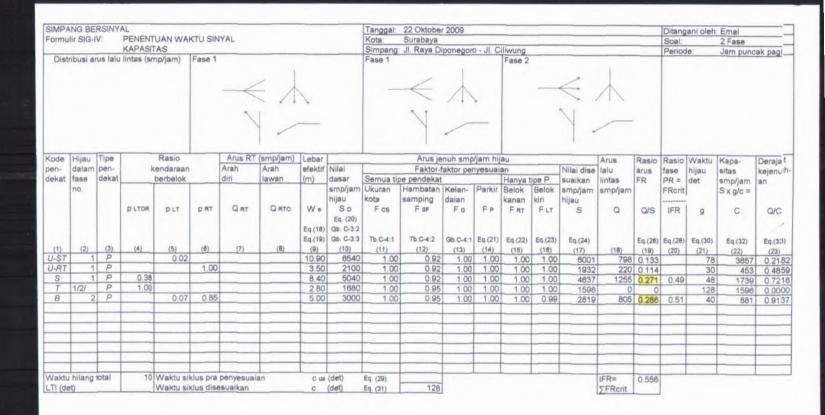
Emal

Perihal: 2 Fase
Periode: Jam puncak sore

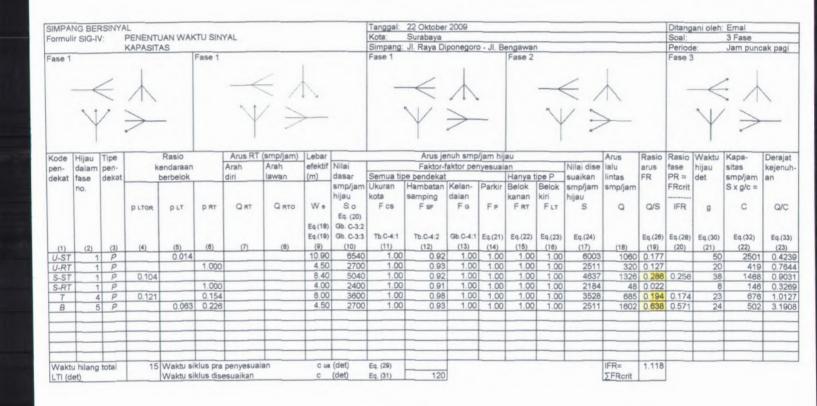
									AS BERMO							KEND. TAK	BERMOTOF
		Kenda	raan ringar	n (LV)	Kend	daraan bera	t (HV)	Sep	eda Motor	(MC)	Ken	daraan berr	notor	Ra	sio	Arus	Rasio
Kode	Arah	emp terlin	dung =	1.0	emp terlin	ndung =	1.3	emp terlin	dung =	0.2		total		berb	elok	UM	UM/MV
Pendekat	Alan	emp terla	wan =	1.0	emp terla	wan =	1.3	emp terlav	van =	0.4		MV					
		kend/jam	smp	/jam	kend/jam	smp	/jam	kend/jam		/jam	kend/jam	smp	/jam	PLT	PRT	kend/	
		Kend/jann	Terlindung	Terlawan	Kendrjani	Terlindung	Terlawan	Kendajam	Terlindung	Terlawan	Kendijam	Terlindung	Terlawan	Rms. (13)	Rms. (14)	jam	Rms. (15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
U	LT/LTOR	61	61	61	0	0	0	83	17	33	144	78	94	0.029		1	
	ST	1362	1362	1362	22	29	29	6130	1226	2452	7514	2617	3843			70.	
	RT	0	0		0		0	0	0	0	0	0	0		0	0	
	Total	1423	1423	1423	22	29	29	6213	1243	2485	7658	2694	3937			71	0.008
S	LT/LTOR	425	425	425	3	4	4	51	10	20	479	439	449	0.246		2	
	ST	606	606	606	18	23	23	3579	716	1432	4203	1345	2061			134	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	Total	1031	1031	1031	21	27	27	3630	726	1452	4682	1784	2510			136	0.029
T	LT/LTOR	132	132	132	0	0	0	275	55	110	407	187	242	0.264		5	
	ST	427	427	427	0	0	0	473	95	189	900	522	616			12	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	Total	559	559	559	0	0	0	748	150	299	1307	709	858			17	0.013
В	LT/LTOR	40	40	40	0	0	0	37	7	15	77	47	55	0.119		8	
	ST	271	271	271	0	0	0	395	79	158	666	350	429			10	
	RT	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	Total	311	311	311	0	0	0	432	86	173	743	397	484			18	0.024

Tanggal: 22 Oktober 2009 Kota: Surabaya Simpang: Jl.Diponegoro-Jl. Dr Soetomo

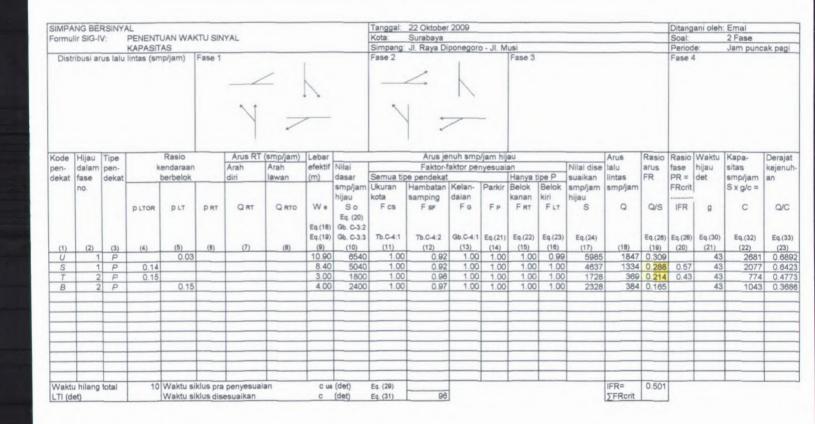
Ditangani oleh:

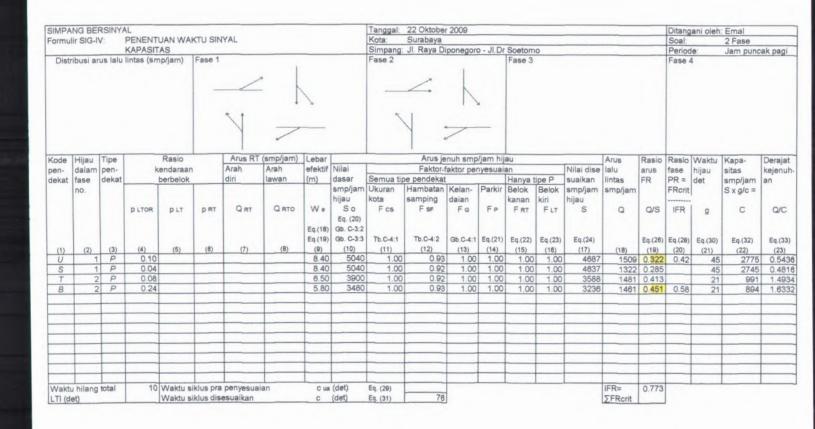

Emal

Perihal: 2 Fase

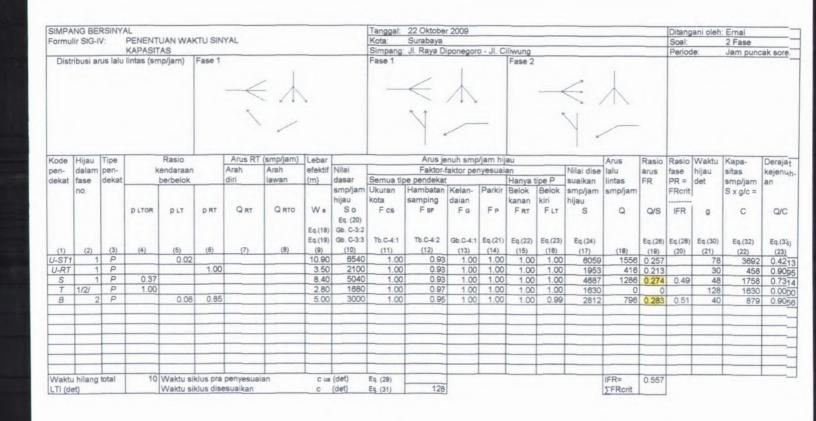

Periode: Jam puncak sore

							ARUS	LALU LINTA	AS BERMO	TOR (MV)						KEND. TAK	K BERMOTOR
		Kenda	raan ringar	n (LV)	Kend	laraan berat	t (HV)	Sep	eda Motor	(MC)	Ken	daraan berm	notor	Ra	sio	Arus	Rasio
Kode	Arah	emp terlin	dung =	1.0	emp terlin	dung =	1.3	emp terlino	dung =	0.2		total		berb	elok	UM	UM/MV
Pendekat	Aran	emp terlay	wan =	1.0	emp terla	wan =	1.3	emp terlaw	/an =	0.4		MV					
23175710		kend/iam	smp	/jam	kend/iam	smp	/jam	kend/jam	smp	/jam	kend/jam	smp	fjam .	PLT	PRT	kend/	
		Kenurjam	Terlindung	Terlawan	Kendrjain	Terlindung	Terlawan	Neticijani	Terlindung	Terlawan	Kend/jam	Terlindung	Terlawan	Rms. (13)	Rms. (14)	jam	Rms. (15)
(1)	(2)	(3)	(4)	(5)	(8)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
U	LT/LTOR	174	174	174	0	0	0	335	67	134	509	241	308	0.09		3	
	ST	1333	1333	1333	22	29	29	5622	1124	2249	6977	2486	3610			28	
	RT	0	0		0		0	0	0	0	0	0	0		0	0	
	Total	1507	1507	1507	22	29	29	5957	1191	2383	7486	2727	3918			31	0.00
S	LT/LTOR	43	43			1	1	270	54	108	314	98	152	0.07		13	
	ST	600	600	600	32	42	42	3038	608	1215	3670	1249	1857			83	
	RT	0			0		0		0	0	0	0	0		0	0	
	Total	643	643	643	33	43	43	3308	662	1323	3984	1348	2009			96	0.024
T	LT/LTOR	117	117	117	0	0	0	376	75	150	493	192	267	0.10		3	
	ST	1129	1129	1129	11	14	14	3031	606	1212	4171	1750	2356			101	
	RT	0	0		0		0	0	0	0	0	0	0		0	0	
	Total	1246	1246	1246	11	14	14	3407	681	1363	4664	1942	2623			104	0.022
В	LT/LTOR	415	415	415	4	5	5	540	108	216	959	528	636	0.30		38	
	ST	798	798	798	1	1	1	2045	409	818	2844	1208	1617			46	
	RT	0	0			0	0	0	0	0	0	0	0		0	0	
	Total	1213	1213	1213	5	7	7	2585	517	1034	3803	1737	2254			84	0.022

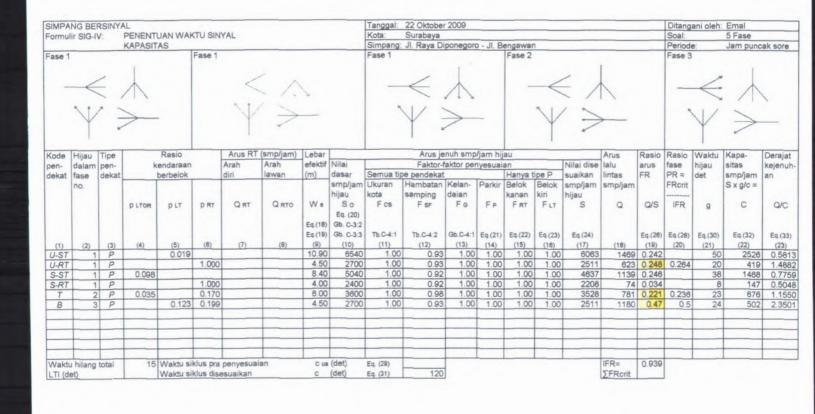

LAMPIRAN F
FORMULIR SIG IV DAN SIG V
EKSISTING PAGI


SIMPANG BER							Tanggal:	22 Oktobe	2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	2 Fase	
		JUMLAH K	ENDARAA	N TERHENT	1				ponegoro -	Jl. Ciliwung			Periode:	Jam puncak pagi	
		TUNDAAN					Waktu siklus:	128						out purious page	
Kode	Arus	Kapasitas	Deraiat	Rasio	Jumlah ke	ndaraan ar			Panjang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam	smp/jam	kejenuhan DS = Q/C	GR = g/c	N1	N2	Total NQ1+NQ2= NQ	NQ MAX	antrian (m) QL	kendaraan stop/smp NS	kendaraan terhenti smp/jam Nsv	Tundaan lalu lintas rata-rata det/smp DT	Tundaan geo- metrik rata-rata det/smp DG	Tundaan rata-rata det/smp D = DT + DG	Tundaa total smp.de D x Q
					Rms (34,1)		Rms.(37)	Gb.E-2.2	Rms.(38)	Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U-ST1	798		0.218		0			69	127	4.113		10.9	4	14.9	11895.
U-RT	220			0.234	0			24	137	1.849		42.1	4	46.1	10145.
S	1255	1739	0.722			96	97	69	164	1.951	2448	35.9	4	39.9	50083.
T	0	1596	0.000	1.000	0	0	0	0	0	0	0	0	0	0	
В	805	881	0.914	0.313	4	31	36	51	204	1.120	902	59.9	4	63.9	51474.
LTOR (semua)	734									Total	7000	0	6		
Arus kor. Qkor. Arus total Qtot.	3811						Kend	laraan terh	enti rata-rat	Total: a stop/smp:	7039 1.846933	Т	undaan simpang	Total: rata-rata stop/smp:	12800 33.584

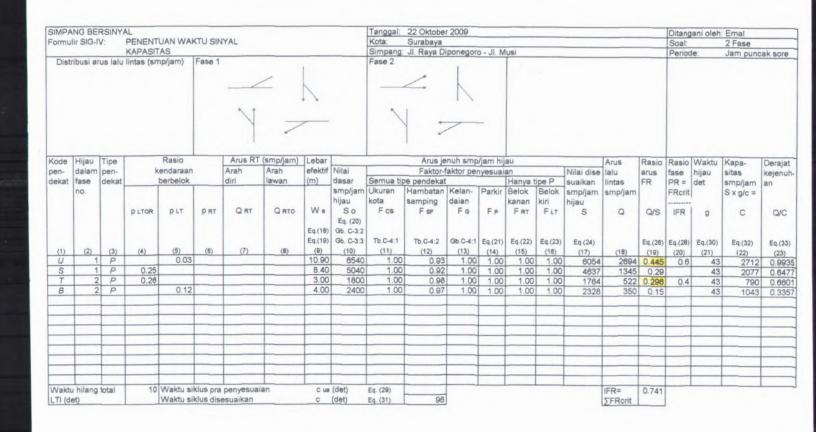
SIMPANG BERS Formulir SIG-V:							Tanggal:	22 Oktobe	r 2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	3 fase	
		JUMLAH K	ENDARAA	N TERHENT	1		Simpang:	Jl. Raya D	iponegoro -	Jl. Bengaw	an		Periode:	Jam puncak pagi	
		TUNDAAN					Waktu siklus:	120					12000		
Code	Arus	Kapasitas	Derajat	Rasio	Jumlah ke	ndaraan an	itri (smp)		Panjang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam Q	smp/jam C	kejenuhan DS = Q/C	hijau GR = g/c	N1		Total NQ1+NQ2= NQ	NQ MAX	antrian (m) QL	stop/smp NS	smp/jam Nsv	det/smp DT	det/smp DG	Tundaan rata-rata det/smp D = DT + DG	total smp.de D x Q
		(8)		-	Rms (34,1)		Rms.(37)	Gb.E-2.2	Rms.(38)	Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U-ST	1060				0					2.120		24.6			30334.3
U-RT	320				1	14						57.2			19575.7
S-ST	1326										1428	48.9			70143.2
S-RT	48				0							47.0			2429,48
- 1	685										418	131.1		135.1	
В	1602	502	3.191	0.200	551	17	568	69	173	9.572	15338	4058.3	4	4062.3	6509391
TOR (semua)	232											0	6	6	1393.2
Arus kor. Qkor. Arus total Qtot.	5718						Kend	iaraan terh	enti rata-rat	Total: a stop/smp:	4206 0.73552	Т	undaan simpang	Total: rata-rata stop/smp:	6725795

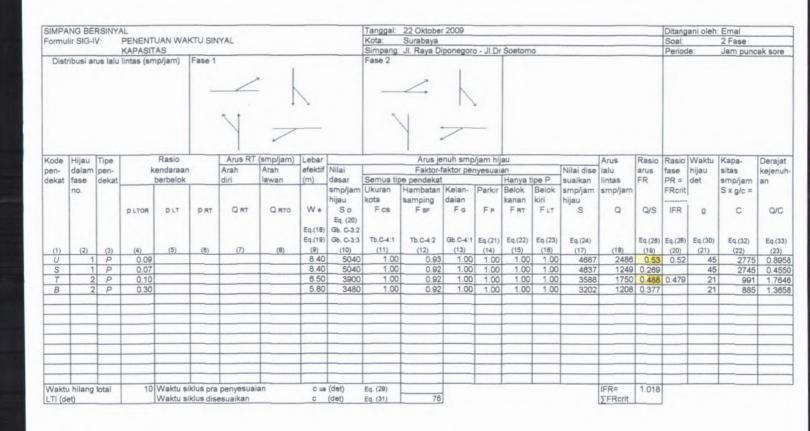


SIMPANG BER							Tanggal:	22 Oktobe	2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	2 Fase	
		JUMLAH K	ENDARAA	N TERHENT	1			Jl. Raya D	ponegoro -	Jl. Musi			Periode:	Jam puncak pagi	_
		TUNDAAN					Waktu siklus:	96					r oriodo.	ouri purious pagi	
Kode	Arus	Kapasitas	Derajat	Rasio	Jumlah ke	ndaraan ar	ntri (smp)		Panjang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam Q	smp/jam	kejenuhan DS = Q/C	GR = g/c	N1 Rms (34,1)	N2 Rms (35)	Total NQ1+NQ2= NQ Rms.(37)	NQ MAX	antrian (m) QL Rms.(38)	kendaraan stop/smp NS	kendaraan terhenti smp/jam Nsv	det/smp DT	Tundaan geo- metrik rata-rata det/smp DG	Tundaan rata-rata det/smp D = DT + DG	total smp.de D x Q
/45	(2)	(3)	(4)	(5)	(6)	(7)				Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1) U	1847		0.689			71	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
S	1334		0.642			55			127	1.317	2433				47993.
5						24	56	69	164	1.411	1883				33654.
1	369		0.477					34	227	2.218					8276.6
В	384	1043	0.369	0.448	0	33	33	46	167	2.865	1101	16.8	4	20.8	7997.4
LTOR (semua) Arus kor. Qkor.	291									Total:	6236	0	6	-	1744. 99666.
Arus total Qtot.	4226						Kend	araan terhe	enti rata-rat	a stop/smp:	1.475707	T	undaan simpang	rata-rata stop/smp:	



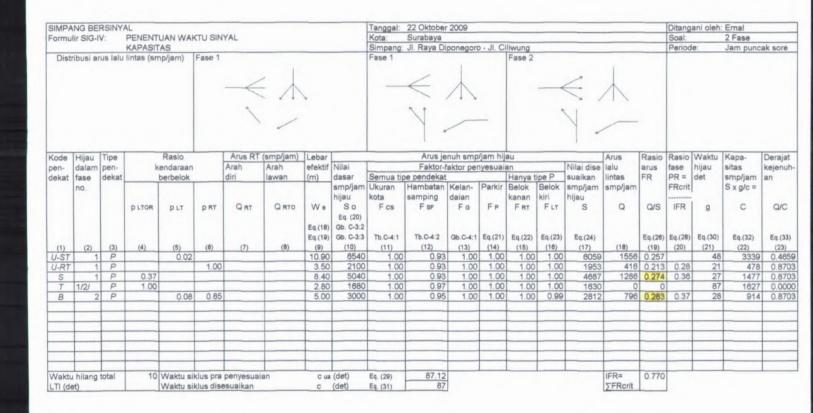
SIMPANG BERS Formulir SIG-V:							Tanggal:	22 Oktobe	r 2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	2 Fase	
		JUMLAH K	ENDARAA	N TERHENT	1		Simpang:	Jl. Polisi Is	timewa - JI	DR. Soetor	mo		Periode:	Jam puncak pagi	
		TUNDAAN					Waktu siklus:	76						oun punoun page	
Code	Arus	Kapasitas	Derajat	Rasio	Jumlah ker	ndaraan ar	ntri (smp)		Panjang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam Q	smp/jam	kejenuhan DS = Q/C	hijau GR = g/c	N1	N2	Total NQ1+NQ2= NQ	NQ MAX	antrian (m) QL	stop/smp NS	kendaraan terhenti smp/jam Nsv	lintas rata-rata det/smp DT	Tundaan geo- metrik rata-rata det/smp DG	Tundaan rata-rata det/smp D = DT + DG	Tundaa total smp.de D x Q
				-	Rms (34,1)		Rms.(37)	Gb.E-2.2	Rms.(38)	Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U	1509					65	66	69			2793				20289.9
S	1322					58	58	69							16919.5
T	1481	991				23 25		69							1381809
В	1461	894	1.633	0.276	265	20	310	69	238	9.045	13210	1183.1	4	1187.1	173383
LTOR (semua)	994											0			****
Arus kor. Qkor. Arus total Qtot.	6766						Kend	laraan terh	enti rata-rat	Total: a stop/smp:	29952 4.426877	O			5963.4 3158813 466.873


LAMPIRAN G FORMULIR SIG IV DAN SIG V EKSISTING SORE

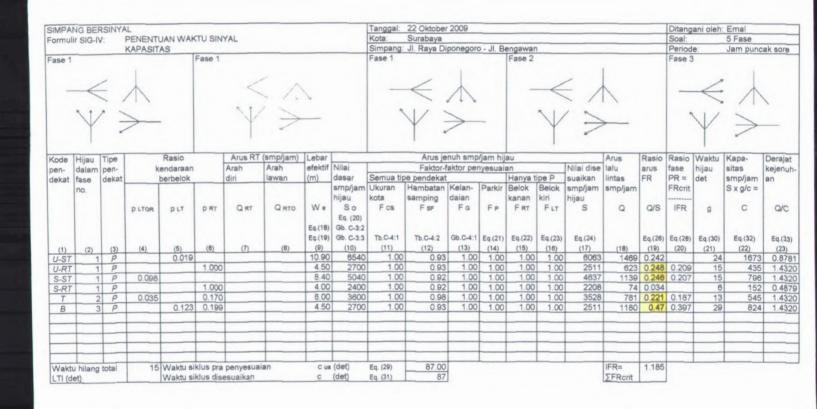

SIMPANG BER							Tanggal:	22 Oktobe	2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	2 Fase	
		JUMLAH K	ENDARAA	N TERHENT	1				ponegoro -	Jl. Ciliwung	1		Periode:	Jam puncak sore	
		TUNDAAN					Waktu siklus:	128						ount purrount core	
Kode	Arus	Kapasitas	Derajat	Rasio	Jumlah ke	ndaraan ar			Panjang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam	smp/jam	kejenuhan DS = Q/C	hijau GR = g/c	N1	N2	Total NQ1+NQ2= NQ	NQ MAX	antrian (m) QL	kendaraan stop/smp	kendaraan terhenti smp/jam Nsv	Tundaan lalu	Tundaan geo- metrik rata-rata det/smp DG	Tundaan rata-rata det/smp D = DT + DG	Tundaa total smp.de D x Q
					Rms (34,1)	Rms (35)	Rms.(37)	Gb.E-2.2	Rms.(38)	Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U-ST1	1556	3692	0.421	0.609	0	131	131	69	127	2.134	3320	13.0	4	17.0	26452.
U-RT	416	458	0.909	0.234	4	16	20	30	171	1.222	509	77.7	4	81.7	34019.
S	1286	1758	0.731	0.375	1	100	100	69	216	1.976	2540	36.2	4	40.2	51689.
T	0	1630	0.000	1.000	0	0	0	0	0	0	0	0	0	0	
В	796	879	0.906	0.313	4	31	35	45	180	1.119	890	58.3	4	62.3	49553.
LTOR (semua)	855											0	6		
Arus kor. Qkor. Arus total Qtot.	4908						Kend	daraan terh	enti rata-rat	Total: ta stop/smp:	7259 1.478976		undaan simpang	Total: rata-rata stop/smp:	16684 33.99

SIMPANG BER							Tanggal:	22 Oktobe	r 2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	3 fase	
		JUMLAH K	ENDARAA	N TERHENT	1				ponegoro -	- Jl. Bengaw	an		Periode:	Jam puncak sore	
		TUNDAAN					Waktu siklus:	120		on bongen	SA1 1		1 011000.	dam parioak sore	
Kode	Arus	Kapasitas	Derajat	Rasio	Jumlah ker	ndaraan an	tri (smp)		Panjang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam Q	smp/jam C	kejenuhan DS = Q/C	GR = g/c	N1 Rms (34,1)	N2	Total NQ1+NQ2= NQ Rms.(37)	NQ MAX	antrian (m) QL Rms.(38)	kendaraan stop/smp NS Rms.(39)	kendaraan terhenti smp/jam Nsv	Tundaan lalu lintas rata-rata det/smp DT Rms.(42)	Tundaan geo- metrik rata-rata det/smp DG Rms.(43)	Tundaan rata-rata det/smp D = DT + DG (13)+(14)	Tundaan total smp.det D x Q
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U-ST1	1469				0	84	84	69		1.552					45852.1
U-RT	623				104	14								955.2	
S-ST1	1139					54	55	69					4	44.1	
S-RT	74		0.505		0			10			133		4		4333.29
T	781	676				0		69			1521	350.3			276669
В	1180	502	2.350	0.200	340	17	357	69	173			2512.3			2969791
LTOR (semua)	152											0	6	6	912.6
Arus kor. Qkor. Arus total Qtot.	445 5863						Kend	laraan terh	enti rata-rat	Total: ta stop/smp:	7098 1.21059	Т	undaan simpang	Total: rata-rata stop/smp:	3942746

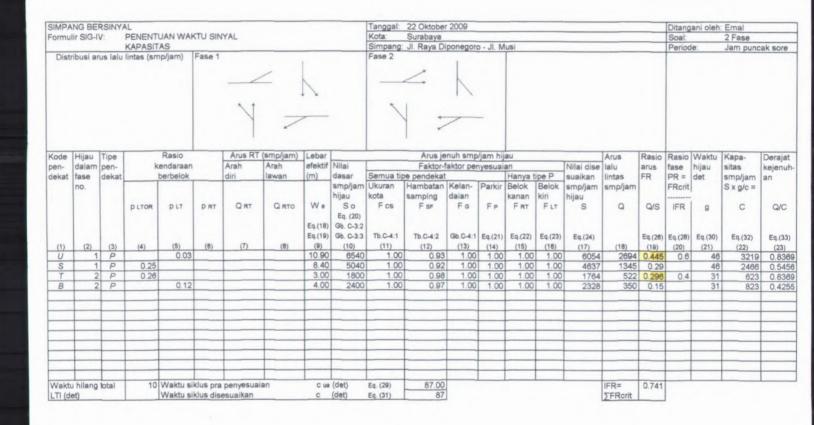
SIMPANG BER							Tanggal:	22 Oktober	2009				Ditangani oleh:	Emal	
omiam ord v.		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	2 Fase	
				N TERHENT	1			Jl. Raya D	ponegoro -	Jl. Musi			Periode:	Jam puncak sore	
		TUNDAAN					Waktu siklus:	96	panagara				-	Contract Contract	
Kode	Arus	Kapasitas	Derajat	Rasio	Jumlah ker	ndaraan ar			Panjang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam	smp/jam	kejenuhan DS = Q/C		N1	N2	Total NQ1+NQ2= NQ	NQ MAX	antrian (m) QL	kendaraan stop/smp	kendaraan terhenti smp/jam Nsv	Tundaan lalu	Tundaan geo- metrik rata-rata det/smp DG	Tundaan rata-rata det/smp D = DT + DG	Tundaa total smp.de D x Q
					Rms (34,1)	Rms (35)	Rms.(37)	Gb.E-2.2	Rms.(38)	Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U	2694	2712	0.994	0.448	22	72		69	127	1.180	3178	55.4	4	59.4	15994
S	1345	2077	0.648	0.448	0	55	56	52	163	1.400	1883	21.3	4	25.3	34080.
T	522	790	0.660	0.448	0	29		42	280	1.882	982	22.9	4	26.9	14037.
В	350	1043	0.336	0.448	0	32	31	44	160	3.021	1057	16.4	4	20.4	7127.
LTOR (semua) Arus kor. Qkor. Arus total Qtot.	5537						Kend	daraan terh	enti rata-rat	Total: ta stop/smp:	7100 1.28233	О Т		Total: rata-rata stop/smp:	21894



SIMPANG BER				-			Tanggal:	22 Oktobe	r 2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	2 Fase	
		JUMLAH K	ENDARAA	N TERHENT	1		Simpang:	JI. Polisi Is	timewa - Jl	DR. Soetor	no		Periode:	Jam puncak sore	
		TUNDAAN					Waktu siklus:	76						Taili parioait coro	
Kode	Arus	Kapasitas	Derajat	Rasio	Jumlah ke	ndaraan ar	ntri (smp)		Panjang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam Q	smp/jam C	kejenuhan DS = Q/C	hijau GR = g/c	N1	N2	Total NQ1+NQ2= NQ		antrian (m) QL	kendaraan stop/smp NS	kendaraan terhenti smp/jam Nsv	Tundaan lalu	Tundaan geo- metrik rata-rata det/smp DG	Tundaan rata-rata det/smp D = DT + DG	Tundaa total smp.de D x Q
					Rms (34,1)	Rms (35)	Rms.(37)	Gb.E-2.2	Rms.(38)	Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U	2486	2775			4	64		69		1.166	2898	18.3	4	22.3	55349.
S	1249	2745	0.455	0.592	0	58		69	216	1.975	2467	8.5	4		15671.
T	1750		1.765		381	23	404	69		9.843	17220	1421.2	4		249333
В	1208	885	1.366	0.276	164	27	191	69	238	6.739	8142	700.0	4	704.0	85062
LTOR (semua)	1060											0	6		
Arus kor. Qkor. Arus total Qtot.	7753						Kend	laraan terhe	enti rata-rat	Total: a stop/smp:	30727 3.963418	Т	undaan simpang	Total: rata-rata stop/smp:	342133 441.30


LAMPIRAN H FORMULIR SIG IV DAN SIG V PERENCANAAN I

Tipikal untuk:


Semua Perencanaan

SIMPANG BERS Formulir SIG-V:							Tanggal:	22 Oktobe	r 2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	2 Fase	
		JUMLAH K	ENDARAA	N TERHENT	1		Simpang:	Jl. Rava di	ponegoro -	Jl. Ciliwung			Periode:	Jam puncak sore	
		TUNDAAN					Waktu siklus:	87					T OTTOGO.	baili parioak sore	
Kode	Arus	Kapasitas	Derajat	Rasio	Jumlah ke	ndaraan ar			Paniang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam Q	smp/jam C	kejenuhan DS = Q/C	hijau GR = g/c	N1	N2	Total NQ1+NQ2= NQ	NQ MAX	antrian (m) QL	kendaraan stop/smp NS	kendaraan terhenti smp/jam Nsv	Tundaan lalu lintas rata-rata det/smp DT	Tundaan geo- metrik rata-rata det/smp DG	Tundaan rata-rata det/smp D = DT + DG	Tundaar total smp.det D x Q
				-	Rms (34,1)	Rms (35)	Rms.(37)	Gb.E-2.2	Rms.(38)	Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U-ST	1556				0			69		1.930	3002			15.7	
U-RT	416							22				51.4		55.4	23053
S	1286							69	216	1.727	2220	34.9	4	38.9	50030.7
T	0							0	0		0	0	0	0	(
В	796	914	0.870	0.325	3	22	25	33	132	1.162	925	38.4	4	42.4	33758.2
LTOR (semua)	855									Total	0075	0	6	-	5129.4
Arus kor. Qkor. Arus total Qtot.	4908						Kend	daraan terhe	enti rata-rat	Total: a stop/smp:	6675 1.360002		undaan simpang	Total: rata-rata stop/smp:	136466 27.8037

SIMPANG BER Formulir SIG-V:							Tanggal:	22 Oktobe	r 2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	3 fase	
		JUMLAH K	ENDARAA	N TERHENT	1		Simpang:		iponegoro -	Jl. Bengaw	an		Periode:	Jam puncak sore	
		TUNDAAN					Waktu siklus:	87							
Kode	Arus	Kapasitas	Derajat	Rasio	Jumlah ke	ndaraan an	tri (smp)		Panjang	Rasio	Jumlah	Tundaan			
pendekat	lalu lintas smp/jam Q	smp/jam C	kejenuhan DS = Q/C	hijau GR = g/c	N1	N2	Total NQ1+NQ2= NQ	NQ MAX	antrian (m) QL	kendaraan stop/smp NS	kendaraan terhenti smp/jam Nsv	Tundaan lalu lintas rata-rata det/smp DT	Tundaan geo- metrik rata-rata det/smp DG	Tundaan rata-rata det/smp D = DT + DG	Tundaai total smp.de D x Q
					Rms (34,1)	Rms (35)	Rms.(37)	Gb.E-2.2	Rms.(38)	Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U-ST	1469							55	101	1.101	1618	36.6	4	40.6	
U-RT	623	435	1.432	0.173	96	- 11	107	69	307	6.372	3969	834.6	4	838.6	
S-ST	1139			0.172	174	21	195	69	216	6.384	7273	826.9	4	830.9	
S-RT	74			0.069			4	8	40	1.833	136	38.5	4		3154.95
T	781	545		0.155				69	230	5.719	4466	831.6	4	835.6	
В	1180	824	1.432	0.328	180	20	200	69	173	6.313	7451	824.0		828.0	
LTOR (semua)	152											0	6	6	912.6
Arus kor. Qkor.	445									Total:	12996			Total:	3162341
Arus total Qtot.	5863						Kend	laraan terhe	enti rata-rat	a stop/smp:	2.216409	T	undaan simpang	rata-rata stop/smp:	

SIMPANG BER							Tanggal:	22 Oktobe	2009				Ditangani oleh:	Emal	
		PANJANG	ANTRIAN				Kota:	Surabaya					Perihal:	2 Fase	
		JUMLAH K	ENDARAA	N TERHENT	1		Simpang:	Jl. Raya D	iponegoro -	Jl. Musi			Periode:	Jam puncak sore	
		TUNDAAN					Waktu siklus:	87	-					Janii Paniaani Jani	
Kode	Arus	Kapasitas	Derajat	Rasio	Jumlah ke	ndaraan ar			Panjang	Rasio	Jumlah	Tundaan			
pendekat			kejenuhan DS = Q/C	hijau GR = g/c	N1	N2	Total NQ1+NQ2= NQ	NQ MAX	antrian (m) QL	kendaraan stop/smp NS	kendaraan terhenti smp/jam Nsv	Tundaan lalu lintas rata-rata det/smp DT	Tundaan geo- metrik rata-rata det/smp DG	Tundaan rata-rata det/smp D = DT + DG	total smp.de D x Q
	-			-	Rms (34,1)		Rms.(37)	Gb.E-2.2	Rms.(38)	Rms.(39)	Rms.(40)	Rms.(42)	Rms.(43)	(13)+(14)	(2)x(15)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
U	2694					78			127						63255.3
S	1345											13.6			23652.
T	522					20	22		213						21548.
В	350	823	0.426	0.353	0	23	22	32	116	2.388	836	20.8	4	24.8	8695.0
LTOR (semua)	626											0	6	6	3756.6
Arus kor. Qkor. Arus total Qtot.	5537						Kend	daraan terh	enti rata-rat	Total: ta stop/smp:	6868 1.240389			Total: rata-rata stop/smp:	120907

	NG BER										22 Oktober	2009							Ditang	ani oleh	Emal	
ormuli	ir SIG-I			UAN WA	KTU SIN	VYAL				Kota:	Surabaya								Soal:		2 Fase	
			KAPASIT								Jl. Raya Di	ponegor	- JI.Dr	Soetom	0				Period	le:	Jam pund	cak sore
Distri	ibusi ar	us lalu	lintas (sn	np/jam)	Fase 1	1		\		Fase 2	<i>∠</i> ,	1										
		Tipe		Rasio			(smp/jam)	Lebar				nuh smp					Arus			Waktu	Кара-	Derajat
	dalam	10.00		endaraan	1	Arah	Arah	efektif		0		aktor per	yesuai			Nilai dise		arus		hijau	sitas	kejenu
	no.	dekat		berbelok		diri	lawan	(m)	dasar smp/jam hijau		Hambatan samping		Parkir	Hanya t Belok kanan	Belok kiri	suaikan smp/jam hijau	lintas smp/jam	FR	PR = FRcrit		smp/jam S x g/c =	an
			p LTOR	pLT	PRT	QRT	QRTO	W e	S o Eq. (20) Gb. C-3:2	F cs	F sF	FG	FP	FRT	FLT	S	Q	Q/S	IFR	g	С	Q/C
(1)	(2)	(3)	(4)	(5)	(8)	(7)	(8)	Eq.(19)	Gb. C-3:3 (10)	Tb.C-4:1 (11)	Tb.C-4:2 (12)	Gb.C-4:1 (13)	Eq.(21) (14)	Eq.(22) (15)	Eq.(23)	Eq.(24) (17)	(18)	Eq.(26) (19)	Eq.(28) (20)	Eq.(30) (21)	Eq.(32) (22)	Eq.(33 (23)
U	1	P	0.09					8.40	5040	1.00	0.93	1.00		1.00	1.00		2486			40		
S	1	P	0.07					8.40	5040	1.00	0.92	1.00	1.00	1.00	1.00	4637	1249	0.269		40		
T	2	P	0.10					6.50	3900	1.00	0.92	1.00	1.00	1.00	1.00	3588	1750	0.488	0.48	37		
В	2	P	0.30					5.80	3480	1.00	0.92	1.00	1.00	1.00	1.00	3202	1208	0.377		37	1357	0.89
41.11	1.11			18/- let / -	labora -				(det)	- (00)	07.77											
	hilang	total	10	Waktu si Waktu si		penyesuai	an		(det)	Eq. (29) Eq. (31)	87.00 87						IFR=	1.018				
LTI (de																	\SFRcrit					

SIMPANG BERSINYAL Formulir SIG-V:							Tanggal: 22 Oktober 2009						Ditangani oleh: Emal			
		PANJANG ANTRIAN					Kota: Surabaya						Perihal:	2 Fase		
		N TERHENT	1		Simpang: Jl. Polisi Istimewa - Jl. DR. Soetomo						Periode:	Jam puncak sore				
							Waktu siklus: 87						The state of the s			
Kode	Arus			Rasio	Jumlah kendaraan ar					Rasio	Jumlah	Tundaan				
pendekat	lalu lintas smp/jam Q	smp/jam C	kejenuhan DS = Q/C		N1 Rms (34,1)	N2	Total NQ1+NQ2= NQ Rms.(37)	NQ MAX	antrian (m) QL Rms.(38)	kendaraan stop/smp NS Rms.(39)	kendaraan terhenti smp/jam Nsv Rms.(40)	Tundaan lalu	Tundaan geo- metrik rata-rata det/smp DG Rms.(43)	Tundaan rata-rata det/smp D = DT + DG (13)+(14)	Tundaar total smp.det D x Q (2)x(15)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)+(14)	(16)	
U	2486				167	57		69						308.3		
S	1249				0	52		69							27021.1	
T	1750					41		69					4	312.4		
В	1208				3	47		69				32.2	4		43748.1	
LTOR (semua)	1060											0	6	6	6358.2	
Arus kor. Qkor. Arus total Qtot.	7753		Total: 18078 Kendaraan terhenti rata-rata stop/smp: 2.331828										Total: 1389972 Tundaan simpang rata-rata stop/smp: 179.289			