

TUGAS AKHIR – SF 091321

ESTIMASI MOMEN TENSOR, POLA BIDANG SESAR DAN MEKANISME FOKUS GEMPA TOHOKU-OKI JEPANG PADA TAHUN 2011 DENGAN MEMANFAATKAN INVERSI *WAVEFROM* TIGA KOMPONEN MENGGUNAKAN PROGRAM ISOLA

DEPTA MAHARDIKA S NRP 1110 100 032

Dosen Pembimbing Prof. Dr.rer.nat Bagus Jaya Santosa, SU NIP.19620802 198701.1.001

Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2014

TUGAS AKHIR - SF 091321

ESTIMASI MOMEN TENSOR, POLA BIDANG SESAR DAN MEKANISME FOKUS GEMPA TOHOKU-OKI JEPANG PADA TAHUN 2011 DENGAN MEMANFAATKAN INVERSI *WAVEFROM* TIGA KOMPONEN MENGGUNAKAN PROGRAM ISOLA

DEPTA MAHARDIKA S NRP 1110 100 032

Dosen Pembimbing Prof.Dr.rer.nat. Bagus Jaya Santosa, SU NIP. 19620802 198701.1.001

Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2014

FINAL PROJECT – SF 091321

ESTIMATION MOMENT TENSOR, FAULT PLANE, AND MECHANISM FOCUS OF TOHOKU-OKI EARTHQUAKE 2011 USING THREE COMPONENT WAVEFROM INVERSION WITH ISOLA PROGAM

DEPTA MAHARDIKA S NRP 1110 100 032

Advisor Prof.Dr.rer.nat. Bagus Jaya Santosa, SU NIP. 19620802 198701.1.001

Physics Department Faculty of Mathematics and Natural Science Sepuluh Nopember Institute of Technology Surabaya 2014

ESTIMASI MOMEN TENSOR, POLA BIDANG SESAR DAN MEKANISME FOKUS GEMPA TOHOKU-OKI JEPANG PADA TAHUN 2011 DENGAN MEMANFAATKAN INVERSI *WAVEFROM* TIGA KOMPONEN MENGGUNAKAN PROGRAM ISOLA

Nama Mahasiswa	: Depta Mahardika S
NRP	: 1110 100 032
Jurusan	: Fisika FMIPA-ITS
Pembimbing	: Prof.Dr.rer.nat. Bagus Jaya Santosa,
SU	

Abstrak

Penelitian mengenai mekanisme fokus gempa Tohoku-Oki telah dilakukan. Penelitian ini bertujuan untuk menentukan momen tensor, pola bidang sesar dan slip dari gempa bumi Tohoku-Oki menggunakan data gempa bumi foreshock dan aftershock. Digunakan 6 event gempa bumi masing-masing untuk foreshock dan aftershock dengan magnitudo diatas 4.5 SR. Penentuan momen tensor dilakukan dengan menggunakan inversi wavefrom tiga komponen dengan metode iterasi dekonvolusi menggunakan software ISOLA-GUI. Momen tensor menggambarkan gaya-gaya yang bekerja pada pusat sumber gempa bumi sedangkan slip menggambarkan besarnva displacement vang teriadi dikarenakan gempa bumi. Dari hasil inversi diperoleh solusi parameter sesar vaitu strike, dip dan rake untuk dua nodal yang akan dianalisa untuk menentukan bidang patahan. Hasil direpresentasikan inversi momen tensor dengan yang menggambarkan daerah menggunakan beach ball kompresi dan dilatasi. Dari penelitian ini diketahui jika pada gempa foreshock didominasi oleh sesar naik (reserve fault).

Hal ini dikarenakan gempa Tohoku-Oki disebabkan oleh pertemuan lempeng Pasifik dan Okhslot membentuk zona subduksi Jepang trench. Sedangkan untuk gempa bumi aftershock disebabkan oleh dominasi sesar naik, dip slip reverse dan strike slip. Dari hasil penelitian ini didapatkan rentang momen tensor adalah $M_{rr} = 2.223$ exp15 sampai 1.611 exp19, $M_{tt} = 0.456$ exp15 sampai 1.166 exp19, $M_{pp} =$ 2.679 exp15 sampai 2.777 exp19, $M_{rt} = 2.649$ exp15 sampai 5.561 exp19, $M_{rp} = 3.386$ exp15 sampai 0.119 exp19, dan M_{tp} = 1.343 exp15 sampai 1.039 exp19. Sedangkan untuk besarnya slip maksimum yaitu mencapai 49.38 m.

Kata Kunci : Gempa Tohoku-Oki, focal mechanism, momen tensor, reverse fault, normal fault, strike slip fault dan zona subduksi.

ESTIMATION MOMENT TENSOR, FAULT PLANE AND MECHANISM FOCUS OF TOHOKU-OKI EARTHQUAKE 2011 USING THREE COMPONENT WAVEFROM INVERSION MENGGUNAKAN ISOLA PROGAM

Name	: Depta Mahardika S
Student Identity	: 1110 100 032
Department	: Fisika FMIPA-ITS
Advisor	: Prof.Dr.rer.nat. Bagus Jaya Santosa, SU

Abstract

This research discussed about determination of moment tensor and the pattern of fault plane from focal mechanism and slip from Tohoku-Oki earthquake using foreshock and aftershock event. Used six event of eartquake foreshock and aftershock with magnitudo greater than equal 4.5 SR. The determination of moment tensor has been done using wavefrom three component inversion with iteration deconvolution method by ISOLA progam. Moment tensor represent forces that exist in focus of earthquake. Whereas, slip represent size of displacement that were caused by earthquake. From inversion result were aimed fault parameter solution (strike, dip and rake) for two nodal. Inversion result of moment tensor were represented with beach balls that show compression and dilatation zone. From this research were known that the pattern fault in Japan espicially caused by Tohoku-Oki earthquake were dominated by reverse fault. This pattern fault were caused by subduction between Pasific dan Okhslot plate and formed Japan trench. Whereas, aftershock event were dominated by normal, dip slip reverse and strike slip fault. From this research also known range of moment tensor were $M_{rr} = 2.223$ exp15 to 1.611 exp19, $M_{tt} = 0.456 exp15$ to 1.166 exp19, $M_{pp} =$ 2.679 exp15 to 2.777 exp19, $M_{rt} = 2.649$ exp15 to 5.561 exp19, $M_{rp} = 3.386 \ exp15$ to 0.119 exp19, and $M_{tp} = 1.343 \ exp15$ to

1.039 exp19. Maximum slip was 49,38 m and minimum slip was 7.38m

Keywords : Tohoku-Oki Earthquake, focal mechanism, moment tensor, reverse faults, normal fault, strike slip fault dan subduction zone.

LEMBAR PENGESAHAN

ESTIMASI MOMEN TENSOR, POLA BIDANG SESAR DAN MEKANISME FOKUS GEMPA TOHOKU-OKI JEPANG PADA TAHUN 2011 DENGAN MEMANFAATKAN INVERSI WAVEFROM TIGA KOMPONEN MENGGUNAKAN PROGRAM ISOLA

TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains

pada Bidang Studi Fisika Bumi Program Studi S-1 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya

> oleh : DEPTA MAHARDIKA S NRP. 1110 100 032

Disetujui oleh Pembimbing Tugas Akhir :

Prof.Dr.rer.nat. Bagus Jaya Santosa, SU ...

DIDIKAN DA

URUS

SURABAYA JUNI, 2014

vii

KATA PENGANTAR

Alhamdulillahirrabbil 'alamiin, puji syukur penulis ucapkan hanya kepada Allah SWT yang telah melimpahkan riski dan rahmat-Nya selama penulis menjalani perkuliahan di Institut Teknologi Sepuluh Nopember, sehingga penulis berhasil menyelesaikan Tugas Akhir dengan judul :

ESTIMASI MOMEN TENSOR, POLA BIDANG SESAR DAN MEKANISME FOKUS GEMPA TOHOKU-OKI JEPANG PADA TAHUN 2011 DENGAN MEMANFAATKAN INVERSI *WAVEFROM* TIGA KOMPONEN MENGGUNAKAN PROGRAM ISOLA

Dengan terselesaikannya tugas akhir ini, penulis ingin menyampaikan terimakasih kepada semua pihak yang telah banyak membantu dalam penyusunannya terutama kepada:

- 1. Kedua orangtua penulis, Ayahanda dan Ibunda penulis yang telah memberikan banyak do'a, dukungan dan semangat yang tiada henti serta keluarga besar penulis
- 2. Adikku tercinta, Dimas Krisnanda atas motivasinya menjadikan penulis kakak dan teladan yang baik
- 3. Bapak Prof. Dr. rer. Nat. Bagus Jaya Santosa, SU yang memberikan bimbingan, arahan, dan motivasi kepada penulis sehingga Laporan Tugas Akhir ini dapat terselesaikan dengan baik
- 4. Seluruh dosen bidang minat Fisika Bumi : Dr. Ayi Syaeful Bahri, Anik Hilyah M.T dan Dr. Anang Dwa Desa W yang telah mengajarkan banyak hal terkait ilmu geofisika dan pembelajaran hidup lainnya
- 5. Keluarga seismologi tercinta : Eka Jaya W, Lilis Eka, Sayyidatul K, Muhammad Ikhyaul Ibad atas kebersamaan

dan dukungannya hingga detik-detik terakhir. Dimana kita berjuang bersama dan menyelesaikan ini bersama-sama.

- 6. Keluarga Fisika Bumi 2010 tercinta : Intan Andriani Putri, Winda Hastari, Toriq Guntoro, Sando, Khoiri, Deby Sanjaya dll atas kebersamaan dan dukungan yang sangat berharga yang telah diberikan
- 7. Okok Wijaya atas dukungan, motivasi dan semangat yang tiada hentinya diberikan
- 8. Serta teman-teman Cosmic 2010 yang selalu berbagi semangat dan perhatian selama berkuliah hingga sekarang penulis bisa menyelesaikan Tugas Akhir ini.
- 9. Dan pihak-pihak lain yang tidak dapat disebutkan satu per satu.

Penulis menyadari akan keterbatasannya, berharap kritik dan saran yang membangun. Semoga dengan adanya Tugas Akhir ini dapat menginspirasi pembaca dan menyumbangkan ilmu khususnya dalam bidang geofisika.

Surabaya, 15 Juli 2014

Depta Mahardika S

DAFTAR ISI

Halaman Judul	i
Lembar Pengesahan	vii
Abstrak	ix
Abstract	xi
Kata Pengantar	xiii
Daftar Isi	XV
Daftar Gambar	xix
Daftar Tabel	xxiii
Bab I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Tujuan Penelitian	3
1.4 Batasan Masalah	3
1.5 Manfaat Penelitian	3
1.6 Sistematika Laporan	4
BAB II DASAR TEORI	5
2.1 Teori Tektonik Lempeng	5
2.2 Gempa Bumi	7
2.3 Teori Elasric Rebound	8
2.4 Gelombang Seismik	10
2.5 Struktur Geologi Kekar	13
2.6 Seismic Moment Tensor	16
2.7 Inversi WavefromTiga Komponen	17
2.8 Fungsi Green	17
2.9 Mekanisme Fokus	18

2.10 Progam ISOLA-GUI	23
2.11 Geologi Tektonik Jepang	24
BAB III METODOLOGI PENELITIAN	29
3.1 Alat dan Bahan	29
3.2 Lokasi Penelitian	29
3.3 Flowchart Penelitian	30
3.4 Proses Pengolahan Data	31
3.5 Perhitungan Data	38
3.5.1 Perhitungan Dimensi Sesar	38
3.5.2 Perhitungan Displacement Gempa	39
BAB IV HASIL DAN PEMBAHASAN	41
4.1 Analisa Data	41
4.1.1 Data Penelitian	41
4.2 Hasil Pengolahan	42
4.2.1 Hasil Moment Skalar	42
4.2.2 Hasil Moment Tensor	45
4.2.3 Hasil Mekanisme Fokus Gempa	46
4.2.4 Hasil Slip Sesar Gempa	60
4.3 Pembahasan	61
4.3.1 Moment Tensor	61
4.3.2 Mekanisme Fokus Gempa	66
	(0
BAB V KESIMPULAN DAN SAKAN	09
5.1 Kesimpulan	69
5.2 Saran	69
DAFTAR PUSTAKA	71

Lampiran	Α	:	Hasil	fitting	kurva	sintetik	dan
seismogran	1		•••••			••••••	75
Lampiran l	B : I	Ias	il inver	rsi mome	en tensor	•••••	81

DAFTAR TABEL

Tabel 4.1 Data event gempa bumi foreshock Tohoku-Oki
Jepang 41
Tabel 4.2 Data event gempa bumi aftershock Tohoku-Oki
Jepang 41
Tabel 4.3 Hasil perhitungan momen skalar gempa foreshock
Tohoku-Oki Jepang 42
Tabel 4.4 Hasil perhitungan momen skalra gempa afershock
Tohoku-Oki Jepang`42
Tabel 4.5 Perbandingan hasil perhitungan momen scalar data
gempa foreshock Tohoku-Oki Jepang 44
Tabel 4.6 Perbandingan hasil perhitungan momen scalar data
gempaaftershock Tohoku-Oki Jepang
Tabel 4.7 Momen tensor untuk gempa foreshock Tohoku-Oki
Jepang 46
Tabel 4.8 Momen tensor untuk gempa aftershock Tohoku-Oki
Jepang 46
Tabel 4.9 Bidang sesar dan auxiliary plane untuk data gempa
Foreshock Tohoku-Oki Jepang 47
Tabel 4.10 Bidang sesar dan auxiliary plane untuk data
gempa Aftereshock Tohoku-Oki Jepang 47
Tabel 4.11 Besar Slip sesar untuk gempa bumi foreshock Image: Comparison of the second sec
Tabel 4.12 Beser Slin sesar untuk gempa humi aftershock
Lepang 60
Jepang

DAFTAR GAMBAR

Gambar 2.1 Batas lempeng di dunia
Gambar 2.2 Teori elastic rebound (Studi kasus pada Sab
Andreas Fault)
Gambar 2.3 Penjalaran Gelombang-P dan Gelombang-S
Dibawah Permukaan Bumi12
Gambar 2.4Penjalaran Gelombang Love dan Rayleigh
Dibawah Permukaan Bumi13
Gambar 2.5 Struktur Geologi Sesar
Gambar 2.6 Parameter Sesar (Srike, Dip, Slip)
Gambar 2.7 Sembilan komponen moment tensor 21
Gambar 2.8 Solusi mekanisme fokus gempa
Gambar 2.9 Tectonic Setting Jepang
Gambar 2.10 Lokasi hiposenter gempa Tohoku-Oki
ditandai dengan tanda bintang
Gambar 3.1 Lokasi penelitian
Gambar 3.2 <i>Flowchart</i> tahapan penelitian
Gambar 3.3 Tampilan Software ISOLA
Gambar 3.4 Model bumi Jepang
Gambar 3.5 Tampilan pada tahap penentuan event
<i>info</i>
Gambar 3.6 Tampilan pada tahap pemilihan stasiun 34
Gambar 3.7 Tampilan pada SAC <i>import</i>
Gambar 3.8 Tampilan pada tahapan raw data
preparation
Gambar 3.9 Tampilan pada tahapan pennetuan lokasi
sumber seismik

Gambar 3.10 Tampilan perhitungan fungsi green 36
Gambar 3.11 Tampilan perhitungan inversi
<i>Wavefrom</i> 37
Gambar 4.1 Lokasi stasiun gempa
Gambar 4.2 (a). Bentuk <i>beach ball</i> (b). Orientasi bidang
patahan (merah) (c). Bentuk beach ball dari
NIED Gempa 09/03/2011 04:36:59.00 48
Gambar 4.3 (a). Bentuk <i>beach ball</i> (b). Orientasi bidang
patahan (hijau) (c). Bentuk beach ball dari
NIED Gempa 09/03/2011 12:03:59.00 49
Gambar 4.4 (a). Bentuk <i>beach ball</i> (b). Orientasi bidang
patahan (hijau) (c). Bentuk beach ball dari
NIED Gempa 09/03/201114:24:05.50 50
Gambar 4.5 (a). Bentuk <i>beach ball</i> (b). Orientasi bidang
patahan (merah) (c). Bentuk beach ball dari
NIED Gempa 09/03/2011 18:16:14.18 51
Gambar 4.6 (a). Bentuk <i>beach ball</i> (b). Orientasi bidang
patahan (merah) (c). Bentuk beach ball dari
NIED Gempa 09/03/2011 11:21:05.09 52
Gambar 4.7 (a). Bentuk <i>beach ball</i> (b). Orientasi bidang
patahan (merah) (c). Bentuk beach ball dari
NIED Gempa 10/03/2011 21:49:43.85 53
Gambar 4.8 (a). Bentuk <i>beach ball</i> (b). Orientasi bidang
patahan (merah) (c). Bentuk beach ball dari
NIED Gempa 11/03/2011 06:08:53.50 54
Gambar 4.9 (a). Bentuk <i>beach ball</i> (b). Orientasi bidang
patahan (merah) (c). Bentuk beach ball dari
NIED Gempa 09/03/201118:11:24.67

Gambar 4.10 (a). Bentuk beach ball (b). Orientasi bidan	g
patahan (hijau) (c). Bentuk beach ball dari	
NIED Gempa 09/03/201119:02:56.21	56

Gambar 4.12 (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 09/03/2011 20:11:21.02 58

Gambar 4.13 (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 09/03/2011 23:26:46.38 59

Amerika Utara 66

BAB I PENDAHULUAN

1.1 Latar Belakang

Jepang merupakan negara yang rawan akan bencana gempa bumi dan tsunami. Jepang terletak pada zona gunung berapi yaitu di atas lingkaran api Pasifik dan dari segi tectonic setting, Jepang terletak pada sebuah daerah dimana empat lempeng tektonik aktif yang bertemu satu sama lain. Lempenglempeng tersebut adalah lempeng Eurasia, Amerika Utara, Pasifik, dan Philipina. Sedangkan daratan Jepang berada di atas dua lempeng tektonik, yakni lempeng Amerika Utara dan lempeng Eurasia. Pertemuan kedua lempeng ini berada di tengahtengah Kepulauan Honshu. Inilah yang menjadi salah satu alasan mengapa Jepang banyak mengalami kejadian gempa. Gempa bumi merupakan kejadian alam yang tidak dapat dicegah, namun pemahaman mengenai gejala gempa bumi perlu diketahui dengan baik untuk mengurangi korban dan sebagai upaya mitigasi bencana. Salah satu yang perlu diketahui adalah mekanisme sumber gempa dan karakteristik arah gerak sesar. Inilah mengapa ilmu seismologi sangat berkembang khususnya di negara Jepang sendiri. Banyak studi telah dikembangkan untuk memahami struktur dan dinamika dalam bumi serta mekanisme gempa bumi melalui estimasi parameter sumber gempa.

Pemahaman terhadap karakteristik sesar yang mengakibatkan gempa bumi diperlukan untuk memperkirakan atau mengetahui karakter dan akibat kegempaan. Untuk memahami karakteristik ini dapat dilakukan dengan memodelkan momen tensor gempa bumi (Shearer, 2009). Pemodelan momen tensor ini dapat dilakukan dengan menggunakan metode inversi yang memanfaatkan waktu tiba gelombang-P dan diestimasi dengan menggunakan fungsi Green tiga komponen (Zahradnick, 2008). Hasil analisis ini berupa parameter-parameter gempa bumi yang meliputi; skala, kedalaman dan energi gempa bumi serta model patahan penyebab gempa bumi.

Pada tugas akhir ini akan disajikan penelitian mengenai penentuan besarnya momen tensor, pola bidang dan karakteristik sesar dari mekanisme sumber gempa dan besarnya *slip* yang dihasilkan dari gempa bumi Tohoku-Oki, Jepang pada tanggal 9 dan 11 Maret 2011. *Event* gempa yang dipakai sebagai objek penelitian merupakan *foreshock* dan *aftershock* dari *mainshock* gempa bumi Tohoku-Oki yang sempat mengakibatkan tsunami dan digolongkan sebagai gempa bumi besar dengan magnitudo 9 SR. Pemilihan *event* gempa dikarenakan efek yang disebabkan oleh gempa sangat merusak dan memakan banyak korban. Selain itu gempa bumi Tohoku-Oki merupakan salah satu gempa bumi tterdahsyat yang terjadi di Jepang dan mengakibatkan tsunami. Oleh karena itu pemahaman mengenai mekanisme fokus gempa dan karakter sesar perlu untuk diketahui untuk keperluan mitigasi bencana selanjutnya.

Momen tensor ditentukan dengan menggunakan progam ISOLA sehingga dapat diketahui besarnya dan arah gaya penyebab gempa bumi serta parameter sesar yaitu strike, dip dan rake yang nantinya digunakan sebagai inputan untuk menentukan mekanisme fokus dan pengambaran bidang sesar. ISOLA merupakan salah satu perangkat lunak Fortran untuk menghitung momen tensor yang dijalankan dengan GUI Matlab. Kelebihan progam ISOLA, adalah dapat digunakan untuk gempa dengan magnitude kecil yaitu kurang dari 1,2 SR dan gempa besar yaitu lebih dari 9 SR. Selain itu pengolahan dengan menggunakan progam ISOLA melibatkan koreksi instrumen dari seismogram yang digunakan, menyediakan tools untuk melakukan filter data guna menghilangkan noise, sehingga hasil yang didapatkan akan lebih bagus (Sokos & Zahradnik, 2013). Parameter sesar yang dihasilkan dari pengolahan sebelumnya kemudian digunakan untuk *plotting* dengan menggunakan metode H-C. Metode H-C

digunakan untuk melihat penampang sesar dalam bentuk dua dimensi dengan menggunakan dua nodal.

1.2 Rumusan Masalah

Rumusan masalah dari tugas akhir ini adalah sebagai berikut:

- 1. Bagaimana menentukan besarnya momen tensor dari *event* gempa yang terjadi menggunakan inversi *wavefrom* tiga komponen?
- 2. Bagaimana menentukan pola bidang sesar dan karakteristik sesar dari mekanisme sumber gempa?
- 3. Berapa besarnya *slip* dari sesar yang dihasilkan *event* gempa bumi?

1.3 Tujuan Penelitian

Tujuan penelitian dari tugas akhir ini adalah sebagai berikut:

- 1. Menentukan besarnya momen tensor dari *event* gempa yang terjadi menggunakan inversi *wavefrom* tiga komponen
- 2. Menentukan pola bidang sesar dan karakteristik sesar dari mekanisme sumber gempa
- 3. Menentukan besarnya *slip* dari sesar yang dihasilkan *event* gempa bumi

1.4 Batasan Masalah

Batasan masalah dalam tugas akhir ini adalah dibatasi pada penentuan mekanisme fokus dari gempa bumi *foreshock* dan *aftershock* Tohoku-Oki 2011 di wilayah Jepang dengan menggunakan progam ISOLA dengan tinjauan bumi sebagai medium yang isotropis.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini adalah memberikan informasi mengenai pola bidang sesar dan mekanisme fokus gempa bumi di Tohoku-Oki Jepang.

1.6 Sistematika Laporan

Sistematika laporan pada tugas akhir ini adalah sebagai berikut:

- Bab I Pendahuluan, berisi tentang latar belakang, perumusan masalah, batasan masalah, tujuan, manfaat, dan sistematika laporan dari penelitian tugas akhir
- Bab II Dasar Teori, berisi tentang teori-teori yang menjadi landasan penyusunan tugas akhir
- Bab III Metodologi Percobaan, berisi tentang metodologi penelitian yang ditempuh untuk menyelesaikan tugas akhir
- Bab IV Analisa Data dan Pembahasan, berisi tentang analisa data dan pembahasan hasil pengolahan data
- Bab V Penutup, berisi tentang bagoan penutup dari tugas akhir meliputi kesimpulan yang didapat dan saran untuk penelitian selanjutnya

BAB II DASAR TEORI

2.1 Teori Tektonik Lempeng

Teori tektonik lempeng awalnya berasal dari hipotesa Alfred Wegener (1912) yang mengemukakan bahwa benuabenua yang ada sekarang ini dahulu adalah satu bentang muka benua raksasa yang disebut dengan Pangea. Teori Alfred Wegenner ini dikenal dengan nama teori *continental drift* (apungan benua). Namun seiring dengan perkembangan ilmu pengetahuan, teori ini tidak dapat dibuktikan secara ilmiah.

Teori tektonik lempeng berisikan teori mengenai pergerakan lempeng-lempeng bumi di dalam kerak bumi. Teori ini menggantikan teori apungan benua yang dikemukakan oleh Alfred Wegener. Teori tektonik lempeng menyatakan bahwa kerak bumi tersusun atas beberapa lempeng tektonik yang terus menerus bergerak secara dinamis. Lempeng-lempeng ini mengapung di atas asthenosfer yang bersifat cair dan panas

Gambar 2.1 Batas lempeng di dunia

Adanya gaya tektonik yang timbul akibat arus konveksi di dalam kerak bumi akan mengakibatkan lempeng bergerak, bertumbukan dan bergeser satu sama lain. Lempeng-lempeng tektonik akan terus bergerak ada yang saling mendekat dan ada pula yang saling menjauh (Harmadhoni, 2011).

Perbatasan lempeng satu dengan yang lain merupakan daerah yang paling aktif. Berdasarkan pergerakan lempeng tektonik batas lempeng tektonik dibedakan menjadi 3 macam yaitu:

1. Batas Konvergen

Batas konvergen terjadi ketika dua lempeng tektonik saling mendekat yang menyebabkan terjadinya tumbukan karena kedua lempeng terus bergerak tumbukan ini mendekat. Karena akan teriadi penunjaman sehingga lempeng yang densitasnya lebih besar akan menunjam ke bawah sehingga terbentuk zona subduksi. Batas konvergen terjadi jika lempeng samudra bergerak benua dan lempeng saling mendekat. Aktivitas lempeng tektonik semacam ini akan mengakibatkan terbentuknya

rangkaian gunung berapi.

2. Batas Divergen

Batas divergen terjadi ketika dua lempeng tektonik bergerak saling menjauh yang dikenal dengan zona pemekaran (*spreading*).

3. Batas Singgungan

Batas singgungan ditandai dengan dua lempeng yang saling bergerak relatif sejajar satu dengan yang lain sehingga terjadi gesekan pada bidang batas lempeng. Akibat gesekan ini akan timbul gempa-gempa dangkal.

(Isnawati, 2011)

6

2.2 Gempa Bumi

Gempa bumi adalah berguncangnya bumi akibat adanya peristiwa pelepasan energi yang disebabkan dislokasi atau pergeseran pada bagian dalam bumi yang terjadi secara tiba-tiba disertai dengan pelepasan energi menuju ke permukaan bumi (Santoso, 2008). Energi yang dilepaskan pada saat terjadinya patahan tersebut dapat berupa energi deformasi, energi gelombang dan lain-lain. Energi deformasi ini dapat terlihat pada perubahan bentuk sesudah terjadinya patahan, misalnya pergeseran. Sedang energi gelombang menjalar melalui medium elastis yang dilewatinya dan dapat dirasakan sangat kuat di daerah terjadinya gempa bumi tersebut.

Gempa bumi jika diklasifikasikan berdasarkan sebab terjadinya dapat dibedakan sebagai berikut (Bowler, 2003):

1. Gempa Bumi Tektonik

Gempa bumi tektonik adalah gempa bumi yang disebabkan oleh dislokasi atau perpindahan akibat pergesaran lapisan bumi yang tiba-tiba terjadi pada struktur bumi, yakni adanya tarikan atau tekanan.

2. Gempa Bumi Vulkanik

Gempa bumi vulkanik adalah gempa bumi yang disebabkan oleh aktivitas gunung api atau letusan gunung api. Pada saat dapur magma bergejolak, ada energi yang mendesak lapisan bumi. Energi yang mendesak lapisan bumi ada yang mampu mengangkat lapisan bumi sampai ke permukaan disertai getaran. Gunung api yang akan meletus biasanya mengakibatkan gempa bumi.

3. Gempa Bumi Runtuhan

Gempa bumi runtuhan adalah gempa bumi yang di sebabkan runtuhnya atap gua atau terowongan tambang di bawah tanah. Jika batuan pada atap rongga atau pada dinding rongga mengalami pelapukan, maka rongga dapat runtuh karena tidak mampu lagi menahan beban di atas rongga. Runtuhnya gua dan terowongan yang besar bisa mengakibatkan getaran yang kuat.

Singkatnya gempa bumi merupakan gerakan tanah yang terjadi secara tiba-tiba dan bersifat *transient* (sesaat) dimana sumber getarannya berasal dari mantel bumi atau kerak bumi yang dapat menyebabkan kerusakan di permukaan bumi. Hampir 90% gempa bumi yang terjadi adalah gempa tektonik dan sisanya adalah gempa bumi vulkanik dan runtuhan.

Pada penelitian ini yang akan dibahas hanya mengenai gempa bumi tektonik yaitu gempa bumi yang terjadi akibat pergerakan lempeng di kerak bumi. Pergerakan lempenglempeng khususnya lempeng raksasa (lempeng mayor) akan menimbulkan gesekan-gesekan, tekanan dan desakan pada bidang pertemuannya. Tekanan yang timbul akibat pergerakan lempeng-lempeng tersebut terus membesar. Maka, pada suatu saat ketika tidak dapat menahan tekanan tersebut, batuan menjadi pecah dan terangkat. Pelepasan tekanan ini menimbulkan getaran atau gelombang. Gelombang kemudian menyebar ke segala penjuru dari titik dimana batuan pecah atau terangkat dan menghasilkan guncangan/getaran pada bumi yang disebut gempa bumi.

Gempa bumi banyak terjadi di batas lempeng hal ini disebabkan karena pergerakan lempeng yang dinamis dimana lempeng tersebut bergerak secara perlahan dan energi *strain* terakumulasi bertahun-tahun dan jika tiba-tiba terjadi *slip* inilah yang mengakibatkan terjadinya gempa bumi (Afnimar, 2009).

2.3 Teori Elastic Rebound

Teori *elastic rebound* atau bingkai elastis adalah teori yang menjelaskan mengenai mekanisme terjadinya gempa bumi yang diakibatkan oleh pensesaran batuan/ lapisan. Konsep dari teori ini menyatakan jika gempa bumi terjadi akibat proses pensesaran di dalam kerak bumi yang diakibatkan oleh pelepasan energi secara mendadak dari tegangan elastik yang melampaui batas kekuatan batuan. Tegangan elastis ini terakumulasi apabila batuan mengalami deformasi yang terus menerus dan besarnya semakin besar. Jika tegangan elastik yang terakumulasi melebihi batas elastisitas batuan maka batuan akan terpecah dan membentuk sesar. Bersamaan dengan proses tersebut akan dilepaskan energi dalam bentuk getaran gelombang elastis yang menjalar dalam bumi yang bisa dirasakan yaitu gempa bumi.

Gambar 2.2 Teori *elastic rebound* (Studi kasus pada San Andreas Fault)

Berdasarkan teori *elastic rebound*, gempa bumi terjadi melalui tahapan berikut yaitu diantaranya, (1) gempa disebabkan karena pergerakan lempeng tektonik sehingga mengakibatkan timbulnya gaya tektonik dan mengakibatkan terjadinya pergeseran antara blok batuan, (2) ketika tegangan yang diterima batuan melebihi batas ambang elastisitas maka batuan akan pecah proses ini dikenal dengan *rupture* (3) selama proses *rupture* energi elastik batuan akan dipancarkan ke segala arah menuju permukaan dalam bentuk gelombang seismik (Madlazim, 2011).

Hal di atas awalnya disebabkan karena adanya pergerakan lempeng bumi di dalam kerak bumi yang tidak stabil dan bergerak terus menerus sehingga mengakibatkan terjadinya *stress* yang terakumulasi dan dapat merubah geologi lapisan batuan (Isnawati, 2011).

2.4 Gelombang Seismik

Gelombang seismik adalah gelombang yang merambat naik di dalam ataupun di permukaan bumi yang berasal dari sumber seismik seperti sumber gempa bumi, letusan gunung berapi, ledakan dan lain sebagainya. Gelombang sesimik tergolong dalam gelombang mekanik, dimana dalam perambatannya membutuhkan medium. Gelombang gempa bumi juga dikatakan sebagai gelombang elastik karena dalam perambatannya melalui perantara batuan yang termasuk dalam mediun elastik. Persamaan gelombang seismik dapat dituliskan:

$$\rho \frac{\partial^2 \bar{x}}{\partial t^2} = (\lambda + 2\mu) \nabla \nabla . \bar{u} - \mu \nabla x \nabla x \bar{u}.....(2.1)$$

(Afnimar, 2009)

Gelombang seismik dapat diklasifikasikan menjadi dua kelompok yaitu gelombang badan (*body wave*) dan gelombang permukaan (*surface wave*).

- 1. Gelombang Badan (*Body Wave*) adalah gelombang yang merambat melalui lapisan dalam bumi. Gelombang badan merambat di dalam medium yang dilaluinya. Gelombang badan dibedakan menjadi dua jenis gelombang yaitu:
 - a. Gelombang Primer (P-wave)

Gelombang-P merupakan gelombang *longitudinal* yang arah osilasi partikelnya searah dengan arah rambat geombang. Gelombang-P merupakan gelombang tiba paling awal di permukaan bumi karena memiliki kecepatan yang paling tinggi diantara gelombang yang lain (Afnimar, 2009). Gelombang P dapat menjalar di semua medium baik padat, cair ataupun gas (Isnawati, 2011).

b. Gelombang Sekunder (S-wave)

Gelombang-S merupakan gelombang *tranversal* yang gerak partikelnya tegak lurus dengan arah rambatnya. Berbeda dengan gelombang-P gelombang-S hanya dapat menjalar pada medium padat. Ada dua tipe gelombang-S yaitu gelombang SV (*shear vertical*) dan gelombang SH (*shear horizontal*) (Isnawati, 2011).

- 2. Gelombang Permukaan (*Surface Wave*) adalah gelombang yang merambat melalui permukaan bumi. Gelombang permukaan merambat sejajar dengan medium yang dilaluinya. Gelombang permukaan dibedakan atas :
 - a. Gelombang *Love* adalah gelombang yang terbentuk akibat adanya interferensi gelombang-gelombang pantul dengan gelombang SH pada suatu lapisan yang dekat dengan permukaan bumi. Gerak partikel yang dilewati oleh gelombang *Love* sama pada saat medium tersebut dilewati oleh

gelombang SH hanya saja besarnya amplitudo berkurang terhadap kedalaman (Afnimar, 2009)

b. Gelombang Rayleigh

Gelombang *Rayleigh* adalah gelombang yang terbentuk akibat adanya interferensi gelombanggelombang pantul dan gelombang SV yang sudut datangnya melebihi sudut kritis. Gerak partikel medium yang dilewati berbentuk elips yang merupakan kombinasi gerak gelombang pantul dan SV. Amplitudo gelombangnya turun terhadap kedalaman (Afnimar, 2009)

Gelombang permukaan bersifat dispersif vaitu kecepatan gelombangnya bergantung pada frekuensi gelombang. Semakin besar frekuensi maka semakin kecil kecepatannya dan penetrasi kedalamannya semakin dangkal dan sebaliknya (Afnimar 2009). Gelombang permukaan lebih berbahaya jika dibandingkan dengan gelombang badan karena amplitudonya yang lebih besar. Gelombang permukaan inilah yang bersifat merusak jika terjadi gempa bumi.

Gambar 2.3 Penjalaran gelombang-P dan gelombang-S dibawah permukaan bumi

Gambar 2.4 Penjalaran Gelombang *Love* dan *Rayleigh* Dibawah Permukaan Bumi

2.5 Struktur Geologi Sesar

Sesar didefinisikan sebagai rekahan/retakan pada batuan penyusun bumi yang telah atau sedang mengalami pergeseran (*displacement*). Sesar yang terjadi selama gempa bumi berlangsung dapat diestimasi dengan menggunakan metode yang berdasarkan pada waktu tiba pertama (*first motion*) dari gelombang P (Lay et al., 1995). Sesar dapat dibedakan menjadi beberapa macam berdasarkan karakteristik geraknya yaitu sebagai berikut:

- 1. Sesar tidak mendatar yaitu sesar yang arah bergeraknya blok sesar vertikal atau miring atau biasa disebut dengan sesar *dip-slip*. Sesar ini terdapat tiga jenis yaitu:
 - a) Sesar Turun (*Normal Fault*)
 - Sesar turun memiliki karakteristik *hangging wall* akan relatif turun terhadap *foot wall*. Sesar normal terjadi jika nilai δ (*dip*) \neq 0 dan $\delta \neq \pi/2$ serta nila λ (*rake*) dalam rentang - $180^0 \leq \lambda \leq 0^0$. Sesat turun mempunyai bidang kemiringan yang besar

b) Sesar Naik (*Reverse Fault*)

Sesar naik memiliki karakteristik *hangging* wall akan relatif naik terhadap *foot wall*. Sesar

naik terjadi jika nilai δ (*dip*) \neq 0 dan $\delta \neq \pi/2$ serta nilai λ (*rake*) dalam rentang $0^0 \leq \lambda \leq 180^0$

c) Sesar Oblique

Pergerakan dari sesar ini gabungan antara horizontal dan vertikal sehingga membentuk arah diagonal. Gaya-gaya yang bekerja menyebabkan sesar mendatar dan sesar normal $\delta = 90^{\circ}$ dan $\lambda = 0^{\circ}$ (bergeser ke kiri) dan $\lambda = 180^{\circ}$

(bergeser ke kanan)

2. Sesar Mendatar

Sesar mendatar atau *strike-slip fault* yaitu sesar yang arah bergerak blok sesar secara horizontal. Sesar ini terbagi dua yaitu:

- a) *Right* lateral yaitu gerak sesar mendatar yang searah dengan jarum jam
- b) *Left* lateral yaitu gerak sesar mendatar yang berlawanan dengan arah jarum jam

(Rahmania et al., 2010)

Gambar.2.5 Struktur geologi sesar (Geological Survey of Iran, 2008)

Dalam menganalisa bentuk sesar dilakukan dengan menganalisa parameter-perameter sesar diantaranya sebagai berikut :

1. *Strike* (ф)

Strike adalah sudut yang digunakan untuk menentukan orientasi *fault* dan diukur searah jarum jam dari arah utara. Sebagai contoh jika *strike* 0^0 atau 180^0 menunjukkan orientasi *fault* pada arah utara-selatan dan jika *strike* 90^0 atau 270^0 menunjukkan orientasi *fault* pada arah timur-barat. Besar strike mulai dari 0^0 sampai dengan 360^0

2. *Dip* (*ð*)

Dip adalah sudut yang menggambarkan kecuraman *fault*. Sudut ini diukur dari permukaan bumi atau pararel dengan bidang sesar. Sudut *dip* antara 0^0 sampai 90^0

3. Slip

Dip dan strike menggambarkan orientasi fault sedangkan kemana arah gerakan fault digambarkan oleh parameter slip. Slip memiliki dua komponen pergeseran yang menginformasikan seberapa jauh batuan bergerak dan arah pergerakannya. Pergeseran slip biasanya hanya beberapa sentimeter untuk gempa kecil dan beberapa meter untuk gempa besar. Sedangkan untuk arah slip dihitung dari permukaan sesar.

(Madlazim, 2011)

Gambar. 2.6 Parameter sesar (Strike, Dip, Slip)

2.6 Seismic Moment Tensor

Gempa bumi disebabkan adanya gerakan suatu sesar dengan karakter gerak tertentu. Model gerak sesar dan karakter sesar penyebab gempa bumi dapat diketahui berdasarkan momen tensor gempa bumi. Momen tensor ini digunakan untuk menggambarkan arah gaya penyebab gempa bumi (Setyowidodo dan Santosa, 2011). Ketika suatu gempa bumi terjadi, gelombang seismik itu disebarkan dari hiposenter yang akan membawa banyak informasi dari mekanisme sumber gempa bumi. Dari gelombang seismik kita dapat menaksir suatu retakan yang mendadak berlangsung sepanjang sesar. Analisa momen tensor seismik pada jarak-jarak lokal, teleseismik dan regional sudah menjadi suatu praktek yang rutin di dalam ilmu gempa. Momen tensor seismik berisi tidak hanya informasi dari suatu ukuran gempa bumi tapi juga informasi suatu keadaan dari tekanan permukaan tektonik dan lokasi suatu zona yang lemah/zona sesar (Suardi, 2006).

Seismik momen tensor memiliki 9 komponen momen tensor namun diantaranya terdapat momen tensor yang selalu simetris sehingga seismik momen tensor hanya memiliki 6 komponen dasar yang independen (Lay et al., 1995). Seismik momen tensor untuk bentuk tiga dimensi dapat di tuliskan sebagai:

Momen tensor yang disimbolkan dengan M_{xy} mempunyai arti komponen gaya bekerja pada bidang normal terhadap sumbu x dan yang bergerak kearah sumbu x begitu pula dengan moment tensor untuk komponen gaya yang lain (Afnimar, 2009). Sifat momen tensor ialah simetris, artinya M_{xy} sama dengan M_{yx} . Nilai komponen M_{xy} tersebut dapat digunakan untuk mengetahui parameter *strike, dip* dan *rake* penyebab gempa bumi. Selanjutnya, momen tensor ini dapat digunakan untuk mengukur kekuatan gempa bumi dengan menggunakan parameter momen seismik (Mo).

Untuk memahami karakteristik gempa dilakukan dengan memodelkan momen tensor gempa bumi (Lay dan Wallace, 1995; Kayal, 2008). Dalam memodelkan momen tensor dapat dilakukan dengan menggunakan metode inversi yang memanfaatkan *waveform* ataupun waktu tiba gelombang P (Kayal, 2008; Sokos dan Zahradnick, 2008). Pada analisis ini, digunakan inversi *waveform* lokal tiga komponen. Parameter-parameter sumber gempa bumi ini diestimasi dengan menggunakan model inversi untuk mencapai *fiiting waveform* tiga komponen dengan baik. Proses inversi yang baik didasarkan hasil pencocokkan data observasi dan data sintetik hasil inversi. Hasil yang baik terjadi saat data observasi dan data sintetik saling tumpang tindih (Sokos & Zahradnik, 2013).

2.7 Inversi Wavefrom Tiga Komponen

Informasi mengenai parameter gempa (hiposenter, kekuatan gempa, momen seimik, momen tensor, orientasi bidang sesar, pola dan luas bidang sesar penting untuk diketahui karena hal ini terkait dengan resiko yang diakibatkan oleh gempa bumi di permukaan. Untuk mendapatkan parameter sumber gempa bumi dapat dilakukan dengan metode inversi *wavefrom* tiga komponen, yakni proses inversi yang melibatkan ketiga komponen dari seismogram meliputi komponen vertikal, komponen utara-selatan dan komponen barat-timur

Metode inversi merupakan salah satu metode geofisika yang kerap kali digunakan untu memprediksi kenampakan dibawah permukaan bumi. Dalam ilmu geofisika, teori inversi secara luas dikembangkan dengan tujuan untuk mengambil kesimpulan tentang interior bumi dari sekumpulan data fisika yang diamati dipermukaan. Pemecahan inversi biasanya dilakukan dengan mencari suatu model optimum dimana respon yang dihasilkan mendekati dengan data pengamatan. Hal ini dilakukan dengan meminimumkan suatu fungsi objektif tertentu yang menggambarkan seberapa dekat data pengamatan dengan respon hasil perhitungan (data sintetik) suatu model (Menke, 1993).

Masalah inversi yang akan diselesaikan adalah menentukan suatu himpunan model parameter yang tidak diketahui yaitu m = [mi] (i=1,2,3,..., N) dari himpunan data hasil pengamatan yaitu d = [di] (i=1,2,3,..., N).

Untuk inversi momen tensor, jenis inversi yang digunakan adalah inversi linier dengan permasalahannya bersifat *over-determined* dimana jumlah data jauh lebih banyak daripada jumlah parameter model. Untuk data dengan parameter suatu fungsi linier dapat dinyatakan dengan persamaan:

d = G m(2.2)

Sehingga didapatkan solusi inversi linier dari parameter model (m) sesuai dengan persamaan:

$$m = [G^{T}G]^{-1}G^{t}d$$
(2.4)
(Masykur, 2011)

Dengan menggunakan inversi momen tensor, proses sumber gempa secara detail dapat didapatkan dari pengamatan data. Momen tensor untuk berbagai jenis gempa bumi dapat ditentukan secara rutin. Juga mencoba dan melakukan *modeling* kesalahan dengan memperlakukan secara hati-hati dan seksama dari data tersebut dapat menghasilkan pengetahuan penting sekitar sumber gempa (Yoshida, 1995).

2.8 Fungsi Green

Fungsi Green merupakan salah satu metode penting dalam fisika, baik dalam tinjauan klasik maupun tinjauan kuantum. Secara umum fungsi Green digunakan untuk mengkonstruksi solusi persamaan diferensial tak homogen.

Cara yang biasa digunakan untuk merumuskan fungsi Green adalah dengan menggunakan transformasi Fourier. Tetapi metode ini kurang sesuai jika diterapkan ke dalam masalah-masalah dalam mekanika kuantum yang kompleks. Cara lainnya adalah dengan menggunakan metode integral lintasan. Integral lintasan merupakan salah satu metode yang banyak digunakan untuk menyelesaikan berbagai problem kuantum. Konsep fungsi Green ini digunakan untuk
menghitung momet tensor dari data *event* gempa. Secara matematis fungsi green dapat dituliskan sebagai:

$$(r,t) = \int_{-\infty}^{\infty} G(r,c,t) f(c,t) d^{3}c....(2.5)$$

Sehingga komponen rekaman seismik dari sebuah sumber gempa dapat dinyatakan dengan :

$$U_k(r,t) = \sum_{i=6}^{6} G_{ki}(r,c,t) * f_i(c,t)....(2.6)$$

dimana: U_k adalah rekaman pergeseran pada komponen ke-k, r adalah posisi *receiver*, c adalah posisi sumber gempa (*centroid*), G_{ki} adalah fungsi Green, $f_i(c, t)$ menyatakan enam komponen *independent* momen tensor. Jika fungsi Green diekspansikan dengan menggunakan deret Taylor dengan posisi sumber c, maka dapat diperoleh persamaan untuk momen tensor yaitu:

$$M_{jk} = \iiint c_k f_n(c,t) d^3 c$$
(2.7)

dimana M_{jk} adalah komponen momen tensor pada arah k dengan bidang normal j (Aki dan Richard, 1980). Dari hasil menggunakan fungsi Green diatas akan didapatkan besar dan arah momen tensor pada masing-masing komponen.

Besarnya momen tensor kemudian digunakan untuk memperoleh parameter sesar diantaranya *strike, dip* dan slip. Adapun secara matematis dapat dituliskan sebagai :

 $M_{xx} = -M_0(\sin\delta.\cos\lambda.\sin2\varphi + \sin2\delta.\cos\lambda.\sin2\varphi)..(2.8)$

$$\begin{split} M_{xy} &= M_{yx} = \\ M_0(\sin\delta.\cos\lambda.\sin 2\varphi + \frac{1}{2}.\sin 2\delta.\cos\lambda.\sin 2\varphi) \\ \dots & (2.9) \\ M_{xz} &= M_{zx} = -M_0(\cos\delta.\cos\lambda.\cos\varphi + \cos 2\delta.\sin\lambda.\sin\varphi). \\ \dots & (2.10) \\ M_{yy} &= M_0(\sin\delta.\cos\lambda.\sin 2\varphi - \sin 2\delta.\sin\lambda.\cos 2\varphi)...(2.11) \\ M_{yz} &= M_{zy} = -M_0(\cos\delta.\cos\lambda.\sin\varphi - \cos 2\delta.\sin\lambda.\cos\varphi). \\ \dots & (2.12) \\ M_{zz} &= M_{zz} = M_0(\sin 2\delta.\sin\lambda...(2.13)) \\ (\text{Thorne et al., 1995}) \end{split}$$

Karena bumi kita berbentuk *spherical* maka komponen momen tensor pada umumnya diubah menjadi komponen radial dan tranversal. Komponen momen tensor dalam koordinat bola adalah r, Θ (t) dan φ (p) yaitu:

$$\begin{array}{ll} Mtt = Mxx & Mpp = Myy & Mrr = Mzz \\ Mtp = -Mxy & Mrt = Mxz & Mrp = -Myz \ \dots \ (2.14) \end{array}$$

Gambar. 2.7 Sembilan komponen momen tensor (http://www.globalcmt.org)

2.9 Mekanisme Fokus

Mekanisme fokus gempa atau focal mechanism adalah istilah yang digunakan untuk menerangkan sifat penjalaran energi gempa bumi yang berpusat pada hiposenter atau fokus gempa. Ketika gempa bumi terjadi maka gelombang seismik akibat gempa bumi akan terpancarkan ke segala arah berbentuk fase gelombang. Fase awal yang tercatat lebih dulu adalah gelombang-P karena memiliki kecepatan yang paling besar dibandingkan dengan gelombang lain. Arah gerakan gelombang-P pertama yang terekam oleh seismogram inilah yang kemudian dimanfaatkan untuk mempelajari mekanisme fokus. Hal ini disebabkan karena gelombang-P yang paling ielas pembacaannya dan mudah untuk teramati. Selain itu juga digunakan polaritas dan amplitudo gelombang S serta inversi tensor dalam penentuaan mekanisme momen fokus (Harmadhoni, 2011). Gelompang-P yang pertama kali terekam oleh seismogram dapat memberikan informasi mengenai arah gaya yang berkerja pada saat gempa bumi dan juga penjalaran gelombang-P ke seismogram sangat bergantung pada mekanisme fokus sumber gempa. Sehingga karena data yang kita punyai tentunya hanya waktu datang gelombang P yang diperoleh dari *event* gempa yang tercacat di seismogram, untuk mengetahui mekanisme fokus dari suatu gempa dapat dilakukan dengan menggunakan metode inversi gelombang-P (Rahmania dkk., 2010).

Solusi dari mekanisme fokus sumber gempa disediakan dalam pengambaran *beach ball*, dari sini kemudian diketahui karakteristik atau jenis sesar apa yang terjadi selama gempa bumi dan arah gaya penyebab gempa bumi dalam solusi moment tensor.

Gambar.2.8 Solusi mekanisme fokus gempa

2.10 Program ISOLA-GUI

Program ISOLA-GUI merupakan program yang menggunakan *tool* Matlab dan bertujuan untuk mempermudah menghitung dengan Fortran dengan cepat seperti persiapan data, perhitungan Fungsi Green dan proses inversi serta hasil

dalam bentuk gambar grafis dari *focal mechanism* (Sokos dan Zahrandik, 2008)

Sokos (2009) menjelaskan bahwa Program ISOLA berdasarkan pada representasi *multiple point - source* dan metode iterasi dekonvolusi seperti yang digunakan oleh kikuchi dan kanamori (1991) untuk data gempa teleseismik. Dan untuk menghitung Fungsi Green menggunakan metode *discrete wavenumber* oleh Bouchon. Metode ini baik digunakan untuk gempa lokal dan regional. Inversi yang digunakan dalam program ini adalah inversi linier dengan *d* merupakan data dan *m* adalah parameter yang dicari.

$$d = Gm$$
(2.15)

yang dapat diselesaikan dengan metode least-square

$$m = (G^{T}G)^{-1}G^{T}d$$
(2.16)

ISOLA-GUI digunakan untuk menjelaskan *focal mechanism* dari momen tensor gempa. Dari proses inversi dapat diketahui besar nilai eigen dan vektor eigennya. vektor eigen memberikan nilai *strike*, *dip*, dan *rake* (*slip*). Nilai eigen memberikan besar momen skalar M₀. Untuk mendapatkan hasil yang bagus, maka dilakukan *fitting* kurva *displacement* untuk data sintetik dengan data lapangan. Dimisalkan, *d* adalah data lapangan dan *s* adalah data sintetik. Kecocokan (*fit*) diantara kedua data diukur dengan *variance reduction* (*varred*) dengan persamaan,

$$varred = 1 - \frac{|d-s|^2}{d^2} \dots (2.17)$$

Nilai 1 menunjukkan kurva data sintetik berimpit dengan kurva data observasi, apa bila kurang dari satu, maka terjadi perbedaan pada kurvanya sehingga akan menghasilkan ketidak cocokan perhitungan antara besar *event* yang ada dengan hasil pengolahan. Ketidakcocokan ini dipengaruhi oleh penentuan jumlah subevent yang akan menghasilkan residual data yang berpengaruh pada nilai *varred*. Selain, jumlah *subevent*, proses *filtering* berpengaruh pada perioda yang akan digunakan oleh program ISOLA-GUI dari data seismogram dalam proses perhitungan inversi (Sokos dan Zahrandik, 2009)

2.11 Geologi Tektonik Jepang

Aktivitas tektonik Jepang dapat dipelajari dari pergerakan empat lempeng tektonik yaitu lempeng Philipina, Eurasia, Amerika Utara dan Pasifik yang mengelilinginya. Aktivitas tektonik di selatan Jepang dipengaruhi oleh interaksi lempeng Philipina dan Eurasia. Dimana lempeng Philipina mensubduksi lempeng Eurasia sehingga terbentuk Kyushu dan Ryukyu *trench*. Aktivitas di barat daya (Kyushu, Shikoku, barat daya Honshu) Jepang dipengaruhi oleh interaksi lempeng Philipina dan lempeng minor Amur. Di sebelah timur laut Jepang (bagian utara Honshu dan Hokkaido) aktivitas tektoniknya dipengaruhi oleh interaksi antara lempeng minor Amur dan Okhotsk dengan lempeng Pasifik.

Salah satu penyebab seringnya intensitas gempa disebabkan Jepang terletak di zona subduksi. Yaitu zona subduksi yang disebabkan oleh penunjaman lempeng pasifik di daratan Jepang sehingga terbentuklah Jepang *trench*. Pertemuan lempeng Amerika Utara dan Eurasia ditengahtengah Honshu dimana lempeng Eurasia bergerak ke arah lempeng Amerika Utara dan mensubduksi daratan Jepang. Dan zona subduksi akibat penunjaman lempeng pasifik terhadap lempeng Philipina membentuk oceanic arc. Sehingga dapat disimpulkan jika Jepang didominasi oleh zona subduksi akibat pertemuan lempeng tektonik.

Gambar.2.9 Tectonic setting Jepang

Pergerakan ke empat lempeng tersebut diantaranya lempeng Pasifik bergerak ke arah barat laut dan mensubduksi di daratan Jepang tepatnya di Hokkaido dan Utara Honshu dan menyebabkan terbentuknya palung Jepang (Japan *trench*). Sedangkan lempeng Philipina bergerak ke arah barat daya membentuk batas lempeng konvergen dengan lempeng Eurasia dan menyebabkan terbentuknya palung Nankai. Sedangkan lempeng Eurasia bergerak ke arah tenggara menuju daratan Jepang. Interaksi yang kuat antara keempat lempeng inilah yang menyebabkan aktivitas seismik dan volkanik tinggi di sekitar Jepang (Zhao et al., 2011).

Gambar 2.10 Lokasi hiposenter gempa Tohoku-Oki ditandai dengan tanda bintang

Salah satu gempa bumi besar yang disebabkan oleh pergerakan lempeng mayor adalah gempa bumi Tohoku-Oki pada 05:46:18 11 Maret 2011 dengan kekuatan 9 SR. Gempa terjadi di dekat kota Miyagi, pesisir Honshu di wiliyah Tohoku Jepang. Hiposenter gempa bumi berada di palung Jepang di samudra Pasifik dekat dengan pesisir Honshu dengan episenter di daerah Tohoku seperti pada gambar 2.10. Karena pusat gempa berada di lepas pantai gempa bumi memicu terjadinya tsunami. Gempa bumi Tohoku-Oki disebabkan oleh bertemu lempeng Pasifik dan lempeng Okhostk bagian dari lempeng Amerika Utara yang membentuk batas lempeng konvergen. Dimana lempeng Pasifik menunjam lempeng Okhostk. Lempeng Pasifik terus menunjam lempeng Okhostk dengan kecepatan 83 mm/tahun. Dikarenakan beban yang diterima lempeng Pasifik terlalu kuat sehingga terjadi patahan (*crakc*) yang mengakibatkan gempa bumi. Sehingga oleh para seismologis gempa bumi ini dijuluki gempa bumi Tohoku-Oki (Hung Chen et all., 2014)

Gambar 2.11 Peta daerah Jepang secara keseluruhan

BAB III METODOLOGI PENELITIAN

3.1 Peralatan Penelitian

Peralatan untuk melakukan penelitian tugas akhir ini adalah data gempa Jepang yang terdiri dari gempa bumi *foreshock* dan *aftershock* pada tanggal 9-11 Maret 2011, model bumi Jepang, *software* ISOLA, *software* hc-plot, *software* MATLAB, dan *software* Winquake.

3.2 Lokasi Penelitian

Lokasi penelitian adalah di negara Jepang. Pusat gempa berada lepas pantai dekat dengan pesisir Honshu tepatnya di sekitar Jepang *trench* yang memiliki aktivitas tektonik yang tinggi. Data gempa yang digunakan adalah data gempa bumi bumi *foreshock* dan *aftershock* pada tanggal 9-11 Maret 2011.

Gambar 3.1 Lokasi penelitian

3.3 Flowchart Penelitian

3.4 Proses Pengolahan Data

Proses pengolahan data pada penelitian ini adalah sebagai berikut

3.3.1 Reformatting

Reformatting adalah proses mengubah format data dari .SEED menjadi .SAC. Proses ini bertujuan agar data dapat dibaca oleh *software* ISOLA dan dilakukan pengolahan selanjutnya. Proses *reformatting* menggunakan *software* Jrdseed dengan menggunakan *command prompt*. Hasil keluaran dari proses *reformatting* adalah data dengan format .SAC yang memiliki 3 komponen yaitu BHE, BHN dan BHZ

3.3.2 Pre-Processing

Tahap *pre-processing* adalah tahap persiapan sebelum dilakukan pengolahan data. Tahapan ini terdiri dari pertama menyiapkan PSLSTA.stn yang terdapat pada folder ISOLA yang berisi informasi mengenai nama stasiun, *lattitude* dan *longitude*. Informasi mengenai *lattitude* dan *longitude* masing-masing stasiun didapatkan dengan menggunakan *software* Winquake. Kemudian yang kedua menyiapkan pzfiles pada folder ISOLA yang disesuaikan dengan *respon file* untuk masing komponen tiap stasiun

3.3.3 Pengolahan Data dengan ISOLA

Pengolahan data menggunakan ISOLA bertujuan untuk mencari momen tensor dari data gempa, menentukan jenis sesar penyebab gempa bumi serta mendapatkan parameter-parameter gempa seperti *strike, dip* dan *rake*. ISOLA merupakan progam yang menggunakan *tool* MATLAB sehingga untuk menjalankan progam ISOLA dilakukan dengan memanggilnya di MATLAB.

🦺 isola	_					
Utilities I	ISOLated Asperities					
Create Pole Zero file						
Backup files	Define Crustal Model	Event info	Green Function Computation			
Sac Import		Station Selection				
GCF Import		Raw Data Preparation	Inversion			
Utilities II			Plot Results			
Inspect Data		Seismic Source Definition				
Try Fiters						
Shift data		About	Exit			

Gambar 3.3 Tampilan software ISOLA

Di dalam progam ISOLA ada beberapa tahapan proses adalah sebagai berikut:

1. Menentukan Model Bumi yang Tepat

Pada tahap ini dilakukan pendefinisian model bumi (*crustal model*) lokasi penelitian yang terdiri dari kedalaman, kecepatan gelompang-P, kecepatan gelombang-S, densitas, Qp dan Qs. Tahapan ini memegang peranan penting sebagai langkah awal karena jika pendefinisian *crustal model* kurang tepat akan berpengaruh pada proses selanjutnya. Oleh karena itu pastikan jika *crustal model* yang digunakan benar.

Gambar 3.4 Model bumi Jepang

Gambar 3.5 Hasil plot model bumi Jepang

2. Event Info

Pada tahap ini mendefinisikan mengenai parameter gempa yang terdiri dari *lattitude*, *longitude*, kedalaman,magnitude dan waktu terjadi gempa.

Gambar 3.6 Tampilan pada tahap penentuan event info

3. Station Selection

Pada tahap ini ditentukan atau dipillih stasiun yang ingin digunakan dalam perhitungan. Untuk progam ISOLA minimal digunakan 3 stasiun untuk keperluan keakuratan hasil yang didapat

Gambar 3.7 Tampilan pada tahap pemilihan stasiun

4. SAC Import

Pada tahap SAC import data gempa dari stasiun yang sudah dipilih diinput ke dalam progam ISOLA. Pada tahap ini data akan dikonversi oleh progam dari format SAC ke format *ASCII*.

Gambar 3.8 Tampilan pada SAC import

5. Raw Data Preparation

Pada tahap ini dilakukan persiapan data gempa yang digunakan. Tahapan ini bisa dikatakan adalah tahap yang terpenting dari serangkaian proses. Karena pada tahap dilakukan pengolahan yang melibatkan seismogram terdiri dari melakukan pengkoreksian instrumen, *origin time alignment* dan *resampling*, melakukan *filter* dengan memilih frekuensi rendah dan tinggi untuk meminimalkan *noise* dan menyiapkan data untuk proses inversi

Gambar 3.9 Tampilan pada tahapan raw data preparation

6. Penentuan Lokasi Sumber Seismik

Tahap pendefinisian sumber seismik dilakukan dengan menentukan awal kedalaman, *range* kedalaman dan jumlah sumber seismik yang akan digunakan untuk proses inversi

Trial sou	rce positions
Sources below epicenter	Sources on a line or plane
Starting depth (km)	Hint: If you want to prepare trial sources on a line or plane press
Depth step (km)	One Source at Hypocenter
No of Sources (< 51)	Lat Lon Depth 39.3743 142.069 49 Hint: Invert for just one source at hypocenter
t: If you want to prepare trial urces under the epicenter fill proper values and press the ton at the top of this box eck the manual for details	Exit

Gambar 3.10 Tampilan pada tahap penentuan lokasi sumber seismik

7. Green Function Computattion

Pada tahap ini dilakukan perhitungan fungsi Green untuk mendapatkan besarnya momen tensor dan parameter sumber gempa yang lain

Gambar 3.11 Tampilan perhitungan fungsi Green

8. Inversion

dilakukan perhitungan fungsi green langkah Setelah selanjutnya melakukan inversi. Proses inversi data wavefrom tiga komponen dilakukan dengan metode iterasi dekonvolusi. Pada tahap ini dilakukan pemilihan frekuensi untuk filter yang disesuaikan dengan filter yang cocok untuk lokasi penelitian, dimana filter yang digunakan adalah 0.005-0.01-0.05-0.055. Parameter-parameter sumber gempa bumi diestimasi dengan menggunakan model inversi untuk mencapai fitting waveform 3 komponen dengan baik. Proses inversi yang baik didasarkan hasil pencocokkan data observasi dan data sintetik yang dihasilkan dalam proses inversi. Hasil yang baik terjadi jika data observasi dan data sintetik saling tumpang tindih

Info ime Length 245.76 to of Sources 26 to of Stations 12	filter cosin	(f1,f2,f3,f4); fla e tapered betw	Iter (Hz) It band-pass betwee een f1, f2 and betwe	n 12, 13 ren 13, 14	Compute Weights	
in Time shifts (sec) -75 ax Time shifts (sec) 75	0.005	0.01	0.05	0.055	Reset Weights	
Type of Inversion	_	(dt)	Time Search	(sec)	i	
⊙ Full MT	loe O	-100	Start	-3	Deselect Stations	
Deviatoric MT	P 0	5	Time Step	0.15		
DC constrained					Run	
© Fixed mechanism	ke O	100	end .	3	Entr	
Number of Subevents						
1	Plot Cor	relation diagram	Plot Scele X	21	Results for Single source	
	Convert to	PNG	Plot Scale Y	18	Course Manhar	
	Use So	urce Number	Beachiball Scale	0.35	Source number 1	
	© Use Da	tance-Depth	Font size	10	Time limits	
	Plot DC	% contours ontours	Contour interval	0.1	1 Source limits 26	
	🖳 Use fix	ed interval	GMT Palette			

Gambar 3.12 Tampilan perhitungan inversi wavefrom

9. Plot Result

Pada tahap ini hasil dari perhitungan fungsi Green ditampilkan dalam bentuk gambar momen tensornya disertai dengan informasi parameter sumber gempa. Untuk melihat kesesuaian hasil dengan kondisi sebenarnya terlihat dari nilai *varr reduction* dimana jika nilai *varr reductin* >0,5 maka dikatakan hasil yang didapatkan sesuai karena memiliki keteitian yang besar yakni >50%. Dan untuk hasil proses inversi ditampilkan hasil fitting antara data observasi dan data sintetik. Hasil *fitting* yang baik adalah mendekati nilai 1 artinya antara data observasi dan data sintetik cocok 100%.

(Soko & Zahradnik, 2009)

3.5 Perhitungan Data

Setelah didapat hasil inversi solusi momen tensor. Kemudian dilakukan perhitungan panjang, lebar, luas sesar dan besarnya *displacemet/ slip* gempa.

3.5.1 Perhitungan Dimensi Sesar

Perhitungan dimensi sesar disesuaikan berdasarkan pola sesar yang ditunjukkan oleh beach ball dari hasil inversi. Adapun perhitungan besar dimensi sesar yang digunakan adalah:

1. Sesar Strike Slip

r i i i i i i i i i i i i i i i i i i i	
$Log L = 0.59 Mw - 2.30 \dots (3)$	3.1)
$Log A = 0.82 Mw - 2.79 \dots$ (3)	3.2)
$Log W = 0.23 Mw-0.49 \dots$ (3)	3.3)
2. Sesar Dip Slip di Continental	
$Log L = 0.50 Mw-1.86 \dots$ (3)	3.4)
$Log A = 0.78 Mw - 2.56 \dots$ (3)	3.5)
$Log W = 0.28 Mw - 0.70 \dots$	3.6)
3. Sesar <i>Dip Slip</i> di Zona Subduksi	
$Log L = 0.55 Mw- 2.19 \dots$ (3)	3.7)
$Log A = 0.86 Mw - 2.82 \dots$	3.8)
$Log W = 0.31 Mw - 0.63 \dots$	3.9)
Dimana : L : panjang sesar (km)	
A : luas sesar (km^2)	
W : lebar sesar (km)	
(Papazachos et al., 20	04)

3.5.2 Perhitungan *Displacement/ Slip* Gempa

Perhitungan *slip* gempa dilakukan dengan menggunakan hubungan displacement dengan momen seismik gempa. Yaitu dengan menggunakan persamaan:

Sehingga besarnya slip yang menyebabkan gempa dapat

(Madlazim, 2011)

"Halaman Ini Sengaaja Dikosongkan"

BAB IV HASIL DAN PEMBAHASAN

4. 1 Analisis Data 4.1.1 Data Penelitian

Dalam penelitian ini telah dilakukan analisis mekanisme fokus gempa bumi Jepang yang terjadi di pesisir Honshu. Gempa utama memiliki kekuatan 9 SR. Pada penelitian ini digunakan data gempa bumi *foreshock* dan *aftershock* pada tanggal 9-11 Maret 2011. Adapun data dan parameter gempa yang digunakan seperti dibawah ini :

Tabel 4.1 Data *event* gempa bumi *foreshock* Tohoku-Oki Jepang

No	Tanggal	Jam	Lattitude	Longitude	Mag	depth	Lokasi
1		04:36:59.00	38.6065	143.2488	6.1	11.31	Miyagi
2	09-03-	12:03:15.48	38.3608	143.1847	4.8	12.90	Miyagi
3	2011	14:24:05.50	38.5558	143.1847	4.7	26.00	Miyagi
4		18:16:14.18	38.2712	142.8788	6.4	28.87	Miyagi
5	10-03-	11:21:05.09	38.5192	143.3075	5.2	23.00	Miyagi
6	2011	21:49:43.85	38.4723	143.2505	4.5	35.00	Miyagi

Tabel 4.2 Data *event* gempa bumi *aftershock* Tohoku-Oki Jepang

No	Tanggal	Jam	Lattitude	Longitude	Mag	depth	Lokasi
1		06:08:53.50	39.8390	142.7815	7.4	31.70	Iwate
2		18:11:24.67	37.1348	142.0460	6.1	16.19	Fukhu
	11.02						sima
3	2011	19:02:56.21	39.2263	143.3052	6.3	37.00	Sanriku
4	2011	19:46:47.65	40.4168	139.0697	6.4	24.00	Aomori
5		20:11:21.02	38.8572	142.7725	6.4	0	Miyagi
6		23:26:46.38	38.9207	142.9055	5.3	30.00	Miyagi

Gambar 4.1. Lokasi stasiun gempa

4.2 Hasil Pengolahan 4.2.1 Hasil Momen Skalar

Dari hasil pengolahan menggunakan program ISOLA-GUI didapatkan besarnya momen skalar (M_o) untuk masingskalar masing event. Momen momen seismik atau merupakan solusi yang menggambarkan besarnya energi yang dilepaskan oleh sumber gempa bumi. Secara teori matematis momen seismik sebanding dengan modulus geser (μ), *slip* antara kedua sesar (D) dan luas bidang sesar (A) (Madlazim,2011). Adapun perhitungan hasil yang didapatkan adalah sebagai berikut :

				Momen Skalar (Nm		
No	Tanggal	Jam	Mag	Perhitungan ISOLA	NIED Jepang	
1	09-03- 2011	04:36:59.00	6.1	8,157.10 ¹⁷	7,56.10 ¹⁷	
2	09-03- 2011	12:03:15.48	4.8	0,992.10 ¹⁶	1,02.10 ¹⁶	
3	09-03- 2011	14:24:05.50	4.7	0,996.10 ¹⁶	1,05.10 ¹⁶	
4	09-03- 2011	18:16:14.18	6.4	1,030.10 ¹⁸	1,10.10 ¹⁸	
5	10-03- 2011	11:21:05.09	5.2	4,937.10 ¹⁶	5,04.10 ¹⁶	
6	10-03- 2011	21:49:43.85	4.5	5.439.10 ¹⁵	5,52.10 ¹⁵	

Tabel 4.3 Hasil perhitungan momen skalar gempa *foreshock* Tohoku-Oki Jepang

Tabel 4.4 Hasil perhitungan momen skalar gempa *aftershock* Tohoku-Oki Jepang

				Momen Ska	lar (Nm)
No	Tanggal	Jam	Mag	Perhitungan	NIED
				ISOLA	Jepang
1	11-03-	06:08:53.50	7.4	$1,100.10^{20}$	$1,40.10^{20}$
	2011				
2	11-03-	18:11:24.67	6.1	$3,460.10^{17}$	3,35.10 ¹⁷
	2011				
3	11-03-	19:02:56.21	6.3	$1,777.10^{18}$	$1,77.10^{18}$
	2011				
4	11-03-	19:46:47.65	6.4	$1,824.10^{18}$	$1,60.10^{18}$
	2011				
5	11-03-	20:11:21.02	6.4	$1,240.10^{18}$	$1,23.10^{18}$
	2011				
6	11-03-	23:26:46.38	5.3	$6,084.10^{16}$	6,89.10 ¹⁶
	2011				

Pada kedua tabel di atas telah disajikan hasil perhitungan dari momen skalar. Momen skalar terbesar terdapat pada event waktu 06:08:53.50 dengan tanggal 11-03-2011 gempa magnitudo gempa 7.4SR yaitu 1,100.10²⁰ Nm sedangkan momen skalar terkecil terdapat pada event gempa tanggal 10-03-2011 waktu 21:49:43.85 dengan magnitudo gempa 4.5SR yaitu 5,439.10¹⁵ Nm. Momen magnitudo atau lebih dikenal dengan magnitudo merupakan parameter yang memberi gambaran seberapa besar kekuatan suatu gempa. Magnitudo mempunyai hubungan dengan momen skalar yaitu sebanding dengan logaritmik dari M_o. Sehingga bisa dipastikan jika Mo semakin besar maka Mw juga akan semakin besar. Selain itu M_o juga mempengaruhi besarnya *slip* dan luas bidang sesar. Semakin besar M_o, *slip* dan luas bidang sesarnya semakin besar pula.

Hasil perhitungan momen skalar dengan menggunakan progam ISOLA GUI (yang dilakukan peneliti) kemudian dibandingkan dengan momen skalar hasil NIED Jepang. Bisa dilihat pada tabel 4.4 dan tabel 4.5 hasil momen skalarnya tidak jauh berbeda. Untuk lebih jelasnya dapat dilihat pada tabel dibawah ini :

No	Momen S	•	
INO	ISOLA	NIED	Δ
1	8,157.10 ¹⁷	7,56.10 ¹⁷	0,597.10 ¹⁷
2	$0,992.10^{16}$	$1,02.10^{16}$	$0,028.10^{16}$
3	0,996.10 ¹⁶	$1,05.10^{16}$	$0,054.10^{16}$
4	$1,030.10^{18}$	$1,10.10^{18}$	$0,070.10^{18}$
5	$4,937.10^{16}$	$5,04.10^{16}$	$0,103.10^{16}$
6	5.439.10 ¹⁵	$5,52.10^{15}$	$0,081.10^{15}$

Tabel 4.5 Perbandingan hasil perhitungan momen skalar data gempa *foreshock* Tohoku-Oki Jepang

	Momen S		
No	ISOLA	NIED	Δ
1	$1,100.10^{20}$	$1,40.10^{20}$	$0,300.10^{20}$
2	$3,460.10^{17}$	$3,35.10^{17}$	$0,110.10^{17}$
3	$1,777.10^{18}$	$1,77.10^{18}$	$0,007.10^{18}$
4	$1,824.10^{18}$	$1,60.10^{18}$	$0.224.10^{18}$
5	$1,240.10^{18}$	$1,23.10^{18}$	$0.010.10^{18}$
6	$6,084.10^{16}$	$6,89.10^{16}$	$0.806.10^{16}$

Tabel 4.6 Perbandingan hasil perhitungan momen skalar data gempa *aftershock* Tohoku-Oki Jepang

4.2.2 Hasil Momen Tensor

Model gerak sesar dan karakter sesar penyebab gempa bumi dapat diketahui berdasarkan momen tensor gempa bumi. Momen tensor ini digunakan untuk menggambarkan arah gaya penyebab gempa bumi (Setyowidodo dan Santosa, 2011). Pemodelan momen tensor pada penelitian ini dilakukan dengan menggunakan metode inversi yang memanfaatkan *waveform* ataupun waktu tiba gelombang P (Kayal, 2008; Sokos dan Zahradnick, 2008).

Momen tensor menggambarkan besar dan arah gaya penyebab gempa bumi dalam enam derajat kebebasan. Pada katalog GMT (Global Momen Tensor) solusi momen tensor tersedia dalam koordinat bola yaitu r, t (Θ) dan p (ϕ). Momen tensor pada umumnya ditulis dengan M_{Rt} yang berarti mempunyai arti komponen gaya yang bergerak kearah sumbu r dan bekerja pada bidang normal terhadap sumbu t. Adapun hasil perhitungan momen tensor yang didapatkan adalah sebagai berikut:

Event	$M_{rr}=M_{33}$	$M_{tt}=M_{11}$	$M_{pp}=M_{22}$	$M_{rt}=M_{31}$	$M_{rp}=M_{32}$	$M_{tp}=M_{12}$	Exp	Var
09_04:	2.140	0.449	-2.639	4.400	6.371	-0.832	17	0.74
36:59								
09_12:0	6.087	-3.027	-3.060	-7.360	-3.046	-2.686	15	0.71
3:15.48								
09_14:2	3.682	-0.864	-2.818	-2.649	6.500	-6.243	15	0.69
4:05.50								
09_18:1	5.294	0.800	-6.093	3.838	7.213	-2.548	17	0.94
6:14.8								
10_11:2	2.159	0.778	-2.936	1.806	3.459	-1.485	16	0.88
1_05.09								
10_21:4	2.223	0.456	-2.679	3.186	3.386	-1.343	15	0.81
9:43.85								

Tabel 4.7 Momen tensor untuk gempa *foreshock* Tohoku-Oki Jepang

Tabel 4.8 Momen tensor untuk gempa *aftershock* Tohoku-Oki Jepang

Event	$M_{rr}=M_{33}$	$M_{tt}=M_{11}$	$M_{pp}=M_{22}$	$M_{rt}=M_{31}$	$M_{rp}=M_{32}$	$M_{tp}=M_{12}$	Exp	Var
11_06:0	1.611	1.166	-2.777	5.561	9.119	1.039	19	0.6
8:53.50								
11_18:1	-1.730	0.209	1.521	-0.299	2.859	-1.016	17	0.53
1:24.67								
11_19:0	-1.408	1.192	0.217	0.959	0.670	0.253	18	0.91
2:56.21								
11_19:4	0.088	1.173	-1.261	-0.366	0.788	1.043	18	0.87
6:47.65								
11_20:1	-1.226	0.653	0.573	-0.057	0.364	-0.522	18	0.8
1:21.02								
11_23:2	-5.389	4.449	0.940	-0.289	1.548	-2.705	16	0.61
6:46.38								

4.2.3. Hasil Mekanisme Fokus Gempa

Solusi dari momen tensor gempa bumi selalu menyediakan dua bidang patahan dimana satu bidang merupakan bidang patahan (*fault plane*) dan satu bidang lainnya merupakan bidang bantu (*auxiliary plane*). Dan kedua bidang ini saling tegak lurus satu sama lain (Steith, 2003).

Event	Plane I			Plane II		
	Strike	Dip	Rake	Strike	Dip	Rake
09_04:36:59.00	169	11	46	34	82	98
09_12:03:15.48	242	72	100	33	20	62
09_14:24:05.50	2	74	47	255	45	157
09_18:16:14.18	185	19	69	27	72	97
10_11:21:05.09	183	19	66	28	73	98
10_21:49:43.85	173	20	44	41	76	105

Tabel 4.9 Bidang sesar dan *auxiliary plane* untuk data gempa *foreshock*

Tabel 4.10 Bidang sesar dan *auxiliary plane* untuk data gempa *aftershock*

Event	Plane I			Plane II		
	Strike	Dip	Rake	Strike	Dip	Rake
11_06:08:53.50	136	12	16	29	87	102
11_18:11:24.67	311	20	-128	170	74	-77
11_19:02:56.21	243	66	-99	85	26	-70
11_19:46:47.65	207	72	-166	113	77	-19
11_20:11:21.02	304	39	-104	142	53	-79
11_23:26:46.38	286	42	-110	131	51	-73

Dari hasil solusi inversi momen tensor yaitu berupa nilai *strike, dip* dan *rake* digunakan untuk menganalisa bidang patahan dengan menggunakan hc-plot. Dari sini dapat dibedakan mana yang termasuk bidang patahan gempa yang sebenarnya. Adapun hasil didapat adalah berikut ini:

Gambar 4.2. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 09/03/2011 04:36:59.00

Pada gempa foreshock yang terjadi pada tanggal 09/03/2011 pada jam 04:36:59.00. Dari hasil inversi momen tensor menunjukkan bahwa pola bidang sesar yang terbentuk adalah jenis sesar *dip slip-reverse* (dapat dilihat pada gambar 4.1). Pola sesar yang terbentuk memiliki kemiripan dengan hasil *beach ball* NIED namun hasil zona dilatasi (warna putih) di bagian kiri beach ball lebih sedikit jika dibandingkan dengan hasil NIED hal ini disebabkan oleh perbedaan pemakaian stasiun dalam pengolahan data dimana peneliti menggunakan sedangkan 12 stasiun. NIED hanva menggunakan 3 stasiun sehingga hal ini akan mempengaruhi polaritas gelombang-P yang digunakan dan mempengaruhi zona dilatasi dan kompresi pada beach ball. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 11.69 km sedangkan dengan bidang kedua sebesar 2.27 km, sehingga bidang patahannya yang berwarna merah dan auxiliary plane-nya berwarna hijau. Jika dianalisa dari parameter sesar yaitu dengan nilai strike 34, dip 82 dan rake 98, menunjukkan jika arah pergerakan sesar ada pada arah 34[°] dari arah utara dengan kemiringan patahan 82[°] terlihat pada nodal berwarna hijau dan rake bernilai 98⁰ (positif) menunjukkan dominasi sesar dip slip-reverse fault.

Gambar 4.3. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (hijau) (c). Bentuk beach ball dari NIED Gempa 09/03/2011 12:03:59.00

Pada gempa *foreshock* yang terjadi pada tanggal 09/03/2011 pada jam 12:03:59.00. Dari hasil inversi momen tensor menunjukkan bahwa pola bidang sesar yang terbentuk adalah sesar oblique didominasi dengan sesar dip slip reverse dengan campuran sesar strike slip di bagian atas beach ball (dapat dilihat pada gambar 4.2). Hasil beach ball ISOLA mempunyai kemiripan dengan beach ball hasil NIED yaitu pola sesar oblique. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 1.92 km sedangkan dengan bidang kedua sebesar 5.90 km, sehingga bidang patahannya yang berwarna hijau dan auxiliary plane-nya berwarna merah. Jika dianalisa dari parameter sesar vaitu dengan nilai strike 242, dip 72 dan rake 100, menunjukkan jika arah pergerakan sesar ada pada arah 242° yaitu pada barat daya dengan kemiringan patahan 72° terlihat pada nodal berwarana hijau dan *rake* bernilai 100° (positif) menunjukkan dominasi sesar dip slip-reverse fault. Sedangkan pada arah timur laut terbentuk pola sesar strike slip (mendatar).

Gambar 4.4. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (hijau) (c). Bentuk beach ball dari NIED Gempa 09/03/201114:24:05.50

Pada gempa foreshock yang terjadi pada tanggal 09/03/2011 pada jam 14:24:05.50. Dari hasil inversi momen tensor menunjukkan bahwa pola bidang sesar yang terbentuk adalah sesar *oblique* yang dominasi sesar *dip-slip* (sesar naik) dengan sedikit sesar strike-slip (dapat dilihat pada gambar 4.3). *Beach ball* vang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk yang sama dengan beach ball yang dihasilkan dari situs NIED dengan varian reduksi 0.69. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 5.52 km sedangkan dengan bidang kedua sebesar 13.53 km, sehingga bidang patahannya yang berwarna hijau dan auxiliary plane-nya berwarna merah. Jika dianalisa dengan parameter sesar yang dihasilkan dari proses inversi didapat strike 2 dip 74 rake 47. Hasil ini menunjukkan jika bidang patahan berada pada arah 2^{0} dari utara (lihat gambar 4.4 b) yang memiliki kecuraman 74[°] dan nilai *rake* 47 (positif) bersesuaian dengan jenis sesar dip slip-reverse dimana patahan yang terjadi adalah patahan naik dan strike slip di bagian timur laut beach ball.

Gambar 4.5. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 09/03/2011 18:16:14.18

Pada gempa *foreshock* yang terjadi pada tanggal 09/03/2011 pada jam 18:16:14.18. Dari hasil inversi momen tensor menunjukkan bahwa pola bidang sesar yang terbentuk adalah sesar reverse (naik) (dapat dilihat pada gambar 4.4). Beach ball yang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk yang sama dengan beach ball yang dihasilkan dari situs NIED dimana kedua menunjukkan pola sesar yang terbentuk adalah sesar naik dengan varian reduksi 0.94. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 3.87 km sedangkan dengan bidang kedua sebesar 1.78 km, sehingga bidang patahannya yang berwarna merah dan auxiliary plane-nya berwarna hijau. Jika dianalisa dari parameter sesar yaitu dengan nilai strike 27, dip 19 dan rake 97, menunjukkan jika arah pergerakan sesar ada pada arah 27° yaitu pada arah 27° dari utara dengan kemiringan patahan 19° terlihat pada nodal berwarana merah dan *rake* bernilai 97° (positif) menunjukkan dominasi reverse fault dimana bidang patahannya naik keatas. Dari pola *beach ball* yang dihasilkan bisa dilihat jika gempa foreshock yang terjadi disebabkan oleh dua lempang besar yang bertemu sama lain atau bisa disebut dengan mega thrust earthquake.

Gambar 4.6. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 10/03/2011 11:21:05.09

Pada gempa foreshock yang terjadi pada tanggal 10/03/2011 pada jam 11:21:05.90. Dari hasil inversi momen tensor menunjukkan bahwa pola bidang sesar yang terbentuk adalah sesar reverse (naik) (dapat dilihat pada gambar 4.6). Beach ball yang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk yang sama dengan beach ball yang dihasilkan dari situs NIED dimana kedua menunjukkan pola sesar yang terbentuk adalah sesar naik dengan varian reduksi 0.88. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 4.00 km sedangkan dengan bidang kedua sebesar 1.66 km, sehingga bidang patahannya yang berwarna merah dan *auxiliary plane*-nya berwarna hijau. Jika dianalisa dari parameter sesar yaitu dengan nilai strike 28, dip 73 dan rake 98, menunjukkan jika arah pergerakan sesar ada pada arah 28° yaitu pada arah 28° dari utara dengan kemiringan patahan 73° terlihat pada nodal berwarana merah dan rake bernilai 98° (positif) bersesuaian dengan pola sesar yang dihasilkan yaitu reverse fault dimana bidang patahannya naik keatas. Dari pola beach ball yang dihasilkan bisa dilihat jika gempa foreshock yang terjadi disebabkan oleh dua lempang besar yang bertemu sama lain atau bisa disebut dengan mega thrust earthquake.

Gambar 4.7. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 10/03/2011 21:49:43.85

Pada gempa foreshock Miyagi yang terjadi pada tanggal 10/03/2011 pada jam 21:49:43.85. Dari hasil inversi momen tensor menunjukkan bahwa pola bidang sesar yang terbentuk adalah sesar oblique yang didominasi oleh sesar dipslip berupa sesar naik dan sedikit sesar strike-slip di bagian selatan beach ball (dapat dilihat pada gambar 4.7). Beach ball yang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk sedikit berbeda dari situs NIED. Dari situs NIED didapatkan hasil pola sesar naik sempurna sedangkan dari perhitungan ISOLA yang didapatkan sesar oblique. Hal ini dikarenakan perbedaan penggunaan jumlah stasiun yang digunakan. Sehingga first motion dari gelombang P yang digunakan dalam perhitungan juga akan berbeda dan ini akan berpengaruh pada beach ball yang dihasilkan. Untuk hasil varian reduksi yang didapatkan adalah 0.88, hasil ini terbilang bagus, sehingga *beach ball* yang didapat sudah sesuai dengan kondisi geologi yang sebenarnya. Sedangkan dari analisa hcplot diketahui jarak antara hiposenter dengan bidang pertama sebesar 20.82 km sedangkan dengan bidang kedua sebesar 5.49 km, sehingga bidang patahannya yang berwarna merah dan auxiliary plane-nya berwarna hijau. Jika dianalisa dari parameter sesar vaitu strike 41, dip 76 dan rake 105 bidang patahan berada pada arah 41° pada arah utara hampir mendekati arah timur laut dengan kecuraman 76[°] dengan nilai *rake* positif yang bersesuaian dengan pola sesar yang terbentuk.

Gambar 4.8. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 11/03/2011 06:08:53.50

Pada gempa aftershock di Iwate yang terjadi pada tanggal 11/03/2011 pada jam 06:08:53.50. Dari hasil inversi momen tensor menunjukkan bahwa pola bidang sesar yang terbentuk adalah dominasi sesar reverse (naik) dan sedikit sekali sesar strike-slip di bagian selatan (dapat dilihat pada gambar 4.8). Beach ball yang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk yang sama dengan beach ball vang dihasilkan dari situs NIED dimana kedua menunjukkan pola sesar yang terbentuk adalah dominasi sesar naik. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 5.23 km sedangkan dengan bidang kedua sebesar 0.40 km, sehingga bidang patahannya yang berwarna merah dan auxiliary plane-nya berwarna hijau. Jika dianalisa dari parameter sesar yaitu dengan nilai strike 29, dip 87 dan rake 102, menunjukkan jika arah pergerakan sesar ada pada arah 29° yaitu pada arah 29° dari utara dengan kemiringan patahan 87° terlihat pada nodal berwarana merah dan *rake* bernilai 102⁰ (positif) bersesuaian dengan pola sesar yang dihasilkan yaitu dominasi reverse fault dimana bidang patahannya naik keatas. Dari pola *beach ball* yang dihasilkan bisa dilihat jika gempa *aftershock* yang terjadi disebabkan oleh dua lempang besar yang bertemu sama lain atau bisa disebut dengan *mega thrust earthquake*.

Gambar 4.9. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 11/03/2011 18:11:24.67

Pada gempa aftershock di Fukushikma yang terjadi pada tanggal 11/03/2011 pada jam 18:11:24.67. Pola bidang sesar yang terbentuk adalah sesar oblique yang didominasi sesar dip-slip jenis sesar normal dengan sedikit strike slip di bagian utara. (dapat dilihat pada gambar 4.9). Beach ball yang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk yang sama dengan beach ball yang dihasilkan dari situs NIED dimana kedua menunjukkan pola sesar yang terbentuk adalah dominasi sesar normal. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 2.81 km sedangkan dengan bidang kedua sebesar 2.43 km, sehingga bidang patahannya yang berwarna merah dan auxiliary plane-nya berwarna hijau. Jika dianalisa dari parameter sesar yaitu dengan nilai strike 170 dip 74 dan rake -77, menunjukkan jika arah pergerakan sesar ada pada arah 170° dari utara dan 10° dari selatan dengan kemiringan patahan 74[°] terlihat pada nodal berwarana merah dan *rake* bernilai -
77[°] (negatif) bersesuaian dengan pola sesar yang dihasilkan yaitu dominasi sesar *dip slip-normal* dimana bidang patahannya naik turun ke bawah disertai bidang patahan yang bergeser mendatar. Sesar ini juga menunjukkan jika gempa yang terjadi disebabkan oleh gempa tektonik berukuran mayor.

Gambar 4.10. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (hijau) (c). Bentuk beach ball dari NIED Gempa 11/03/2011

19:02:56.21

Pada gempa *aftershock* di Sanriku yang terjadi pada tanggal 11/03/2011 pada jam 19:02:56.21. Pola bidang sesar yang terbentuk adalah sesar normal dan sesar *strike slip* di ujung *beach ball* dengan orientasi sesar pada arah barat-timur (dapat dilihat pada gambar 4.10). *Beach ball* yang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk yang sama dengan *beach ball* yang dihasilkan dari situs NIED dimana kedua menunjukkan pola sesar yang terbentuk adalah sesar normal dengan varian reduksi 0.91. Sedangkan dari analisa hcplot diketahui jarak antara hiposenter dengan bidang pertama sebesar 8.08 km sedangkan dengan bidang kedua sebesar 17.16 km, sehingga bidang patahannya yang berwarna hijau dan *auxiliary plane*-nya berwarna merah. Jika dianalisa dari parameter sesar yaitu dengan nilai *strike* 243, *dip* 66 dan *rake* -99, menunjukkan jika arah pergerakan sesar ada pada arah 243° dari utara atau terletak 12° pada arah barat daya dengan kemiringan patahan 66° terlihat pada nodal berwarana hijau dan *rake* bernilai -99° (negatif) bersesuaian dengan pola sesar yang dihasilkan yaitu sesar *normal* dimana bidang patahannya yaitu nodal merah bergerak ke bawah.

Gambar 4.11. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (hijau) (c). Bentuk beach ball dari NIED Gempa 11/03/2011 19:46:47.65

Pada gempa aftershock di Aomori yang terjadi pada tanggal 11/03/2011 pada jam 19:46:47.65. Pola bidang sesar yang terbentuk adalah sesar strike-slip (mendatar) murni (dapat dilihat pada gambar 4.11). Beach ball yang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk yang sama dengan beach ball yang dihasilkan dari situs NIED dimana kedua menunjukkan pola sesar yang terbentuk adalah sesar strike-slip dengan varian reduksi 0.87. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 6.18 km sedangkan dengan bidang kedua sebesar 4.53 km, sehingga bidang patahannya yang berwarna merah dan *auxiliary plane*-nya berwarna hijau. Jika dianalisa dari parameter sesar yaitu dengan nilai strike 113, dip 77 dan rake -19, menunjukkan jika arah pergerakan sesar ada pada arah 113⁰ dari utara hampir mendekati arah tenggara dengan kemiringan patahan 77^{0} terlihat pada nodal berwarna merah dan *rake* bernilai -19^0 (negatif) bersesuaian dengan pola sesar yang dihasilkan yaitu sesar *strike slip* dimana bidang patahannya satu dengan yang lain saling bergeser satu sama lain atau disebut sesar mendatar.

Gambar 4.12. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 11/03/2011 20:11:21.02

Pada gempa aftershock di Aomori yang terjadi pada tanggal 11/03/2011 pada jam 20:11:21.02. Pola bidang sesar yang terbentuk adalah sesar normal (dapat dilihat pada gambar 4.12). Beach ball yang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk yang sama dengan beach ball yang dihasilkan dari situs NIED dimana kedua menunjukkan pola sesar yang terbentuk adalah sesar normal dengan varian reduksi 0.8. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 4.82 km sedangkan dengan bidang kedua sebesar 3.62 km, sehingga bidang patahannya yang berwarna merah dan auxiliary planenya berwarna hijau. Jika dianalisa dari parameter sesar yaitu dengan nilai strike 142, dip 53 dan rake -79, menunjukkan jika arah pergerakan sesar ada pada arah 142° dari utara dengan kemiringan patahan 74[°] terlihat pada nodal berwarana merah dan rake bernilai -79⁰ (negatif) bersesuaian dengan pola sesar yang dihasilkan yaitu pola sesar normal dimana bidang patahannya naik bergerak ke bawah.

Gambar 4.13. (a). Bentuk *beach ball* (b). Orientasi bidang patahan (merah) (c). Bentuk beach ball dari NIED Gempa 11/03/2011 23:26:46.38

Pada gempa aftershock di Miyagi yang terjadi pada tanggal 11/03/2011 pada jam 23:26:46.38. Pola bidang sesar vang terbentuk adalah oblique yang didominasi sesar dip-slip jenis sesar normal dengan sedikit sesar strike-slip (dapat dilihat pada gambar 4.13). Beach ball yang didapatkan dari hasil perhitungan ISOLA mempunyai bentuk yang sama dengan beach ball yang dihasilkan dari situs NIED dimana kedua menunjukkan pola sesar yang terbentuk adalah sesar oblique dengan varian reduksi 0.81. Sedangkan dari analisa hc-plot diketahui jarak antara hiposenter dengan bidang pertama sebesar 17.10 km sedangkan dengan bidang kedua sebesar 14.97 km, sehingga bidang patahannya yang berwarna merah dan auxiliary plane-nya berwarna merah. Jika dianalisa dari parameter sesar vaitu dengan nilai strike 131, dip 51 dan rake -73, menunjukkan jika arah pergerakan sesar ada pada arah 131[°] dari utara dan 49[°] dari selatan dengan kemiringan patahan 51^{0} terlihat pada nodal berwarana merah dan *rake* bernilai -73[°] (negatif) bersesuaian dengan pola sesar yang dihasilkan yaitu dominasi sesar *dip slip-normal* dimana bidang patahannya naik turun ke bawah disertai bidang patahan yang bergeser mendatar.

4.2.4. Hasil Slip Sesar Gempa

Dari besar magnitudo *event* gempa yang ada di kepulauan Honshu Jepang didapatkan besar *slip* untuk masing-masingnya *event* gempa. Besarnya *slip* merepresentasikan dislokasi atau pergeseran bidang patahan yang terjadi selama gempa bumi berlangsung. Adapun besarnya *slip* adalah sebagai berikut,

Tabel 4.11 Besar *slip* sesar untuk gempa bumi *foreshock* Jepang

No	origin time	Mw (SR)	Kedalaman gempa (km)	L (km)	W (km)	A (km^2)	S(m)
1	09_04:36:59.00	6.1	11.31	14.622	7.211	266.686	7.38
2	09_12:03:15.48	4.8	12.9	2.818	6.714	20.324	1.18
3	09_14:24:05.50	4.7	26	2.483	22.594	16.672	0.93
4	09:18:16:14.18	6.4	28.87	21.380	6.714	483.059	3.32
5	10_11:21:05.09	5.2	23	4.677	5.821	44.875	2.67
6	10_21:49:43.85	4.5	35	1.928	0.234	11.220	0.76

Tabel 4.12 Besar *slip* sesar untuk gempa bumi *aftershock* Jepang

No	origin time	Mw	Kedalaman gempa (km)	L (km)	W (km)	A (km ²)	S (m)
1	11_06:08:53.5	7.4	31.7	75.858	46.132	3499.452	49.38
2	11_18:11:24.67	6.1	16.19	14.622	18.239	266.686	3.15
3	11_19:02:56.21	6.3	37	18.836	21.038	396.278	7.04
4	11_19:46:47.65	6.4	24	29.923	9.594	287.078	15.46
5	11_20:11:21.02	6.4	0	21.380	22.594	483.059	11.32
6	11_23:26:46.38	5.3	30	5.309	10.304	54.702	1.74

4.3 Pembahasan

Dalam penelitian ini telah dilakukan analisa mengenai gempa bumi Jepang yang terjadi di pesisir Honshu bagian timur laut Jepang. Pusat gempa bumi ini berada di lepas pantai dengan gempa utama yang memiliki kekuatan 9 SR. Pada penelitian ini digunakan data gempa bumi *foreshock* dan *aftershock* pada tanggal 9-11 Maret 2011. Gempa bumi *foreshock* adalah gempa bumi yang terjadi sebelum terjadi gempa bumi utama yang disebut *mainshock*, gempa bumi *foreshock* ini terjadi disekitar pusat gempa utama. Sedangkan gempa bumi *aftershock* adalah gempa bumi yang terjadi setelah gempa bumi utama yang masih memiliki kekuatan gempa yang tinggi dan terjadi disekitar pusat gempa. Dari data gempa inilah kemudian digunakan untuk mendapatkan besarnya momen tensor gempa.

4.3.1 Momen Tensor

Momen tensor digunakan untuk menggambarkan arah gaya penyebab gempa bumi. Ketika suatu gempa bumi terjadi, gelombang seismik itu disebarkan dari hiposenter yang akan membawa banyak informasi dari mekanisme sumber gempa bumi. Dari gelombang seismik kita dapat menaksir suatu retakkan yang mendadak berlangsung sepanjang sesar. Solusi dari momen tensor pada umumnya digambarkan dengan beach ball, dari sini dapat diketahui jenis sesar penyebab gempa bumi. Untuk mendapatkan solusi momen tensor dari gempa bumi yang terjadi digunakan analisa *wavefrom* tiga komponen (NS, EW, dan vertikal). Parameter-parameter sumber gempa bumi yang belum diketahui, diestimasi dengan menggunakan model inversi. Proses inversi dilakukan dengan menggunakan metode iterasi dekonvolusi untuk mencapai fitting wavefrom tiga komponen dengan baik. Proses inversi yang baik didasarkan pada hasil pencocokan data seismogram dan data

sintetik dari hasil inversi. Hasil yang baik terjadi saat data observasi dan data sintetik saling tumpang tindih

Gambar 4.14 Hasil inversi *wavefrom* antara data sintetik dan data observasi gempa bumi pada tanggal 11 Maret 2011 19:02:56

Data seismogram sintetik didapatkan dari hasil perhitungan menggunakan fungsi Green yang kemudian dilakukan proses inversi untuk dibandingkan dengan data seismogram observasi (dapat dilihat pada gambar 4.15). Gambar tersebut merupakan hasil dari proses inversi data seismogram dan data sintetik. Kurva warna merah adalah kurva hasil estimasi menggunakan fungsi Green sedangkan kurva hitam merupakan kurva data seismogram. Bisa dilihat kurva hitam dan kurva merah saling tumpang tindih dengan nilai korelasi diantara keduanya 0.78-0.96 (pojok kanan atas). Korelasi ini terbilang baik jika dilihat dari *fitting* kurva. Korelasi antara data seismogram dan sintetik semakin baik jika mendekati nilai 1. Ini berarti antara data seismogram dan sintetik memilki kecocokan yang sangat baik.

Dari hasil inversi momen tensor didapatkan hasil beach ball seperti pada gambar 4.16. Dari hasil inversi gempa

pada 11/02/2011 19:02:56.21 didapatkan letak centroid momen tensor (CMT) dari gempa berada pada kedalaman 18 km berjarak 19 km dari hiposenter gempa. CMT terjadi setelah 2.85 sekon terjadinya gempa di hiposenter. Prosentase DC menggambarkan sesar yang menyebabkan terjadinya gempa bumi adalah sistem douple couple yaitu kopel ganda jika nilai DC lebih dari 75%. Sehingga ini berarti sesar yang menyebabkan gempa bumi adalah tipe sesar geser dengan medium isotropik. (Madlazim, 2011). Prosentase double *couple* (DC) yang dihasilkan adalah 76.6%. Berarti sesar yang menyebabkan gempa bumi adalah sesar geser dengan dominasi normal dip slip. Hal ini sesuai dengan penelitian vang dilakukan sebelumnya mengenai gempa Tohoku-Oki dinyatakan jika berdasarkan solusi momen tensor yang didapatkan gempa bumi Tohoku-Oki disebabkan oleh gaya double couple (Ritsema et al., 2012).

Sedangkan untuk besar dan arah momen tensor disediakan dalam koordinat bola yaitu r, t (theta), dan p(phi). Didapatkan $M_{rr}=M_{zz}=-1.408.10^{18}$ Nm, $M_{tt}=M_{xx}=1.192.10^{18}$ Nm, $M_{pp}=M_{yy}=0.217.10^{18}$ Nm, $M_{rt}=M_{xz}==0.959.10^{18}$ Nm, Mrp=- $M_{yz}=0.670.10^{18}$ Nm, dan $M_{tp}=-M_{xy}=0.253.10^{18}$ Nm. Momen tensor menggambarkan besar dan arah gaya yang bekerja pada pusat sumber gempa bumi. Dari hasil yang didapatkan bisa dilihat jika gaya terbesar ada pada arah theta atau arah x yang bersesuaian dengan arah utara.

Gambar 4.15 Hasil solusi momen tensor untuk gempa bumi pada tanggal 11 Maret 2011 19:02:56

Parameter kualitas hasil inversi yang didapatkan dilihat dari hasil *fitting* gelombang tiap seismogram dan nilai varian reduksi (VR). Secara matematis perhitungan VR melibatkan *wavefrom* sintetik dan *wavefrom* seismogram. Sehingga dalam penentuan hasil yang didapat diperhitungkan antara nilai VR dan *fitting* kurvanya dimana satu sama lain tidak bisa berdiri sendiri. Semakin tinggi nilai VR maka semakin tinggi pula tingkat korelasinya (Countant, 1989) Dan dari hasil inversi momen tensor didapat VR 0.91 atau 91%. Sehingga kualitas dari inversi sudah terbilang memenuhi syarat kevalidan.

Hasil inversi momen tensor juga menghasilkan nilai *strike, dip, dan rake* untuk dua nodal. Satu nodal merupakan bidang patahan dimana hiposenter terletak di bidang tersebut

dan yang lain adalah *auxliary plane* (bidang bantu) yang saling tegak lurus satu sama lain. *Strike* adalah sudut yang menyatakan arah lintasan garis sesar dipermukaan yang diukur dari arah utara. *Dip* menyatakan sudut kemiringan sesar dikur dari permukaan bumi. Sedangkan *rake* adalah sudut yang menggambarkan arah pergerakan *slip*.

Gambar. 4.16 Mekanisme fokus gempa. Warna hitam merepresentasikan daerah kompresi dan warna putih merepresentasikan daerah dilatasi

Hasil penelitian ini mempunyai beberapa kelebihan jika dibandingkan dengan hasil solusi momen tensor dari NIED (*National Institute of Earth Science and Disaster Prevention*). Dalam penelitian ini dalam proses inversinya melibatkan lebih dari 3 stasium gempa sedangkan pada NIED hanya menggunakan 3 stasiun gempa saja sehingga solusi momen tensor yang didapat lebih valid. Selain itu dalam pengolahan dengan menggunakan ISOLA melibatkan 3 komponen seismogram sekaligus dari gelombang-P maupun gelombang-S. Metode inversi dengan menggunakan *wavefrom* tiga komponen memiliki keunggulan jika dibandingkan dengan menggunakan data waktu tempuh, karena dalam metode ini waktu *origin* dan kedalaman *centroid* terkait erat satu sama lain.

4.3.2 Mekanisme Fokus Gempa

Mekanisme fokus direpresentasikan dengan menggunakan beach ball. Dari hasil inversi didapatkan pola sesar pada gempa bumi Jepang adalah *dip slip normal,dip slip* reverse, dan strike slip. Bentuk sesar ini sangat dipengaruhi oleh kondisi geologi Jepang. Jepang didominasi oleh zona subduksi yang disebabkan oleh batas lempeng konvergen. Zona subduksi menyebabkan terbentuknya beberapa palung laut diantaranya Jepang trench, Nankai through, Kyushu trench dan Ryukyu trench (Zhao et al., 2011). Gempa Tohoku-Oki sendiri merupakan gempa bumi yang disebabkan karena penunjaman lempeng Pasifik dengan lempeng Okhost yang merupakan bagian dari lempeng Amerika Utara (Apel et al., 2006). Gempa bumi ini terjadi di sekitar Jepang trench yang merupakan gempa bumi besar dengan kekuatan 9 SR yang diawali dengan foreshock dan diikuti beberapa gempa bumi aftershock yang terjadi 500 km dari pesisir timur Honshu.

Gambar. 4.17 Subduksi lempeng Pasifik dan lempeng Amerika Utara

Gempa bumi *foreshock* dengan magnitudo relatif besar teridentifikasi terjadi mulai pada tanggal 9 Maret 2011

yang terjadi di daerah sekitar pesisir Honshu seperti Miyagi, Iwate, Fukhusima, Ibaraki dan Hokkaido. Namun paling banyak terjadi di pesisir Miyagi (Nettel et al., 2011). Pada penelitian ini digunakan data gempa *foreshock* dengan magnitudo di atas 4.5 SR mulai dari 9 Maret 2011 04:36:59.00 sampai 10 Maret 201121:49:43.8. Lokasi gempa *foreshock* ada pada zona subduksi yang sama dengan gempa utama yaitu di pesisir Miyagi (Tajima et al., 2013).

Dari hasil inversi diketahui jika pola sesar pada gempa bumi foreshock didominasi oleh sesar naik (reverse fault). Pola sesar naik mengindikasikan adanya interaksi antara lempeng tektonik. Hal ini bersesuaian dengan letak pesisir Miyagi yang berdekatan dengan zona subduksi lempeng Pasifik. Dapat dilihat pada gambar 4.18 jika pola sesar naik disebabkan oleh lempeng Pasifik yang bergerak ke arah barat laut mensubduksi daratan Jepang hal ini terlihat dari bentuk beach ball yang didapatkan. Dimana zona dilatasi (putih) menekan zona kompresi mengarah pada arah barat laut. Selain itu pembentukan pola sesar naik juga dipengaruhi oleh pergerakan lempeng Eurasia ke arah tenggara dan mensubduksi daratan Jepang. Hal ini di perkuat dengan penelitian sebelumnya juga dinyatakan jika gempa bumi Tohoku-Oki disebabkan oleh sesar naik disekitar Jepang trench (Matsumoto, 2012). Pada event 2 dan 3 teridentifikasi pola sesar oblique dengan dominasi dip slip reverse, dimana bidang patahan bergerak naik bersamaan dengan bergeser mendatar. Hal ini dikarenakan terjadi sedikit pergeseran lempeng setelah terjadi guncangan akibat gempa foreshock dengan magnitudo 6.1 SR.

Sedangkan untuk gempa bumi *aftershock* digunakan data dengan kekuatan gempa lebih dari 5 SR. Hasil inversi momen tensor dari *event* gempa bumi *aftershock* Tohoku-Oki berbeda dengan gempa bumi *mainshock*. Pola sesar lebih didominasi oleh sesar normal yaitu di daerah Fukushima,

Sanriku dan Miyagi, yang berlokasi di dekat daratan Jepang. Pola sesar normal yang terbentuk dipengaruhi oleh adanya pergerakan lempeng tektonik. Terbentuknya sesar normal pada gempa bumi aftershock dikarenakan lokasi gempa berdekatan dengan lokasi gempa bumi utama, sehingga pembentukan sesar ini dipengaruhi oleh adanya slip maksimum pada saat gempa bumi utama terjadi yang cukup besar yang mengakibatkan terjadinya perubahan pergerakan lempeng yang cukup significant. Pada event gempa ketiga dengan *lattitude* 40.41 dan *longitude* 139.06 yang berlokasi di Aomori mempunyai pola sesar dominasi strike-slip, hal ini dipengaruhi oleh pergerakan lempeng Eurasia ke arah barat daya yang bergeser. Sedangkan pada daerah yang terbilang cukup jauh dari lokasi gempa utama memiliki jenis pola sesar dip slip-reverse vaitu di daerah Iwate. Sehingga dapat disimpulkan jika pada gempa bumi Tohoku-Oki jenis pola sesar yang terbentuk adalah dominasi reverse fault pada gempa bumi yang terletak di zona subduksi dan dominasi normal fault pada gempa bumi yang terjadi diluar zona subduksi.

Gempa *foreshock* dan *aftershock* dari gempa bumi Tohoku-Oki ini memiliki kedalaman *centroid* yang terbilang dangkal yaitu sekitar 5 km sampai dengan 37 km. Waktu *centroid* hanya berkisar beberapa detik saja dari waktu *origin* gempa. Posisi *centroid* menggambarkan lokasi dengan pelepasan momen seismik paling besar pada saat gempa bumi terjadi. Sedangkan jika dilihat dari besarnya *slip* yang dihasilkan selama proses gempa terjadi, *slip* maksimum terjadi pada *event* gempa 06:08:53.5 dengan magnitudo 7.3 pada gempa bumi *aftershock* dan slip minimum terjadi pada *event* gempa 21:49:43.85 pada gempa bumi *foreshock*. Dari sini dapat dilihat jika besarnya slip atau dislokasi selama gempa dipengaruhi oleh besar kekuatan gempa bumi.

Gambar 4.18 Hasil *plotting beach ball* pada data gempa *foreshock*

Dimana *beach ball* pada gambar diatas mempunyai informasi parameter gempa sebagai berikut:

No	Tanggal	Jam	Lattitude	Longitude	Mag	depth	Lokasi
1		04:36:59.00	38.6065	143.2488	6.1	11.31	Miyagi
2	09-03-	12:03:15.48	38.3608	143.1847	4.8	12.90	Miyagi
3	2011	14:24:05.50	38.5558	143.1847	4.7	26.00	Miyagi
4		18:16:14.18	38.2712	142.8788	6.4	28.87	Miyagi
5	10-03-	11:21:05.09	38.5192	143.3075	5.2	23.00	Miyagi
6	2011	21:49:43.85	38.4723	143.2505	4.5	35.00	Miyagi

Tabel 4.16 Event gempa bumi foreshock

Gambar 4.19 Hasil plotting beach ball pada data gempa aftershock

Dimana *beach ball* pada gambar diatas mempunyai informasi parameter gempa sebagai berikut:

No	Tanggal	Jam	Lattitude	Longitude	Mag	depth	Lokasi
1		06:08:53.50	39.8390	142.7815	7.4	31.70	Iwate
2		18:11:24.67	37.1348	142.0460	6.1	16.19	Fukhu
	11-03-						sima
3	2011	19:02:56.21	39.2263	143.3052	6.3	37.00	Sanriku
4		19:46:47.65	40.4168	139.0697	6.4	24.00	Aomori
5		20:11:21.02	38.8572	142.7725	6.4	0	Miyagi

Tabel 4.16 Event gempa bumi aftershock

Halaman ini sengaja dikosongkan"

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari penelitian yang telah dilakukan dengan menganalisa gempa bumi Tokohu-Oki didapat kesimpulan sebagai berikut:

- 1. *Centroid moment tensor* (CMT) gempa bumi ditentukan dengan menggunakan metode inversi *wavefrom* tiga komponen menggunakan metode iterasi dekonvolusi
- 2. Besar momen tensor untuk masing-masing komponennya dari gempa bumi *foreshock* dan *aftershock* pada gempa bumi Tohoku-Pki tahun 2011 mempunyai rentang sebagai berikut ini,

 $M_{rr} = 2.223 \text{ exp15 sampai } 1.611 \text{ exp19}$

 $M_{tt} = 0.456 \text{ exp15 sampai } 1.166 \text{ exp19}$

 $M_{pp} = 2.679 \text{ exp15 sampai } 2.777 \text{ exp19}$

 $M_{rt} = 2.649 \text{ exp15 sampai } 5.561 \text{ exp19}$

 $M_{rp} = 3.386 \text{ exp15 sampai } 0.119 \text{ exp19}$

 $M_{tp} = 1.343 \text{ exp15 sampai } 1.039 \text{ exp19}$

- 3. Pola bidang sesar gempa yang terjadi adalah dominasi sesar naik (*reverse fault*) di sekitar Jepang *trench* pada gempa bumi *foreshock* dan dominasi sesar naik (*normal fault*) dengan sudut dip yang bervariasi
- 4. Besar *slip* rata-rata dari *event* gempa bumi Tohoku-Oki adalah 7.38 m untuk gempa bumi *foreshock* dan 49.38 m untuk gempa bumi *aftershock*

5.2 Saran

Adapun saran yang bisa diberikan mengenai penulis dalam penelitian ini adalah sebagai berikut :

1. Mengingat gempa bumi merupakan salah satu bencana alam yang tidak diprediksi maka dari itu perlu dilakukan penelitian yang lebih mendalam mengenai karakteristik gempa bumi di tiap-tiap daerah untuk mengetahui resiko gempa bumi sedini mungkin

- 2. Perlu dilakukan penelitian lebih lanjut mengenai metode penentuan momen tensor dan pola bidang sesar dari *focal mechanism* berkaitan dengan parameter kevalidan data yang didapat
- 3. Perlu dilakukan penelitian lebih lanjut misalnya menentukan durasi *rupture* dan tegangan Coulomb sebagai upaya mitigasi gempa bumi

DAFTAR PUSTAKA

- Afnimar. 2009. Seismologi Edisi Pertama. Institut Teknologi Bandung. Bandung
- Aki, K. and Richards, P.G., 1980, Quantitative Seismology: Theory and Methods, W.H. Freeman, San Francisco, CA.
- Apel, EV.,Burgmann,R., Steblov,G., Vasilenko, N., King R., Orytkov. 2006. Independent Active Microplate Tectonics of Notheast Asia from GPS Velocities and Block Modeling. Geophysics Research Letters 33.
- Bowler, Sue. 2003. Bumi yang Gelisah. Jakarta: Erlangga.
- Countant,O. 1989. *Progam of Numerical Simulation AXITRA*. Research report, LGIT, Grenoble.
- Harmadhoni, David. 2011. Analisis Mekanisme Fokus Gempa Di Blitar Jawa-Timur 17 Mei 2011, Universitas Islam Negeri Syarif Hidatatullah
- Hung Chen, Chieh. 2014. Surface Displacement in Japan before the 11 March 2011 M9.0 Tohoku-Oki Earthquake. Journal of Asian Earth Sciences 80.
- Ismail. 2000. Propagator Photon untuk Kondisi Gauge Fock-Schwinger hingga Orde-2. Institut Teknologi Sepuluh Nopember. Bandung
- Isnawati, Titin. 2011. Mekanisme Fokus Gempa Bumi Mentawai 25 Oktober 2010. Universitas Islam Negeri Syarif Hidatatullah
- Kayal, J.R., 2008, Microearthquake Seismology and Seismotectonics of South Asia, Springer. India.
- Lay, T. and Wallace, Terry C., 1995, Modern Global Seismology, Academic Press, New York, USA, 521 p.

- Madlazim. 2011. Estimasi CMT, Bidang Sesar dan Durasi Rupture Gempa Bumi Di Sumatera Serta Kemungkinan Peringatan Dini Tsunami
- Masykur, M. Romli. 2011. Analisis Inversi Waveform Tiga Komponen Untuk Menentukan Pola Bidang Sesar Gempa Bumi di Daerah Jawa Barat. Surabaya. Tesis Jurusan Fisika FMIPA ITS Surabaya.
- Matsumoto,N dan T Sasaki. 2012. The 2011 Tohoku Earthquake and Dams. Journal of Japan Tectonic.
- Menke, W. 1993. *Geophysical Data Analysis: Discrete Inverse Theory*. Academic Press.
- Nettles, Meredith Goran Ekstrom dan Howard C. Koss.2011. Centroid Moment Tensor Analysis of the 2011 Tohoku Earthquake and Its Larger Foreshock and Aftershock. Lamont-Doherty Earth Observatory, Columbia University. USA.
- Papazachos, Scordilis E.M Panagitopoulus dan Karakaisis G.F. 2004. *Global Relations Between Seismic Fault Parameters and Momen Magnitude of Earthquake*. Buletin of the Geological Society of Greece Vol XXXVI.
- Rahmania, Merdiani, Thaqibul Fikri Niyartama dan Ari Sungkono. 2010. Penentuan Jenis Sesar Pada Gempa Bumi Sukabumi 2 Sepetember 2009 Berdasarkan Gerak Awal Gelombang-P. Seminar Nasional VI SDM Tektonologi Nuklir ISSN 1978-0176, Yogyakarta
- Santoso, B.J. 2008. Analysing the Seismogram of the Earthquake on Sumatra Java Subduction Plane at CHTO Observation Station, Jurnal MIPA, 13:25,-43.
- Setyowidodo, Irwan, Bagus Jaya Santosa. Analisis Seismogram Tiga Komponen Terhadap Momen Tensor Gempa Bumi di Manokwari Papua 03 Januari 2009. Jurnal Neutrino (2011) April Vol.3, No. 2

- Shearer, P.M . 2009. Introduction To Seismology Second Edition. Cambridge University Press. USA.
- Sokos, and Zahradník, J., 2008, ISOLA a Fortran Code and a Matlab GUI to Perform Multiple-Point Source Inversion of Seismic Data. Computers & Geosciences 34, 967–977
- Steith, Stein. Michael Wysession.2003. An Introduction to Seismology, Earthquakes, and Earth Structure. Oxford : Blackwell Publishing Ltd.
- Suardi, I. 2006. Penentuan Parameter dan Sumber Gempa Bumi Dengan Cepat Yang Terjadi Di Daerah Indonesia. Kursus Seismologi di BMKG. 2006-2007.
- Tajima, Fumiko., Jim Mori., Brian Ln., Kennett. 2013. A Review of the 2011 Tohoku-Oki Earthquake (Mw.9.0): Large-scale Rupture Accros Heterogeneous Plate Coupling. Journal of Tectonophysics 586.
- Zahradnik, J., Gallovic F., E. Sokos, A. Serpetsidaki and G-A. Tselentis., 2008, *Quick Fault-Plane Identification by a Geometrical Method: Application to the Mw 6.2 Leonidio Earthquake*, 6 January 2008, Greece. Seismological Research Letters Volume 79, Number 5, September/October 2008, 653-662
- Zahradnik J., Serpetsidaki A., Sokos, E. and Tselentis G.A, 2006, Iterative deconvolution of regional waveforms and a double-event interpretation of the lefkada earthquake, Greece.
- Zhao, Dapen. 2012. Mechanism of The 20111 Tohoku-Oki Earthquake : Insight From Seismic Tomography. Procedding of Tha International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake. Jepang

"Halaman ini sengaja dikosongkan"

BIODATA PENULIS

Depta Mahardika Submawati, penulis dilahirkan pada tanggal 17 Februari 1992 oleh pasangan Bp.Subagijo dan Ibu Dwi Kusumastuti di Kota Madiun. Penulis lahir sebagai anak sulung dari dua bersaudara. Demi meraih impiannya penulis menempuh pendidikan formal dimulai dari pendidikan sekolah dasar di SDN 02 Pandean. Kemudian melaniutkan ke

tingkat menengah pertama di SMPN 02 Madiun. Setelah dinyatakan lulus pada tahun 2007 kemudian penulis melanjutkan ke tingkat menengah atas di SMAN 02 Madiun dengan bidang pilihan IPA. Pada tahun 2010 Penulis berkesempatan untuk melanjutkan pendidikannya di jurusan Fisika FMIPA Institut Teknologi Sepuluh Nopember. Selama menempuh pendidikannya Penulis memilih untuk mengambil bidang minat fisika bumi. Selama perkuliahan Penulis juga disibukkan dengan kegiatan di luar kuliah. Penulis aktif mengikuti organisasi intra maupun ekstra kampus. Penulis mengawali organisasinya menjadi staff di departemen Riset dan Teknologi pada tahun 2011-2012. Kemudian penulis menjabat sebagai Sekretaris Departemen Riset dan Teknologi pada periode kepengurusan HIMASIKA 2012-2013. Disamping itu penulis juga menjabat sebagai staff FOSIF. Selain itu penulis juga aktif di organisasi ekternal kampus yaitu dengan menjabat sebagai sekretaris departemen AAPG ITS SC pada tahun 2012. Keaktifan penulis di bidang organisasi juga diikuti dengan keaktifan penulis dalam bidang penelitian dengan mengikuti kompetisi Progam Kreatifitas Mahasiswa. Untuk keperluan diskusi terkait tugas akhir, penulis dapat dihubungi di depta10@mhs.physics.its.ac.id

Lampiran : Hasil *fitting* kurva sintetik dan kurva seismogram

1. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 09/03/2011 pukul 04:36:59.00

2. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 09/03/2011 pukul 12:03:59.00 WIB

3. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 09/03/2011 pukul 14:24:05.5

4. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 09/03/2011 pukul 18:16:14.18

5. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 09/03/2011 pukul 11:21:05.09

6. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 09/03/2011 pukul 21:49:43.85

7. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 11/03/2011 pukul 06:08:53.50

8. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 11/03/2011 pukul 18:11:24.67

9. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 11/03/2011 pukul 19:02:56.21

10.*Fitting* kurva *displacement* untuk *event* gempa pada tanggal 11/03/2011 pukul 19:46:47.65

11.*Fitting* kurva *displacement* untuk *event* gempa pada tanggal 11/03/2011 pukul 20:11:21.02

12. *Fitting* kurva *displacement* untuk *event* gempa pada tanggal 11/03/2011 pukul 23:26:46.38

Lampiran : Hasil inversi moment tensor

1. Hasil mekanisme fokus gempa dalam bentuk *beach ball* untuk *event* gempa pada tanggal 09/11/2011 pukul 04:36:59.00

2. Hasil mekanisme fokus gempa dalam bentuk *beach ball* untuk *event* gempa pada tanggal 09/11/2011 pukul 12:03:15.48

	HYPO	CENTER	L	OCATION	N (n	iya	gi)	
Origin Lat 38	time 20 .3608 Lo	0110309 1 on 143.18 CENTROI	2:: 47 D	3:15.48 Depth 12	2.9			
Trial s Centroi Centroi Centroi	d Lat 3 d Depth d time	umber : 2 8.3608 Lo : 7 : +1.05 (n (Fixed Ep: 143.1847 c) relat:	icent	er i	nversion) rigin time	
Moment Mw : 4. DC% :83	(Nm) : 6	9.922e+01	5					
CLVD% : Var.red Var.red	17 . (for s d. (for	tations u all stat	io	d in inve ns)	ersio	on):0 :(0.71 0.71	
CLVD% : Var.red Var.red Strike	17 L.(for s d.(for Dip	tations u all stat	io	d in inve ns)	ersid	in):0 :(.71 .71 -Components	Us
CLVD% : Var.red Var.red Strike 242	17 . (for s d. (for Dip 72	tations u all stat Rake 100	io	d in invens) Station	ersio Stat NS	in):0 :(ions EW	.71).71 -Components Ver	Us
CLVD% : Var.red Var.red Strike 242 Strike	17 L. (for s' d. (for Dip 72 Dip	tations u all stat Rake 100 Rake	1	d in invens) Station KSN	Stat NS +	in):0 :(ions EW +	.71).71 -Components Ver +	Us
CLVD% : Var.red Var.red Strike 242 Strike 33	17 . (for s d. (for Dip 72 Dip 20	tations u all stat Rake 100 Rake 62	1	d in invens) Station KSN TYS	Stat NS + +	in):0 :(ions EW + +	-Components Ver + +	Us
CLVD% : Var.red Var.red Strike 242 Strike 33	17 1. (for s d. (for 72 Dip 20	tations u all stat Rake 100 Rake 62	1	d in invens) Station KSN TYS KSK	Stat NS + + +	(ions EW + +	0.71 Components Ver + + +	Us
CLVD% : Var.red Var.red Strike 242 Strike 33 P-axis	17 L (for s' d. (for Dip 72 Dip 20 Azimuth	tations u all stat Rake 100 Rake 62 Plunge	1	d in invo ns) Station KSN TYS KSK YHZ	Stat NS + + + +	(in):0 :(ions EW + + + +	0.71 Components Ver + + + +	Us
CLVD% : Var.red Var.red Strike 242 Strike 33 P-axis T-axis	17 . (for sid. (for side of the second secon	Rake 100 Rake 62 Plunge 27 Plunge 62	100 1 1 1 1 1	d in invense Station KSN TYS KSK YHZ GJH	Stat NS + + + +	en):0 :(ions EW + + + +	71 Components Ver + + + + + +	Us
CLVDt : Var.red Var.red Strike 242 Strike 33 P-axis T-axis Mrr	17 . (for s' Dip 72 Dip 20 Azimuth 325 Azimuth 167 Mtt	Rake 100 Rake 62 Plunge 27 Plunge 62 Mpp		d in invense Station KSN TYS KSK YMZ GJM	Stat NS + + + +	(in):0 :(:ions EW + + + + +	71 .71 Components Ver + + + + + +	Us
CLVD% : Var.red Var.red Strike 242 Strike 33 P-axis T-axis Mrr 6.087	17 (for s' d. (for s' Dip 72 Dip 20 Arimuth 325 Arimuth 167 Mtt 1 3.027 -	A stations u all stat Rake 100 Rake 62 Plunge 62 Plunge 62 Mpp 3.060	100 110 111111111111111111111111111111	d in inve ns) Station KSN TYS KSK TYS KSK YMZ GJM	Stat NS + + + + +	(in):0 :(EW + + + +	71 .71 Components Ver + + + + + +	Us

3. Hasil mekanisme fokus gempa dalam bentuk *beach ball* untuk *event* gempa pada tanggal 09/11/2011 pukul 14:24:05.50

4. Hasil mekanisme fokus gempa dalam bentuk *beach ball* untuk *event* gempa pada tanggal 09/11/2011 pukul 18:16:14.18

	HYPO	CENTER	Ъ	OCATION	4 (n	niya	ngi)	
Origin	time 2	0110309 1		16:14.18				
Lat 38.	2712 L	on 142.87	788	Depth 28	.87			
	-	CENTRO	D					
Trial se	ource n	umber : :	11	(Fixed Eg	lcer	ter	inversion)	
Centroid	d Lat 3	8.2712 L	on	142.8788				
Centroid	d Depth	: 25			in and			
Centroid	d time	: +2.1 (sec) relativ	re to	or	igin time	
Homent	(Mm) -	1 030+0	18					
Hy : 5	9	1.030er0.						
DC1 :73	.1							
CLVD& ::	26.9							
Var.red	ifor a	tations .		d de deser				
		cackone .		a in inve	prsic	on):(.94	
Var.red	. (for	all stat	io	ns)	ersic	on):(0.94	
Var.red Strike	Dip	all stat	io	ns)	Stat	ions	0.94 0.94 	Usec
Var.red Strike 185	Dip	All stat	1	Station	Stat	ions EW	0.94 0.94 	Usec
Var.red Strike 185 Strike	Dip 19 Dip	All stat Rake 69 Rake	1	Station KSN	Stat NS +	ions EW +	0.94 0.94 Components Ver +	Used
Var.red Strike 185 Strike 27	Dip 19 Dip 72	All stat Rake 69 Rake 97	1	Station KSN TYS	Stat NS + +	ions EW +	0.94 0.94 Components Ver + +	Used
Var.red Strike 185 Strike 27	Dip 19 Dip 72	All stat Rake 69 Rake 97	1	Station KSN TYS KSK	Stat NS + +	ions EW + +	0.94 0.94 Components Ver + + +	Used
Var.red Strike 185 Strike 27 P-axis J	Dip 19 Dip 72	all stat Rake 69 Rake 97 Plunge	1	Station KSN TYS KSK YMZ	Stat NS + + +	:ions EW + +	0.94 0.94 Components Ver + + + +	Used
Var.red Strike 185 Strike 27 P-axis J	Dip 19 Dip 72 Azimuth 111	all stat Rake 69 Rake 97 Plunge 27	1	Station KSN TYS KSK YMZ GJM	Stat NS + + + +	======================================	0.94 0.94 Components Ver + + + + +	Used
Var.red Strike 185 Strike 27 P-axis J T-axis J	L. (for Dip 19 Dip 72 Azimuth 111 Azimuth	all stat Rake 69 Rake 97 Plunge 27 Plunge	1	Station KSN TYS KSK YMZ GJM TSK	Stat NS + + + +	ions EW + + + +	0.94 0.94 Components Ver + + + + +	Usec
Var.red Strike 185 Strike 27 P-axis J T-axis J	L. (for Dip 19 Dip 72 Arimuth 111 Arimuth 308	all stat Rake 69 Rake 97 Plunge 27 Plunge 62	1	Station KSN TYS KSK YMZ GJM TSK TMR	Stat NS + + + + +	ions): (ions EW + + + + + + +).94 0.94 Components Ver + + + + + + + +	Usec
Var.red Strike 185 Strike 27 P-axis J T-axis J Mrr	L. (for Dip 19 Dip 72 Azimuth 111 Azimuth 308 Mtt	all stat Rake 69 Rake 97 Plunge 27 Plunge 62 Mpp	 	Station KSN TYS KSK YMZ GJM TSK TMR	Stat NS + + + + + + +	ions EW + + + + +	0.94 Components Ver + + + + + + +	Usec
Var.red Strike 185 Strike 27 P-axis J T-axis J Mrr 5.294 0	l. (for Dip 19 Dip 72 Arimuth 111 Arimuth 308 Mtt .800 -6	all stat Rake 69 Rake 97 Plunge 27 Plunge 62 Mpp .093		Station KSN TYS KSK YMZ GJM TSK TMR	Stat NS + + + + + +	ions): (ions EW + + + + + + +	0.94 Components + + + + + + + + + + +	Usec

5. Hasil mekanisme fokus gempa dalam bentuk *beach ball* untuk *event* gempa pada tanggal 10/11/2011 pukul 11:21:05.09

 Hasil mekanisme fokus gempa dalam bentuk beach ball untuk event gempa pada tanggal 10/11/2011 pukul 21:49:43.85

 Hasil mekanisme fokus gempa dalam bentuk beach ball untuk event gempa pada tanggal 11/11/2011 pukul 06:08:53.50

8. Hasil mekanisme fokus gempa dalam bentuk *beach ball* untuk *event* gempa pada tanggal 11/11/2011 pukul 18:11:24.67

	MOME	INT TE	NS	OR SC	LU.	FIC	N		
	HY (Fu	POCEN kushima	ST 1	ER L	ос	A T	101	4	
Origin	n time :	20110311 :	18:1	1:24.67					
Lat 31	7.1348	Lon 142.0	46 D	epth 16	19				
		CENTRO	ID						
Trial	source	number :	8 (1	'ixed Ep	lcent	er 1	nvers	(lon)	
Centro:	id Lat	37.1348 L	on 1	42.046					
Centro.	id time	. +3 (#0	a) ,	olativo	to 0	riai	n tin		
	La chie			eracrie					
Moment	(Nm) :	3.460e+0	17						
Mw · 5	6	2							
DC2 - 9	4 6								
CLVD&	•5.4								
Var.re	d. (for	stations	used	in inv	ersic	n):(0.53		
Var.re	d. (for	all stat	ior	is)		; e	0.53		
Strike	Dip	Rake	1		Stat	ions	-Conp	onents	Used
311	20	-128		Station	NS	EW	Ver		
Strike	Dip	Rake	1	TSK	+	+	+		
170	74	-77	1	KSN	+	+	+		
			1	ASI	+	+	+		
P-axis	AZIMUL	n Plunge	1	SBT	-		÷		
		39		110	-	-			
T-avia	Avinut	h Plunge	- i -	G.TM	÷	÷.	÷		
T-axis	Azimut	h Plunge	i.	GJM	+	+	+		
T-axis	Azimut 25	h Plunge 0 28	Ì	GJM	+	+	+		
T-axis Mrr	Azimut 25 Mtt	h Plunge 0 28 	i	gjm	+	+	+		
T-axis 	Azimut 25 Mtt 0.209	h Plunge 0 28 Mpp 1.521	i	GJM	+	+	+		
T-axis Mrr -1.730 Mrt	Azimut 25 Mtt 0.209 Mrp	h Plunge 0 28 Mpp 1.521 Mtp	i	GJM	+	+	+		
T-axis Mrr -1.730 Mrt -0.299	Azimut 25 Mtt 0.209 Mrp 2.859	h Plunge 0 28 Mpp 1.521 Mtp -1.016	Ì	GJM	+	+	+		

9. Hasil mekanisme fokus gempa dalam bentuk *beach ball* untuk *event* gempa pada tanggal 11/11/2011 pukul 19:02:56.21

 Hasil mekanisme fokus gempa dalam bentuk beach ball untuk event gempa pada tanggal 11/11/2011 pukul 19:46:47.65

	IIIII	CENTER	π.			~~~~	 		
	HIPO	CENTER			N (A				
Origin	time 20	0110311 :	19:	46:47.65					
Lat 40	.4168 Lo	on 139.0	697	Depth 24	1				
	c	CENTRO:	٢D						
Trial s	OUTCE D	umber :	1 (Fixed En	icent	or i	nver	tion)	
Centroi	d Lat A	0 4168 1	- `	139 0697				,	
Centroi	d Depth	: 5		100.000,					
Centroi	d time	: +1.35	(se	c) relat:	ive t	.o or	igin	time	
Moment	(Nm) :	1.82 4e +0	18						
Mw : 6.	1								
DC% :55	.8								
CLVD% :	44.2								
Var.red	l. (for st	tations :		A 4					
		cacrons.	use	a in inv	ersic	on):0	.87		
Var.re	d. (for	all stat	io	a in inv ns)	ersic	on):0 :0	0.87		
Var.re Strike	d. (for Dip	all stat	io 	a in inv ns)	ersic Stat	on):0 :0	.87 .87 -Comp	onents	Used
Var.res Strike 207	d. (for Dip 72	all stat Rake -166	10 10 1	a in inv ns) 	Stat NS	ion):0 :(:ions EW	.87 .87 -Comp Ver	onents	Used
Var.ree Strike 207 Strike	Dip 72 Dip	Rake -166 Rake	10 1 1	a in inv ns) Station TMR	Stat NS +	ions EW +	-Comp Ver +	onents	Used
Var.re Strike 207 Strike 113	Dip 72 Dip 77	all stat Rake -166 Rake -19	10 1 1	a in invo ns) Station TMR TYS	Stat NS + +	ions :0 :ions EW + +	-Comp Ver +	onents	Used
Var.ree Strike 207 Strike 113	d.(for Dip 72 Dip 77	Rake -166 Rake -19		a in invo ns) Station TMR TYS KSN	Stat NS + + +	ions EW + +	-Comp -Comp Ver + +	oonents	Used
Var.ree Strike 207 Strike 113 P-axis	d. (for Dip 72 Dip 77 Azimuth	Rake -166 Rake -19 Plunge	10 1 1	a in inv ns) Station TMR TYS KSN SBT	Stat NS + + + +	n):0 :(:ions EW + + + +	-Comp -Comp Ver + + +	oonents	Used
Var.ree Strike 207 Strike 113 	d. (for Dip 72 Dip 77 Azimuth 69	Rake -166 Rake -19 Plunge 22		d in inv ns) Station TMR TYS KSN SBT ADM	Stat NS + + + +	n):0 :(ions EW + + + +	-Comp Ver + + + +	onents	Used
Var.red Strike 207 Strike 113 P-axis T-axis	d. (for Dip 72 Dip 77 Azimuth 69 Azimuth	Rake -166 Rake -19 Plunge 22 Plunge	 	d in inv ns) Station TMR TYS KSN SBT ADM KZK	Stat Stat NS + + + + + +	n):0 :(ions EW + + + + +	-Comp -Comp Ver + + + + +	onents	Used
Var.red Strike 207 Strike 113 P-axis T-axis	d. (for Dip 72 Dip 77 Azimuth 69 Azimuth 161	Rake -166 Rake -19 Plunge 22 Plunge 3	 	d in inv ns) Station TMR TYS KSN SBT ADM KZK	Stat NS + + + + +	n):0 :(ions EW + + + + +	-Comp -Comp + + + + +	onents	Used
Var.res Strike 207 Strike 113 P-axis T-axis Mrr	d. (for Dip 72 Dip 77 Azimuth 69 Azimuth 161	Rake -166 Rake -19 Plunge 22 Plunge 3	 	Station TMR TYS KSN SBT ADM KZK	Stat NS + + + + +	n):0 :(ions EW + + + + +	-Comr Ver + + + +	conents	Used
Var.rev Strike 207 Strike 113 P-axis T-axis Mrr 0.088 1	d. (for Dip 72 Dip 77 Azimuth 69 Azimuth 161 Mtt 1 	Rake -166 Rake -19 Plunge 22 Plunge 3 Mpp .261	 	Station TMR TYS KSN SBT ADM KZK	Stat NS + + + + +	n):0 :(ions EW + + + + +	-Comp -Comp Ver + + + + +	oonents	Used
Var.ree Strike 207 Strike 113 P-axis T-axis Mrr 0.088 1 Mrt	d. (for Dip 72 Dip 77 Azimuth 69 Azimuth 161 Mtt J 173 -1 Mrp J	Rake -166 Rake -19 Plunge 22 Plunge 3 .261 Mtp	 	Station TMR TYS KSN SBT ADM KZK	Stat NS + + + + +	n):0 :(ions EW + + + + +	-Comp -Comp + + + + +	oonents	Used
Var.res Strike 207 Strike 113 	d. (for Dip 72 Dip 77 Azimuth 69 Azimuth 161 Mtt 1 173 -1 Mrp 1 0788 1	Rake -166 Rake -19 Plunge 22 Plunge 3 Mpp .261 Mtp .043		Station TMR TYS KSN SBT ADM KZK	Stat NS + + + + +	n):0 :(ions EW + + + + +	-Comp -Comp + + + + +	oonents	Use
11. Hasil mekanisme fokus gempa dalam bentuk *beach ball* untuk *event* gempa pada tanggal 11/11/2011 pukul 20:11:21.02

12. Hasil mekanisme fokus gempa dalam bentuk *beach ball* untuk *event* gempa pada tanggal 11/11/2011 pukul 23:26:46.38

	НУРО	CENTER	Ŀ	OCATION	N (M	IIYA	GI)		
Origin time 20110311 23:26:46.38 Lat 38.9207 Lon 142.9055 Depth 30 CENTROID									
Trial source number : 2 (Fixed Epicenter inversion) Centroid Lat 38.9207 Lon 142.9055 Centroid Depth : 7 Centroid time : +0 (sec) relative to origin time									
Moment (Nm) : 6.084e+016 Nw : 5.1 DC% :98.2 CUVD% 11.6 Var.red.(for stations used in inversion):0.81 Var.red.(for all stations) :0.81									
Strike	Dip	Rake	1	Stations-Components Used					
287	42	-106	- 1	Station	NS	EW	Ver		
Strike	Dip	Rake	- i	KSN	+	+	+		
127	50	-76	- i	HRO	+	+	+		
			- i	ADM	+	+	+		
P-axis	Azimuth	Plunge							
	97	79							
1-axis	AZIMUCH	Prunge							
	208	4							
Mrr	Mtt	Мрр							
-5.852	4.736 1	.116							
Mrt	Mrp	Mtp							
-0.208	1.350 -	2.487							
Exponent (Nm): 16									

MOMENT TENSOR SOLUTION