

TUGAS AKHIR - TM 091486

STUDI NUMERIK PENGARUH PENAMBAHAN RECTANGULAR OBSTACLES TERHADAP KARAKTERISTIK ALIRAN DAN PERPINDAHAN PANAS PADA TUBEBANKS YANG TERSUSUN STAGGERED DENGAN $\ell/D = 0,2$ (studi kasus lokasi *obstacle* (g/ST) sebesar 0,04, 0,08, dan 0,12)

PRISMA PRADANA SUWARNO PUTRI NRP.2110 100 031

Dosen Pembimbing Prof. Dr. Eng. Ir. Prabowo, M.Eng.

Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2014

FINAL PROJECT - TM 091486

NUMERICAL STUDY OF THE EFFECT OF ADDITION RECTANGULAR OBSTACLES OF THE FLOW CHARACTERISTICS AND HEAT TRANSFER BASED ON STAGGERED TUBE BANKS WITH ℓ / D = 0,2 (case study of obstacle location (g/ST) at 0,04, 0,08, and 0,12)

PRISMA PRADANA SUWARNO PUTRI NRP.2110 100 031

Adviser Lecturer Prof. Dr. Eng. Ir. Prabowo, M.Eng.

Mechanical Engineering Department Industrial Engineering Faculty Sepuluh Nopember Institute of Technology Surabaya 2014

STUDI NUMERIK PENGARUH PENAMBAHAN RECTANGULAR OBSTACLES TERHADAP KARAKTERISTIK ALIRAN DAN PERPINDAHAN PANAS PADA TUBEBANKS YANG TERSUSUN STAGGERED DENGAN *C/D* = 0,2

(Studi Kasus Lokasi Obstacle (g/ST) sebesar 0,04, 0,08, dan 0,12)

Nama Mahasiswa	: Prisma Pradana Suwarno Putri
NRP	: 2110 100 031
Jurusan	: Teknik Mesin FTI-ITS
Dosen Pembimbing	: Prof. Dr. Eng. Ir. Prabowo, M. Eng.

Abstrak

Compact heat exchanger merupakan salah satu jenis heat exchanger yang digunakan sebagai evaporator dan kondensor dalam Air Conditioner. Performa compact heat exchanger bergantung pada pola permukaan fin, yaitu wavy atau straight fin. Selain dari pola permukaannya, perpindahan panas dapat dimaksimalkan dengan cara penambahan obstacle pada permukaan fin. Performa compact heat exchanger dengan obstacle ini dapat diketahui dengan menganalisa pola aliran dan perpindahan panas yang terjadi.

Penelitian ini menggunakan straight fin heat exchanger dengan $\ell/D = 0,2$, pada tube banks yang tersusun secara staggered, dimana yang divariasikan adalah lokasi dari rectangular obstacle, yaitu g/ST sebesar 0,04, 0,08, dan 0,12. Fluida kerja yang digunakan adalah udara yang dimodelkan sebagai gas ideal yang mengalir melintasi celah antartube dengan temperatur masuk 308 K, temperatur tube konstan sebesar 325,77 K, dan kecepatan masuk konstan sebesar 2 m/s. Penelitian ini dilakukan dengan metode simulasi numerik dengan perangkat lunak Fluent 6.3.26. Pembuatan model dikerjakan dengan menggunakan perangkat lunak Gambit 2.4.6. Simulasi ini dilakukan secara 2D single precission dan dikondisikan steady dengan menggunakan model turbulensi k-epsilon RNG. Dari simulasi ini dapat diambil data berupa nilai kecepatan lokal, nusselt number lokal dan rata-rata, pressure drop, serta visualisasi kontur kecepatan dan temperatur.

Dari simulasi ini diketahui bahwa karakteristik aliran berupa nilai kecepatan aliran yang dihasilkan model dengan penambahan rectangular obstacle lebih baik dibandingkan model baseline. Berdasarkan kontur temperatur didapatkan bahwa distribusi temperatur keluar pada model dengan penambahan rectangular obstacle lebih tinggi daripada model baseline. Selain itu, penambahan rectangular obstacle dapa t menaikkan nilai kecepatan lokal fluida melintasi tube sebesar 19,33 – 30,59 %, nusselt number sebesar 2 – 6,35 %, dan pr essure drop sebesar 79,34 – 97,31 % dibandingkan model baseline. Sehingga perpindahan panas lebih baik terjadi pada pemodelan dengan penambahan rectangular obstacle, terutama pada pe modelan pada posisi g/ST 0,04.

Kata Kunci : Rectangular Obstacle, Staggered Tube Banks

NUMERICAL STUDY OF THE EFFECT OF ADDITION RECTANGULAR OBSTACLES OF THE FLOW CHARACTERISTICS AND HEAT TRANSFER BASED ON STAGGERED TUBE BANKS WITH ℓ / D = 0,2 (case study of obstacle location (g/ST) at 0,04, 0,08, and 0,12)

Name of Student	: Prisma Pradana Suwarno Putri
NRP	: 2110 100 031
Department	: Mechanical Engineering FTI-ITS
Advisor Lecturer	: Prof. Dr. Eng. Ir. Prabowo, M.Eng.

Abstract

Compact heat exchanger is a type of heat exchanger which is commonly used as evaporator and c ondenser in air conditioner. Compact heat exchanger performance is depending on the fin surface, such as wavy and straight fin. Apart from the fin surface, compact heat exchanger performance can be maximized by developing an obstacle on its fin surface. Compact heat exchanger performance with the obstacles can be found out by analyzing the flow pattern and its heat transfer.

This research used straight fin circular tube with $\ell/D = 0,2$, on the tube banks that arranged as staggered arrangement with variation of rectangular obstacles' position, such as 0,04, 0,08, and 0,12. The working fluid that used is air, which modeled as ideal gas flow across gap between tubes with inlet temperature 308 K, constant tube temperature 325,77 K and constant velocity inlet 2 m/s. This research was using numerical simulation method based on 6.3.26 Fluent software. The model was made first with 2.4.6 Gambit software. This simulation used 2D single precision and was conditioned steady with k-epsilon RNG turbulence model. From the final result of simulation, brings in local velocity value, local and average nusselt number, pressure drop, and visualization of velocity and temperature contours.

From these simulations it is known that the flow characteristics such as flow velocity value generated models with the addition of a rectangular obstacle better than the baseline model. Based on the temperature contours found out that the temperature distribution in the model with the addition of a rectangular obstacle higher than the baseline model. Moreover, the addition of a rectangular obstacle can raise the value of the local velocity of the fluid across the tube from 19.33 to 30.59%, Nusselt number of 2 - 6.35%, and the pressure drop of 79.34 to 97.31% compared to the baseline model. So that better heat transfer occurs in modeling with the addition of a rectangular obstacle, especially in modeling with position g / ST 0,04.

Keyword : Rectangular Obstacle, Staggered Tube Banks

STUDI NUMERIK PENGARUH PENAMBAHAN RECTANGULAR OBSTACLES TERHADAP KARAKTERISTIK ALIRAN DAN PERPINDAHAN PANAS PADA TUBE BANKS YANG TERSUSUN STAGGERED DENGAN *l/D* = 0,2 (Studi Kasus Lokasi Obstacle (g/ST) sebesar 0,04; 0,08; dan 0,12)

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik

pada

Bidang Studi Konversi Energi Program Studi S-1 Jurusan Teknik Mesin Fakultas Teknologi Industri Insitut Teknologi Sepuluh Nopember

Oleh : Prisma Pradana Suwarno Putri NRP 2110100031

SURABAYA JULI, 2014

KATA PENGANTAR

Puji syukur Alhamdulillah penulis panjatkan kehadirat Allah SWT, karena atas limpahan rahmat dan karunia-Nya penulis dapat menyelesaikan tugas akhir ini tanpa adanya halangan yang cukup berarti.

Dalam penyusunan tugas akhir ini tidak dapat dipungkiri ada begitu banyak dukungan dan bantuan yang diberikan berbagai pihak, baik secara moril maupun material. Pada kesempatan ini Penulis ingin mengucapkan terima kasih kepada pihak-pihak tersebut, antara lain :

- 1. Bapak Prof Dr. Eng. Ir. Prabowo, M. Eng. selaku dosen pembimbing yang telah meluangkan waktu dan tenaga untuk membimbing dan memotivasi dalam pengerjaan tugas akhir ini. Terima kasih banyak Pak atas ilmunya. Mohon maaf apabila saya banyak mengecewakan Bapak.
- Bapak Ir. Sudjud Darsopuspito, MT., Dr. Ir. Atok Setiyawan, M.Eng.Sc., Ary Bachtiar K.P.,ST.,MT.,Ph.D., selaku dosen penguji yang telah meluangkan waktu untuk menguji Tugas Akhir ini. Terima kasih atas saran dan ilmu yang diberikan untuk kesempurnaan tugas akhir saya ini.
- 3. Bapak Ir. Sampurno, MT sebagai dosen wali Penulis yang telah membantu Penulis selama kuliah di Teknik Mesin ITS . Terima kasih Pak atas saran, motivasi, dan ilmu yang selalu diberikan selama ini.
- 4. Kedua orang tua Penulis yang menjadi motivasi utama untuk segera menyelesaikan tugas akhir ini. Terima kasih atas doa dan masukannya. Untuk adekku tercinta, terima kasih untuk kunjungannya ke Surabaya, sangat menghibur dan menyegarkan.
- 5. Untuk seluruh dosen dan karyawan Teknik Mesin ITS yang sudah banyak memberikan ilmu, pengalaman, kritik, dan nasihat yang tidak ternilai harganya.

- 6. Untuk keluarga besar 'Himalaya', terima kasih untuk selalu menghibur, memotivasi, dan berbagi kisah dengan Penulis.
- 7. Untuk seluruh Raden Ayu M53 yang sudah banyak berbagi kisah dan motivasi, menasihati, dan menolong Penulis selama kuliah di Teknik Mesin ITS.
- 8. Seluruh keluarga besar M53, terima kasih sudah menjadi bagian hidup yang sangat berarti dalam perjalanan kuliah Penulis di Teknik Mesin ITS.
- 9. Untuk teman seperjuangan, teman TA, dan teman Kerja Praktek Penulis, Mbak Rury, yang sudah banyak membantu dan memotivasi Penulis dalam menyelesaikan tugas akhir ini selama hampir satu tahun.
- 10. Semua pihak, baik adek-adek dan kakak-kakak, yang tidak dapat Penulis sebut satu persatu. Terima kasih sudah menemani, memotivasi, menghibur, dan meluangkan waktunya untuk membantu hingga tersusunnya tugas akhir ini.

Penulis menyadari bahwa tugas skhir ini masih terdapat kekurangan yang dapat digunakan sebagai pertimbangan untuk penelitian selanjutnya. Penulis mengharapkan kritik dan saran untuk perbaikan di masa mendatang. Semoga tugas akhir ini bermanfaat bagi kita semua. Amiien.

Surabaya, Agustus 2014

Penulis

DAFTAR ISI

HALAMAN JUDUL	
LEMBAR PENGESAHAN	
ABSTRAK	
ABSTRACT	
KATA PENGANTAR	i
DAFTAR ISI	iii
DAFTAR GAMBAR	vii
DAFTAR TABEL	xi
DAFTAR SIMBOL	xiii

BAB I PENDAHULUAN

1.1 Latar Belakang	1
1.2 Perumusan Masalah	3
1.3 Batasan Masalah	4
1.4 Tujuan Penelitian	5
1.5 Manfaat Penelitian	5

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Tinjauan Pustaka	7
2.1.1 Studi Numerik Pengaruh Convergency Promoters	
(CPs) terhadap Karakteristik Aliran dan Perpindahan	
Panas dengan $\ell/D = 0,25$, padaTubebanks yang	
Tersusun Secara Staggered	7
2.1.20ptimization of The Span Angle and Location of	
Vortex Generators in a Plate Fin and Tube Heat	
Exchanger	9
2.1.3 Numerical Analysis of Tube Fin Heat Exchanger usin	g
<i>Fluent</i> 1	1
2.2 Dasar Teori1	2
2.2.1 Compact Heat Exchanger1	2
2.2.2 Tinjauan Termodinamika1	5
2.2.3 Tinjauan Perpindahan Panas1	6

2.2.3.1 Perpindahan Panas Konveksi dan Alira	an Fluida
Melintasi Silinder Tunggal	16
2.2.3.2 Aliran Fluida Melintasi TubeBank	20

BAB III METODE PENELITIAN

3.1 Preprocessing	25
3.1.1 Pembuatan Model	25
3.1.2 Pembuatan <i>Meshing</i>	27
3.1.3 Variabel Penelitian	
3.2 Processing	
3.2.1 Pemilihan Solver	
3.2.2 Validation of Numerical Results	29
3.2.3 Pemilihan Turbulence Modelling	
3.2.4 Pemilihan Operation Condition	
3.2.5 Pemilihan Boundary Condition	
3.2.6 Solving	
3.2.6.1 Solve Metode	
3.2.6.2 Inisialisasi Medan Aliran	
3.2.6.3 Iterasi	
3.3 Postprocessing	
3.4 Flowchart Penelitian	35

BAB IV ANALISA HASIL DAN PEMBAHASAN

4.1.Analisa Pola Aliran Fluida	37
4.1.1.Pemodelan tanpa Penambahan Rectangular Obstac	le
(Baseline)	38
4.1.2. Pemodelan dengan Penambahan Rectangular	
Obstacle	39
4.2. Analisa Pengaruh Lokasi Rectangular Obstacle	40
4.2.1. Analisa Berdasarkan Kontur Kecepatan	40
4.2.2. Analisa Berdasarkan Kontur Temperatur	42
4.3 Analisa Pengaruh Penambahan Rectangular Obstacle	
terhadap Karakteristik Aliran	44
4.3.1. Analisa Kecepatan Lokal Aliran Fluida Melintasi	
Tube	44

4.3.1.1. Analisa Kecepatan Lokal Aliran Fluida
Melintasi Tube pada Pemodelan tanpa
Rectangular Obstacle (Baseline)
4.3.1.2. Analisa Kecepatan Lokal Aliran Fluida
Melintasi Tube pada Pemodelan dengan
Rectangular Obstacle pada g/ST sebesar0,04.46
4.3.1.3. Analisa Kecepatan Lokal Aliran Fluida
Melintasi Tube pada Pemodelan dengan
Rectangular Obstacle pada g/ST sebesar0,08.48
4.3.1.4. Analisa Kecepatan Lokal Aliran Fluida
Melintasi Tube pada Pemodelan dengan
Rectangular Obstacle pada g/ST sebesar0,12.51
4.3.2. Analisa Pengaruh Lokasi Rectangular Obstacle
terhadap Kecepatan Aliran Fluida Melintasi Tube .54
4.3.2.1. Analisa Pengaruh Lokasi Rectangular Obstacle
terhadap Kecepatan Aliran Fluida Melintasi
<i>Tube</i> di Baris 154
4.3.2.2. Analisa Pengaruh Lokasi Rectangular Obstacle
terhadap Kecepatan Aliran Fluida Melintasi
<i>Tube</i> di Baris 255
4.4 Analisa Pengaruh Penambahan Rectangular Obstacle
terhadap Perpindahan Panas57
4.4.1. Analisa Distribusi Nusselt Number
4.4.1.1. Analisa Nusselt Number pada Pemodelan tanpa
Rectangular Obstacle (Baseline)57
4.4.1.2. Analisa Nusselt Number pada Pemodelan
dengan Rectangular Obstacle pada g/ST sebesar
0,0460
4.4.1.3. Analisa Nusselt Number pada Pemodelan
dengan Rectangular Obstacle pada g/ST sebesar
0,0862
4.4.1.4. Analisa Nusselt Number pada Pemodelan
dengan Rectangular Obstacle pada g/ST sebesar
0,1264

4.4.2. Analisa Pengaruh Lokasi Rectangular Obstacle	
terhadap Distribusi Nusselt Number	.66
4.4.2.1. Analisa Distribusi Nusselt Number di Baris 1	.66
4.4.2.2. Analisa Distribusi Nusselt Number di Baris 2	.67
4.4.3. Analisa Distribusi Nusselt Number Rata-rata	.69
4.4 Pengaruh Penambahan Rectangular Obstacles terhadap	р
Pressure Drop	.71

BAB V PENUTUP

5.1	Kesimpulan	73
5.2	Saran	73

DAFTAR PUSTAKA LAMPIRAN BIODATA PENULIS

DAFTAR TABEL

Tabel 2.1	Kombinasi optimal dari <i>span angle</i> (θ) danlokasi	
	vortex generators (Ly)	10
Tabel 2.2	Konfigurasi Susunan Tube Untuk Aliran yang	
	MelintasiTube Banks yang terdiri dari 10 baris atau	ı
	lebih	22
Tabel 2.3	Faktor koreksi C ₂ perumusan 2.6 untuk N _L < 10	23
Tabel 3.1	Geometri straight fin circular tubecompact heat	
	exchanger	26
Tabel 3.2	Grid independency validation	31
Tabel 3.3	Boundary Condition Straight Fin Circular Tube	
	compact heat exchanger	32
Tabel 3.4	Properties Fluida	33
Tabel 4.1	Kisarantemperaturkeluar rata-rata	
	untuksemuapemodelan	44
Tabel 4.2	Nilaikecepatanlokal rata-rata di setiapbarispada	
	model baseline	46
Tabel 4.3	Nilai dan kisaran kenaikan kecepatan aliran melinta	asi
	tube setelah penambahan rectangular obstacle pada	a
	g/ST = 0,04 dibandingkan model <i>baseline</i>	48
Tabel 4.4	Nilai dan kisaran kenaikan kecepatan aliran melinta	asi
	tube setelah penambahan rectangular obstacle pad	a
	g/ST = 0,08dibandingkan model <i>baseline</i>	51
Tabel 4.5	Nilai dan kisaran kenaikan kecepatan aliran melinta	asi
	tube setelah penambahan rectangular obstacle pad	a
	g/ST = 0,12dibandingkan model <i>baseline</i>	53
Tabel 4.6	Nilai dan kisaran kenaikan kecepatan aliran melinta	asi
	tubes etelah penambahan rectangular obstacle	
	dibandingkan model baseline	57
Tabel 4.7	Nilai <i>nusselt number</i> lokal rata-rata di setiap baris	
	1	

Tabel 4.8	Nilai dan kisaran kenaikan nusselt number local
	setelah penambahan <i>rectangular obstacle</i> pada g/ST
	= 0,04dibandingkan model <i>baseline</i> 62
Tabel 4.9	Nilai dan kisaran kenaikan nusselt number local
	setelah penambahan rectangular obstacle pada g/ST
	= 0,08dibandingkan model <i>baseline</i> 64
Tabel 4.10	Nilai dan kisaran kenaikan nusselt number local
	setelah penambahan <i>rectangular obstacle</i> pada g/ST
	= 0,12dibandingkan model <i>baseline</i>
Tabel 4.11	Nilai dan kisaran peningkatan nusselt number rata-
	rata pada pemodelan dengan penambahan
	rectangular obstacle dibandingkan model baseline70
Tabel 4.12	Kisaran peningkatan nilai pressure pada pemodelan
	dengan penambahan rectangular obstacle
	dibandingkan model <i>baseline</i> 72

DAFTAR GAMBAR

Gambar 1.1	(a) Contoh <i>Air Conditioner</i> rumah tangga, (b)
	Evaporator AC, dan (c) Condenser AC1
Gambar 1.2	(a) Contoh <i>wavy fin</i> (b) Contoh <i>straight fin</i> 2
Gambar 2.1	Visualisasi aliran (a) tanpa penambahan CPs atau
	<i>baseline</i> model dan (b) dengan penambahan CPs
	atau <i>modified</i> model7
Gambar 2.2	Visualisasi aliran tanpa dan dengan <i>CPs</i> untuk (a)
	distribusi temperatur dan (b) distribusi kecepatan
Gambar 2.3	Grafik (a) perbandingan Nusselt Number antara
	model baseline dan modified (b) temperatur outlet
	pada Re 3000
Gambar 2.4	Skema model <i>finand tube heat exchanger</i> dengan
	(a) susunan <i>in-lined</i> dan (b)susunan <i>staggered</i> 9
Gambar 2.5	Kontur distribusi kecepatan untuk susunan (a) in-
	lined dan (b) staggered9
Gambar 2.6	Kontur distribusi temperatur untuk susunan (a)
	<i>in-lined</i> dan (b) <i>staggered</i> 10
Gambar 2.7	Skema fin dan tube dari heat exchanger11
Gambar 2.8	Grafik perbandingan untuk setiap metode dilihat
	dari (a) Friction factor dan (b) Colburn j-factor
Gambar 2.9	Jenis-jenis Heat Exchanger (a) shell and tube heat
	exchanger (b) concentric heat exchanger, (c)
	compact heat exchanger12
Gambar 2.10	Perpindahan panas dan friction factor untuk
	circular tube –circular fin heat exchanger,
	surface CF-7.0-5/8J dari Kays and London14
Gambar 2.11	Perpindahan panas dan friction factor untuk
	circular tube – continuous fin heat exchanger,
	surface 8.0-3/8T dari Kays and London14
	-

Gambar 2.12	Pertukaran Energi Pada Compact Heat Exchanger
Gambar 2.13	Boundary layer dan separasi pada silinder18
Gambar 2.14	Profil Kecepatan Pada Dinding Silinder
Gambar 2.15	Pengaruh turbulensi terhadap separasi
Gambar 2.16	Distribusi Angka Nusselt pada Silinder
Gambar 2.17	Staggered Tubebanks (a) susunan, (b) aliran
	fluida melintasi tubebanks
Gambar 3.1	Geometri straight fin circular tube compact heat
	exchanger tanpa penambahan rectangular
	obstacle
Gambar 3.2	Geometri straight fin circular tube compact heat
	exchanger dengan penambahan rectangular
	obstacles
Gambar 3.3	Meshing pada Straight Fin Circular Tube tanpa
	penambahan Rectangular Obstacle27
Gambar 3.4	Meshing pada daerah sekitar tube (a) sebelum
	penambahan Rectangular Obstacles dan (b)
	setelah penambahan Rectangular Obstacles27
Gambar 3.5	Variasi model baseline untuk Grid Independency
	Validation
Gambar 3.6	Boundary conditions pada model32
Gambar 3.7	Kriteria Konvergensi34
Gambar 3.8	Flowchart Penelitian
Gambar 4.1	Visualisasi Velocity Magnitude Pathline
Gambar 4.2	Visualisasi aliran pada pemodelan tanpa
	penambahan rectangular obstacle
Gambar 4.3	Perbesaran pola aliran pada daerah downstream
	tube
Gambar 4.4	Visualisasi pola aliran pada pemodelan setelah
	penambahan <i>rectangular obstacle</i> dengan g/ST =
	0,08
Gambar 4.5	Perbesaran pola aliran pada daerah downstream
	tube40
Gambar 4.6	Visualisasi Kontur Kecepatan41

Gambar 4.7	Visualisasi Kontur Temperatur42
Gambar 4.8	Distribusi temperatur sisi keluar43
Gambar 4.9	Distribusi kecepatan lokal aliran fluida melintasi
	tube pada pemodelan tanpa <i>rectangular obstacle</i>
	(<i>baseline</i>)
Gambar 4.10	Distribusi kecepatan aliran dengan penambahan
	rectangular obstacle $g/ST = 0.04$
Gambar 4.11	Distribusi kecepatan aliran dengan penambahan
	rectangular obstacle $g/ST = 0.08$
Gambar 4.12	Distribusi kecepatan aliran dengan penambahan
	rectangular obstacle $g/ST = 0,12$
Gambar 4.13	Perbandingan kecepatan aliran melintasi tube
	pada baris 154
Gambar 4.14	Perbandingan kecepatan aliran melintasi tube
	pada baris 255
Gambar 4.15	Distribusi nusselt number pada pemodelan tanpa
	rectangular obstacle (baseline)
Gambar 4.16	Perbandingan distribusi nusselt number dengan
	penambahan rectangular obstacle $g/ST = 0.0460$
Gambar 4.17	Perbandingan distribusi nusselt number dengan
	penambahan rectangular obstacle $g/ST = 0.0862$
Gambar 4.18	Perbandingan distribusi nusselt number dengan
	penambahan <i>rectangular obstacle</i> $g/ST = 0,12.64$
Gambar 4.19	Perbandingan distribusi nusselt number di baris 1
Gambar 4.20	Perbandingan distribusi nusselt number di baris 2
Gambar 4.21	Distribusi nusselt number rata-rata di setiap baris
Gambar 4.22	Perbandingan pressure drop71

[Halaman ini sengaja dikosongkan]

DAFTAR SIMBOL

= luasan perpindahan panas total (m^2) Α $A_f = fin area (m^2)$ $A_{\rm ff} = free flow area (m^2)$ $A_{fr} = frontal area (m^2)$ C_p = fluid heat capacity D = diameter tube (mm) = diameter hidrolik (m) Dh = koefisien konveksi (W/m^2K) h = panjang rectangular obstacles (mm) ł = massafluida (kg) m = mass rate(kg/s)'n Ν = jumlah tube Nu = Nusselt number = laju perpindahan panas (W) q = laju perpindahan panas per luasan total (W/m^2) q" r = jari-jari luar tube (mm) = jarak *obstacle* terhadap permukaan *circular tube* (mm) g Re = Reynold number SD = *diagonal pitch* (mm) SL = *longitudinal pitch* (mm) ST = *transverse pitch* (mm) St = Stanton number Т = temperatur (K) T_{∞} = temperatur fluida (K) T. = temperatur permukaan tube (K) = kecepatan aliran fluida melintasi tube (m/s)11 V = kecepatan aliran fluida (m/s) V_{max} = kecepatan aliran fluida maksimum yang melintasi *tube* banks (m/s) = lebar *rectangular obstacles* (mm) W = jarak dari titik stagnasi (m) Х

Simbol Yunani

- = sudut kemiringan *rectangular obstacles* terhadap tube (°) α
- θ = sudut sepanjang keliling tube (°)
- viskositas dinamis (kg/ms)
 viskositas kinematis (m²/s)
 massa jenis fluida (kg/m³) μ
- υ
- ρ

BAB I PENDAHULUAN

1.1 Latar Belakang

Salah satu teknologi yang memiliki peranan penting di dunia industri adalah *heat exchanger* atau alat penukar kalor. *Heat exchanger* memiliki peran memindahkan energi panas dari sistem ke lingkungan (sekeliling). Salah satu contoh *heat exchanger* yang sering kita temui dalam kehidupan sehari-hari adalah *condenser* dan *evaporator*. *Condenser* dan *evaporator* merupakan komponen utama yang ada di dalam i ndustri refrigerasi dan tata udara.

Gambar 1.1 (a) Contoh *Air Conditioner* rumah tangga, (b) *Evaporator* AC, dan (c) *Condenser* AC

Heat exchanger (alat penukar kalor) adalah sebuah alat yang dapat melakukan proses pertukaran panas antara dua fluida, baik fluida cair maupun gas yang memiliki temperatur yang berbeda, yang merupakan penerapan dari hukum termodinamika dan perpindahan panas. Salah satu heat exchanger yang memiliki luasan perpindahan panas yang paling besar ($\geq 700 \text{ m}^2/\text{m}^3$) adalah *Compact Heat Exchanger*. Salah satu contoh tipe dari penggunaan Compact Heat Exchanger adalah condenser yang terpasang pada Air Conditioner. Condenser adalah sebuah alat yang digunakan untuk mendinginkan gas yang bertekanan tinggi berubah menjadi cairan yang bertekanan tinggi. Untuk penempatannya sendiri, condenser ditempatkan di luar ruangan yang sedang didinginkan, agar dapat membuang panasnya keluar. Fin and tube merupakan salah satu jenis heat exchanger yang banyak digunakan untuk kebutuhan sehari-hari. Pada condenser fluida panas mengalir di dalam tube (pipa) sedangkan fluida dingin mengalir melalui celah di antara *fin* dan permukaan luar tube.

Fin (sirip) merupakan bagian khusus dalam compact heat exchanger. Optimasi kerja dari fin and tube heat exchanger didominasi dari geometri fin yang digunakan. Macam-macam geometri fin yang umum digunakan, yaitu straight fin dan wavy fin.

Gambar 1.2 (a) Contoh wavy fin (b) Contoh straight fin

Fin and tube heat exchanger seiring dengan perkembangan jaman, dituntut untuk dapat menyajikan performa yang sesuai dengan fungsi kerjanya melalui perubahan bentuk tipe permukaan fin ataupun penambahan pada permukaan fin.

Hipotesa awal untuk permodelan kondisi aliran pada susunan *tube* secara *staggered* yang telah dimodifikasi permukaan finnya dengan adanya penambahan *convergency promoters* yang berbentuk *rectangular*, terlihat adanya laluan aliran yang dipersempit adanya *Convergency Promoters* (*CPs*). Hal ini diharapkan dengan penambahan CPs tersebut perpindahan panas pada *tube* pada baris berikutnya akan meningkat.

Oleh karena itu dibutuhkan penelitian terdahulu mengenai penambahan atau modifikasi pada bagian permukaan fin. Berdasarkan penelitian **Chairunnisa dan Prabowo (2013)** yang berjudul "*Studi Numerik Pengaruh Convergency Promoters (CPs)* terhadap Karakteristik Aliran dan Perpindahan Panas dengan l/D = 0,25, pada Tubebanks yang Tersusun Secara Staggered", dijelaskan bahwa penelitian ini bertujuan untuk mengetahui pengaruh konfigurasi susunan tube dan variasi Reynold Number pada straight fin circular tube tanpa dan menggunakan convergency promoters. Tujuan penambahan CPs diharapkan dapat meningkatkan laju perpindahan panas pada permukaan fin. Variasi yang diberikan berupa variasi Reynold Number inlet berbasis diameter tube, yaitu 3000, 4000, dan 5000.

Berdasarkan penelitian **Jiin Yuh Jang, dkk** (2012) yang berjudul "*Optimization of The Span Angle and Location of Vortex Generators in a Plate Fin and Tube Heat Exchanger*", dijelaskan bahwa penelitian ini bertujuan untuk melihat bagaimana geometri dari suatu *heat exchanger* dapat mempengaruhi efisiensi perpindahan panas. Pada penelitian ini dibandingkan *heat exchanger* susunan *inligned* dan *staggered* yang kemudian divariasikan *span angle* (θ) dan lokasi *vortex generators* (Ly).

1.2 Perumusan Masalah

Pada penelitian ini dikaji karakteristik aliran *compact heat exchanger* tipe *straight fin circular tube* tanpa dan menggunakan *rectangular obstacles* dengan melakukan analisa numerik secara dua dimensi. Rumusan masalah yang akan dikaji dalam penelitian ini, antara lain :

- 1. Bagaimana pengaruh lokasi *rectangular obstacles* terhadap karakteristik aliran pada *straight fin circular tube* tanpa dan menggunakan *rectangular obstacles*?
- 2. Bagaimana pengaruh lokasi *rectangular obstacle* terhadap distribusi temperatur perpindahan panas pada *straight fin circular tube* tanpa dan menggunakan *rectangular obstacles*?

Pada penelitian ini akan digunakan metode numerik berbasis komputasi dengan simulasi pada model *compact heat exchanger* tipe *straight fin circular tube* tanpa dan menggunakan *rectangular obstacles*. Hasil simulasi berupa karakteristik dan fenomena aliran yang ditunjukkan dengan data kualitatif berupa distribusi temperatur dan distribusi kecepatan aliran. Sedangkan data kuantitatif yang ditunjukkan dengan nilai kecepatan lokal, *Nusselt number* lokal, *Nusselt number* rata-rata, dan *pressure drop*.

1.3 Batasan Masalah

Dalam penelitian ini diperlukan batasan masalah agar analisa dan kajian yang dilakukan lebih terarah. Batasan masalah yang digunakan pada penelitian ini antara lain :

- 1. Pemodelan *straight fin circular tube* tanpa dan dengan menggunakan *rectangular obstacle* dengan $\ell/D = 0,2$ dibuat dengan menggunakan *software* GAMBIT 2.4.6 dan disimulasikan dengan *software* FLUENT 6.3.26 dengan domain aliran dua dimensi.
- 2. Aliran diasumsikan *steady*, *incompressible*, dan *uniform* pada sisi masuk.
- 3. Geometri yang digunakan dalam perencanaan model merupakan geometri *straigt fin circular tube compact heat exchanger* pada kondensor *air conditioner* tipe 1635 dari Karyer *Group Company*.
- 4. Fluida kerja yang mengalir pada celah antar*fin* berupa fluida dingin (udara yang dimodelkan sebagai gas

ideal) dan propertinya konstan. Sedangkan yang mengalir dalam *tube* berupa fluida panas (*refrigerant*).

- 5. Pengaruh perpindahan panas secara radiasi dan konduksi diabaikan.
- 6. Posisi *rectangular obstacle* pada kemiringan (α) 45°.
- 7. Pada sisi masuk dikondisikan berupa *velocity inlet* dan keluar berupa *outflow*.
- 8. *Tube* dan *rectangular obstacle* dikondisikan berupa *stationary wall.*
- 9. Perancangan tidak mengikutsertakan analisa ekonomi, metalurgi, dan manufaktur.

1.4 Tujuan Penelitian

Penelitian ini bertujuan untuk mengetahui fenomena aliran pada *compact heat exchanger* tipe *straight fin circular tube* tersusun *staggered* tanpa dan menggunakan *rectangular obstacles*. Selain dilakukan untuk mengetahui fenomena aliran, tujuan dari penelitian ini antara lain :

- 1. Mengetahui pengaruh variasi lokasi *rectangular obstacles* terhadap karakteristik aliran pada *straight fin circular tube* tanpa dan menggunakan *rectangular obstacles*.
- 2. Mengetahui pengaruh variasi lokasi*rectangular obstacles*terhadap distribusi temperatur proses perpindahan panas pada *straight fin circular tube* tanpa dan menggunakan *rectangular obstacles*.
- 3. Melakukan pembuktian hipotesa dengan adanya penambahan *rectangular obstacles* akan meningkatkan laju perpindahan panas yang terjadi pada permukaan fin.

1.5 Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan manfaat pada semua pihak. Manfaat dari penelitian ini, antara lain :

- 1. Memperdalam pengetahuan dalam bidang studi perpindahan panas dan massa, khususnya mengenai *compact heat exchanger*.
- 2. Menambah pengetahuan mengenai pengaruh variasi obstacle pada compact heat exchanger.
- 3. Menambah pengetahuan terkait analisa 2D karakteristik aliran dan perpindahan panas pada *heat exchanger* melalui visualisasi aliran dengan *software* FLUENT 6.3.26.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

- 2.1 Tinjauan Pustaka
- 2.1.1 Studi Numerik Pengaruh Convergency Promoters (CPs) terhadap Karakteristik Aliran dan Perpindahan Panas dengan $\ell/D = 0,25$, pada Tubebanks yang Tersusun Secara Staggered

Berdasarkan penelitian **Chairunnisa dan Prabowo** (2013) yang berjudul "Studi Numerik Pengaruh Convergency Promoters (CPs) terhadap Karakteristik Aliran dan Perpindahan Panas dengan $\ell/D = 0,25$, pada Tubebanks yang Tersusun Secara Staggered", dijelaskan bahwa penelitian ini bertujuan untuk mengetahui pengaruh konfigurasi susunan tube dan variasi Reynold Number pada straight fin circular tube tanpa dan menggunakan convergency promoters. Tujuan penambahan CPs diharapkan dapat meningkatkan laju perpindahan panas pada permukaan fin. Variasi yang diberikan berupa variasi Reynold Number inlet berbasis diameter tube, yaitu 3000, 4000, dan 5000.

Gambar 2.1 Visualisasi aliran (a) tanpa penambahan CPs atau *baseline model* dan (b) dengan penambahan *CPs* atau *modified model*

Penelitian ini berupa simulasi numerik dengan menggunakan *software* GAMBIT 2.4.6 untuk membuat pemodelannya dan disimulasikan dengan *software* FLUENT 6.3.26. Berdasarkan penelitian ini didapatkan kesimpulan dimana distribusi temperatur pada model *baseline* lebih tinggi dengan indikasi temperatur keluaran *outlet* yang lebih tinggi dibandingkan dengan model *modified* dengan adanya penambahan *Convergency Promoters* (*CPs*).

Gambar 2.2 Visualisasi aliran tanpa dan dengan *CPs* untuk (a) distribusi temperatur dan (b) distribusi kecepatan

Nilai *Nusselt number* rata-rata yang dihasilkan dari model *modified* dengan adanya penambahan *Convergency Promoters (CPs)* meningkat, yakni besar peningkatannya berkisar antara 47-63% lebih tinggi dari pada *Nusselt number* pada model *baseline*.

(a) (b) **Gambar 2.3** Grafik (a) perbandingan *Nusselt Number* antara model *baseline* dan *modified* (b) temperatur *outlet* pada Re 3000

Nilai koefisien konveksi rata-rata yang dihasilkan dari model *modified* dengan adanya penambahan *Convergency Promoters (CPs)* meningkat, yakni besar peningkatannya berkisar antara 47–63% lebih tinggi dari pada koefisien konveksi pada model *baseline*. Perpindahan panas yang terjadi pada model *modified* dengan adanya penambahan *Convergency Promoters (CPs)* lebih baik dibandingkan dengan model *baseline*. Dilihat dari kenaikan nilai *Nusselt number* dan koefisien konveksi dan didukung juga oleh visualisasi kontur kecepatan dan kontur temperatur.

2.1.2 Optimization of The Span Angle and Location of Vortex Generators in a Plate Fin and Tube Heat Exchanger Berdasarkan penelitian Jiin Yuh Jang, dkk (2012) yang

berjudul "Optimization of The Span Angle and Location of Vortex Generators in a Plate Fin and Tube Heat Exchanger", dijelaskan bahwa penelitian ini bertujuan untuk melihat bagaimana geometri dari suatu heat exchanger dapat mempengaruhi efisiensi perpindahan panas. Pada penelitian ini dibandingkan heat exchanger susunan in-lined dan staggered yang kemudian divariasikan span angle (θ) dan lokasi vortex generators (Ly).

Gambar 2.4 Skema model *fin and tube heat exchanger* dengan (a) susunan *in-lined* dan (b) susunan *staggered*

Gambar 2.5 Kontur distribusi kecepatan untuk susunan (a) *in-lined* dan (b) *staggered*

Gambar 2.6 Kontur distribusi temperatur untuk susunan (a) *in-lined* dan (b) *staggered*

Tabel 2.1 Kombina	ısi optimal da	ri <i>span angle</i>	$e(\theta)$ dan le	okasi <i>vortex</i>
generators (Ly)				

Reph	θ (deg)	L_{y} (mm)	Area reduction ratio (%)
(a) In-lined	l arrangement	1.00	
400	48.825	8.496	14.9
600	49.657	7.994	18.8
800	50.709	7.982	23.5
1000	51.594	7.498	24.4
1200	53.824	7.473	25.5
(b) Stagger	ed arrangement		
400	51.514	7.498	7.9
400	51.514	7.498	7.9
600	52.556	6.982	10.3
800	48.853	6.972	11.7
1000	43.624	5.984	13.1
1200	41.883	5.498	13.6

Berdasarkan penelitian ini didapatkan kesimpulan bahwa peningkatan perpindahan panas dengan *vortex generator* berbentuk balok lebih efektif untuk susunan *in-lined* daripada susunan *staggered*. Untuk kedua susunan, ketika ukuran *span angle* (θ) dan lokasi *vortex generators* (Ly) dinaikkan, maka nilai j dan f *factor* meningkat. Kombinasi optimal dari *span angle* (θ) dan lokasi *vortex generators* (Ly) dipat dilihat pada Tabel 2.1

2.1.3 Numerical Analysis of Tube Fin Heat Exchanger using Fluent

Berdasarkan penelitian **Ghori dan Kirar (2012)** yang berjudul "*Numerical Analysis of Tube Fin Heat Exchanger using Fluent*", dijelaskan bahwa penelitian ini bertujuan untuk menganalisa perpindahan panas dan *pressure drop* di permukaan *fin* pada sebuah *compact heat exchanger*. Geometri yang dipakai dapat dilihat pada Gambar 2.19.

Gambar 2.7 Skema fin dan tube dari heat exchanger

Penelitian ini menggunakan *software* Gambit 2.4.6 unt uk membuat model dan Fluent 6.3.26 untuk simulasi numerik. Simulasi menggunakan metode *laminar flow model*, *k-epsilon turbulence model* dan *k-omega SST turbulence model*.

Gambar 2.8 Grafik perbandingan untuk setiap metode dilihat dari (a) *Friction factor* dan (b) *Colburn j-factor*

Berdasarkan penelitian didapatkan kesimpulan bahwa kecepatan aliran pada baris *tube* 2 lebih cepat daripada baris *tube* 1, semakin rendah *free flow area* maka semakin tinggi kecepatan aliran.

Begitu juga semakin tinggi kecepatan aliran maka tekanan akan semakin rendah. Apabila diameter tube semakin besar (dengan jarak dan *tranverse pitch* yang sama) makan *Reynold number* akan semakin besar pula.

2.2 Dasar Teori

2.2.1 Compact Heat Exchanger

Heat exchanger (alat penukar panas) merupakan suatu alat yang digunakan untuk memindahkan energi panas antara dua fluida yang mengalir dan memiliki perbedaan temperatur. Penukar panas banyak digunakan di dunia industri dalam berbagai macam aplikasi. Jenis-jenis penukar panas dapat dikelompokkan berdasarkan konstruksinya yaitu *shell and tube heat exchanger*, *compact heat exchanger*, dan *concentric heat exchanger*.

Gambar 2.9 Jenis-jenis Heat Exchanger (a) shell and tube heat exchanger (b) concentric heat exchanger, (c) compact heat exchanger

Compact heat exchanger merupakan alat penukar panas yang paling banyak digunakan dalam berbagai proses industri, salah satunya sebagai *condenser* dan *evaporator* dalam *air conditioner*. Alat penukar panas dikategorikan sebagai alat penukar kalor kompak bila luas permukaan efektif yang tersentuh oleh satu zat (fluida) per volume lebih besar daripada 700 m²/m³.

Compact heat exchanger disusun oleh tabung-tabung (tubes) dan fin. Suatu fluida mengalir di dalam tubes dan fluida yang lain mengalir di antara fin. Compact heat exchanger digunakan ketika suatu luasan perpindahan panas per satuan

volume yang besar dibutuhkan dan setidaknya salah satu fluida yang mengalir adalah gas. Dari beberapa macam konfigurasi tubular dan plate yang ada, perbedaannya terletak pada desain *fin* dan susunannya. Perpindahan panas dan karakteristik aliran telah ditentukan untuk konfigurasi yang spesifik dan secara khusus ditampilkan pada Gambar 2.2 dan Gambar 2.3. Nilai perpindahan panas dikorelasikan dengan faktor *Colburn j*($j_H = St. Pr^{2/3}$)dan *Reynold Number*, dimana *Stanton*($St = h/Gc_p$)dan *Reynold number*($Re = GD_h/\mu$)ditentukan berdasarkan *maximum mass velocity*.

$$G \equiv \rho V_{max} = \frac{\rho V A_{fr}}{A_{ff}} = \frac{\dot{m}}{A_{ff}} = \frac{\dot{m}}{\sigma A_{fr}}$$
(2.1)

σ merupakan rasio luasan aliran minimal (A_{ff}) dengan luasan frontal (A_{ff}) dari suatu *heat exchanger*. Hasil dari σ, yaitu D_h (diameter hidrolik), α (luasan permukaan perpindahan panas per total volume *heat exchanger*), A_f/A (rasio dari *fin* dengan luas permukaan perpindahan panas total), dan parameter geometri lainnya tercantum untuk masing-masing konfigurasi. Ketika melakukan perhitungan desain, α akan digunakan untuk menentukan volume *heat exchanger* yang diperlukan, setelah luas permukaan perpindahan panas total ditemukan. Ketika melakukan perhitungan performa, α akan digunakan untuk menentukan luas permukaan perpindahan panas dari volume *heat exchanger* yang telah diketahui.

Gambar 2.10 Perpindahan panas dan friction factor untuk circular tube –circular fin heat exchanger, surface CF-7.0-5/8J dari Kays and London

Gambar 2.11 Perpindahan panas dan friction factor untuk circular tube –continuous fin heat exchanger, surface 8.0-3/8T dari Kays and London

Informasi-informasi empiris yang tercantum dalam Gambar 2.2 dan Gambar 2.3 dapat digunakan untuk menentukan koefisien konveksi rata-rata dari permukaan fin. Kemudian, overall heat transfer coefficient dapat ditentukan, sehingga dengan menggunakan metode ε - NTU, desain dan performa dari *heat exchanger* dapat diketahui.

2.2.2 Tinjauan Termodinamika

Gambar 2.12 Pertukaran Energi Pada Compact Heat Exchanger

Pada Gambar 2.12 dapat dideskripsikan pertukaran energi terjadi pada *heat exchanger* dimana terlihat bahwa pipa dapat menyerap udara bertemperatur lebih rendah dari udara sekitar secara konduksi dan konveksi. Sehinggadidapatkan temperatur udara yang masuk lebih rendah daripada yang keluar.

Besaran Q terjadi apabila terdapat perbedaan temperatur antara sistem dan lingkungan, dimana terjadi perubahan temperatur, dikenal sebagai **perpindahan energi panas**.

Konvensi tanda (sign convention) untuk perpindahan panas :

- 1. Q > 0 : Perpindahan panas masuk ke dalam sistem Heat transfer to the system
- 2. Q < 0 : Perpindahan panas keluar dari sistem Heat transfer from the system

Berdasarkan hukum termodinamika kedua, pada contoh di atas dapat mengaplikasikan neraca energi untuk sistem tertutup, seperti pada persamaan 2.2 dan 2.3.

$$Q_{in} = Q_{out} \qquad (2.2)$$

$$m. Cp. \Delta T = \frac{q}{A} \tag{2.3}$$
dima	ina :	
m	=	massa (kg)
Ср	=	kapasitas panas (KJ/Kg.K)
ΔT	=	perubahan temperatur (K)
Α	=	luas area perpindahan panas (m^2)
q	=	laju perpindahan panas (Watt)

2.2.3 Tinjauan Perpindahan Panas

2.2.3.1 Perpindahan Panas Konveksi dan Aliran Fluida Melintasi Silinder Tunggal

Perpindahan panas secara konveksi terjadi apabila terdapat perbedaan temperatur antara permukaan suatu benda padat dengan fluida bergerak yang melintas di atas permukaan tersebut. Konveksi merupakan gabungan antara konduksi dan adveksi.

Gaya gesek terjadi antara fluida yang mengalir dengan permukaan benda, mengakibatkan fluida yang berada di permukaan benda menjadi diam ($\mu_{y-0} = 0$). Pada saat fluida mempunyai kecepatan nol, akan terjadi perpindahan panas dari benda ke fluida secara konduksi. Sedangkan pada fluida yang bergerak ($\mu_y \neq 0$), terjadi proses perpindahan panas secara adveksi. Gabungan antara perpindahan panas secara konduksi dan adveksi inilah yang disebut dengan konveksi.

Dengan mendefinisikan koefisien perpindahan panas ratarata, \overline{h} , maka perpindahan panas konveksi dinyatakan dengan hukum pendinginan Newton melalui persamaan 2.4

$$q = \bar{h} \cdot A_s \cdot (T_s - T_{\infty}) \tag{2.4}$$

Keterangan :

q: laju perpindahan panas konveksi (Watt) \bar{h} : koefisien konveksi rata-rata (W/m²K) A_s : luas area perpindahan panas (m²) T_s : temperatur permukaan tube (K) T_{∞} : temperatur fluida sekitar (K)

Gambar 2.11 menjelaskan, untuk setiap jarak x dari titik stagnasi perpindahan panas lokal didapatkan dengan persamaan 2.14 (Incropera, 2007:350)

$$q_s'' = -k_f \frac{\partial T}{\partial y}|_{y=0}$$
(2.5)

Persamaan ini dapat digunakan karena pada permukaan silinder, tidak ada gerakan fluida dan transfer energi hanya terjadi secarakonduksi. Koefisien perpindahan panas konveksi yang terjadidijelaskan seperti pada persamaan 2.15.

$$h = \frac{-k_f \frac{\partial T}{\partial y}}{T_s - T_\infty}$$
(2.6)

Nilai h da n q'' akan semakin turun dengan bertambahnya x, karena semakin besar x, nilai $\frac{\partial T}{\partial y}\Big|_{y=0}$ semakin kecil.

Seperti terlihat pada Gambar 2.13, a liran eksternal melalui silinder tunggal secara tegak lurus terhadap sumbu silinder. Berdasarkan persamaan Euler untuk aliran *inviscid*, $u_{\infty}(x)$ berbanding terbalik dengan p(x). Dimulai dari titik stagnasi dengan tekanan yang besar dan $u_{\infty}=0$, fluida akan mengalami akselerasi karena *favorable pressure gradient*($du_{\infty}/dx > 0$ *ketika* dp/dx < 0)dan mencapai kecepatan maksimum pada dp/dx = 0, selanjutnya mengalami perlambatan karena adanya *adverse pressure gradient* ($du_{\infty}/dx < 0$ *ketika* dp/dx > 0). Sesaat fluida mengalami perlambatan, gradient kecepatan pada permukaan $\partial u/\partial y|_{y=0}$, menjadi nol (Gambar 2.14). Pada titik ini disebut sebagai titik separasi. Fluida di dekat permukaan kekurangan momentum untuk melawan *pressure gradient* sehingga fluida tidak akan dapat bergerak maju. *Wake* akan terjadi pada daerah ini dengan ditandai adanya olakan yang tidak teratur.

Gambar 2.14 Profil Kecepatan Pada Dinding Silinder

Terbentuknya *boundary layer transtition* dan posisi titik separasi tergantung pada *Reynolds number*. Untuk sirkular silinder panjang dimana panjang karakteristiknya berupa diameter, *Reynold number* didefinisikan seperti pada persamaan 2.7.

$$Re_D = \frac{\rho \overline{V} D}{\mu} = \frac{\overline{V} D}{\vartheta}$$
(2.7)

Dengan momentum aliran pada *turbulent boundarylayer* lebih besar dibandingkan dengan *laminar boundary layer* makan dapat disimpulkan bahwa aliran turbulen dapat menunda terjadinya separasi. Pada $\text{Re}_{\text{D}} \leq 2 \times 10^5$ *Boundary layer* yang terbentuk tetap laminer dan separasi terjadi pada $\theta \approx 80^\circ$ (Gambar 2.15 (a)) akan tetapi pada $\text{Re}_{\text{D}} \geq 2 \times 10^5$ sudah terbentuk *boundary layer transisi* dan separasi tertunda pada $\theta \approx 140^\circ$ (Gambar 2.15 (b)).

Gambar 2.15 Pengaruh turbulensi terhadap separasi

Sebagaimana ditunjukkan pada Gambar 2.16, untuk aliran dengan Re $\geq 10^5$, variasi dari Nu_{θ} mempunyai dua harga minimum. Penurunan harga Nu_{θ} yang terjadi mulai dari titik stagnasi dikarenakan pengembangan dari *laminer boundary layer*. Pada θ antara 80° dan 100° terjadi kenaikan harga Nu_{θ} ini dikarenakan transisi *boundary layer* dari laminer menjadi turbulen. Dengan pengembangan *turbulent boundary layer* lebih lanjut, harga Nu_{θ} menurun lagi. Pada saat separasi aliran terjadi pada θ mendekati 140°, Nu_{θ} bertambah besar karena mixing di daerah wake. (Incropera dkk, 2007 : 359)

Gambar 2.16 Distribusi Angka Nusselt pada Silinder

Sedangkan *pressure drop* yang terjadi di sekeliling permukaan tube dapat ditentukan dengan *bernoulli equation* untuk aliran *incompressible*, seperti pada persamaan 2.8.

$$p + \rho gh + \frac{1}{2}\rho v^2 = konstan \qquad (2.8)$$

dimana

p = tekanan fluida (Pa)

 ρ = densitas fluida (kg/m³)

 $g = gravitasi bumi (m/s^2)$

h = ketinggian relatif terhadap suatu permukaan (m)

v = kecepatan fluida (m/s)

Sedangkan *pressure coefficient* lokal di sepanjang *tube* dapat ditentukan dengan persamaan 2.9 di bawah ini:

$$Cp = \frac{P - P_0}{\frac{1}{2}\rho v^2}$$
(2.9)

dimana

Cp = koefisien tekanan

p = tekanan statis pada titik di permukaan tube

 p_0 = tekanan statis aliran

 ρ = densitas dari aliran

v = kecepatan aliran

2.2.3.2 Aliran Fluida Melintasi *Tube Banks* yang Tersusun *Staggered*

Berdasarkan Incropera dkk (2007 : 436), susunan tube banks tersusun secara *staggered*ditunjukkan pada Gambar 2.17 (a). Sedangkan untuk bentuk aliran yang terjadi pada *tubebanks* yang tersusun secara *staggered* dapat dilihat pada Gambar 2.17 (b).

Gambar 2.17 Staggered Tubebanks (a) susunan, (b) aliran fluida melintasi tubebanks

Aliran mengalir pada bagian sisi fin dan bagian sisi permukaan tube yang bersentuhan langsung dengan aliran yang mengalir tersebut. Bentuk aliran sangat dipengaruhi oleh susunan tube. Pada susunan tube *staggered*, untuk baris kedua dan seterusnya telah terjadi turbulensi pada upstream. Nilai koefisien konveksi sangat dipengaruhi oleh tingkat turbulensi aliran melintasi tube dan jumlah baris. Pada umumnya koefisien konveksi akan bertambah dengan bertambahnya jumlah baris sampai kira-kira baris kelima, setelah itu hanya ada sedikit perubahan pada turbulensi dan nilai koefisien konveksi.

Untuk S_T (*Transversal Pitch*) dan S_L (*Longitudinal Pitch*) yang kecil, *tube* pada baris pertama akan menghalangi turbulensi aliran di baris berikutnya dan *heat transfer* akan berkurang karena sebagian besar permukaan *tube* tidak akan teraliri fluida utama.

Untuk aliran udara yang melintasi *tube bundle* yang tersusun jumlah barisnya 10 a tau lebih ($N_L \ge 10$), Grimisson menentukan korelasi dari persamaan 2.10.

$$\overline{N}u_{D} = C_{1}Re_{D,Max}^{m} \begin{bmatrix} N_{L} \ge 10\\ 2000 \le Re_{D,max} \le 40.000\\ P_{r} = 0,7 \end{bmatrix}$$
(2.10)

Dimana nilai C_1 dan m tercantum dalam tabel 2.1 dan nilai *Reynold* dapat dicari dengan persamaan 2.11,

$$Re_{D,Max} = \frac{\rho V_{max} D}{\mu}$$
(2.11)
dimana :

 $\begin{array}{ll} \rho &= \mbox{ densitas fluida (kg/m^3)} \\ V_{max} &= \mbox{ kecepatan maksimal fluida sepanjang tubebanks (m/s)} \\ D &= \mbox{ diameter tube (m)} \\ \mu &= \mbox{ viskositas absolut (Ns/m^2)} \end{array}$

Perumusan umum yang biasa digunakan untuk mendapatkan hasil lebih akurat, perumusan dikalikan dengan 1,13 Pr $^{1/3}$, sesuai persamaan 2.12.

$$\overline{N}u_{D} = 1,13C_{1}Re_{D,max}^{m} Pr^{1/3} \begin{bmatrix} N_{L} \ge 10\\ 2000 \le Re_{D,max} \le 40.000\\ P_{r} \ge 0,7 \end{bmatrix}$$
(2.12)

 Tabel 2.2 Konfigurasi Susunan Tube Untuk Aliran yang Melintasi Tube

 Banks yang terdiri dari 10 baris atau lebih

	S _T /D								
	1.	25	1	.5	2.0		3.0		
S _L /D	C1	m	C1	m	C1	m	C1	М	
Stagger	ed								
0.600	-	-	-	-	-	-	0.213	0.636	
0.900	-	-	-	-	0.446	0.571	0.401	0.581	
1.000	-	-	0.497	0.558	-	-	-	-	
1.125	-	-	-	-	0.478	0.565	0.518	0.560	
1.250	0.518	0.556	0.505	0.554	0.519	0.556	0.522	0.562	
1.500	0.451	0.568	0.460	0.562	0.452	0.568	0.488	0.568	
2.000	0.404	0.572	0.416	0.568	0.482	0.556	0.449	0.570	
3.000	0.310	0.592	0.356	0.580	0.440	0.562	0.428	0.574	

Semua properti dari persamaan di atas dievaluasi pada temperatur film. Jika $N_L < 10$, faktor koreksi yang diaplikasikan yaitu sesuai persamaan 2.13.

$$\overline{N}u_{D} \mid_{(N_{L} < 10)} = \mathcal{C}_{2}\overline{N}u_{D} \mid_{(N_{L} \ge 10)}$$
(2.13)

dimana C2 tercantum dalam Tabel 2.3

Tabel 2.3 Faktor Koreksi C_2 perumusan 2. 6 untuk $N_L < 10$

NL	1	2	3	4	5	6	7	8	9
Staggered	0.68	0.75	0.83	0.89	0.92	0.95	0.97	0.98	0.99

Bilangan Reynold, $Re_{D,max}$, berkorelasi dengan kecepatan maksimum dari aliran yang melintasi *tube banks*. Untuk susunan secara *aligned*, kecepatan maksimum terjadi di A₁, sesuai dengan persamaan 2.14.

$$V_{max} = \frac{S_T}{S_T - D} V \tag{2.14}$$

Untuk susunan secara *staggered*, kecepatan maksimum dapat terjadi pada jarak transversal A_1 dan jarak longitudinal A_2 . Hal itu dapat terjadi di A_2 , jika jarak antar baris *tube* memenuhi syarat seperti persamaan 2.15.

$$2(S_D - D) < (S_T - D)$$
(2.15)

Dari fluida yang bergerak dari A_1 ke A_2 , maka V_{max} terjadi di A_2 dengan syarat seperti pada persamaan 2.16.

$$S_D = \left[S_L^2 + \left(\frac{S_T}{2}\right)^2\right]^{1/2} < \frac{S_T + D}{2}$$
(2.16)

Maka, kecepatan maksimum pada susunan secara *staggered* di A2 sesuai persamaan 2.17.

$$V_{max} = \frac{S_T}{2(S_D - D)} V$$
(2.17)

Pada susunan *staggered*, kenaikan perpindahan panas dipengaruhi oleh tingkat lika-liku aliran terutama pada angka *Reynolds* yang kecil (Re < 100).

[Halaman ini sengaja dikosongkan]

BAB III METODE PENELITIAN

Metode penelitian yang digunakan dalam menyusun laporan tugas akhir ini adalah simulasi numerik dengan *software* (perangkat lunak) FLUENT 6.3.26. Simulasi numerik merupakan sebuah proses simulasi berbasis perhitungan yang dilakukan oleh sebuah *software* komputer dengan mendefinisikan parameter-parameter yang sesuai dengan kondisi batasnya. Proses simulasi numerik terbagi menjadi tiga tahapan, yaitu *Pre Processing, Processing, dan Post Processing.*

3.1 Preprocessing

Proses ini dilakukan sebagai metode awal dalam penelitian untuk membangun dan menganalisa sebuah model komputasi secara numerik. Tahapan *preprocessing* terdiri dari beberapa subtahapan, antara lain :

- 1. Pembuatan model
- 2. Pembuatan *meshing*
- 3. Penentuan parameter-parameter yang digunakan

Dari keempat subtahapan di atas, semua tahapan diproses menggunakan *software* GAMBIT 2.4.6

3.1.1 Pembuatan Model

Model yang akan dibuat adalah sebuah *compact heat exchanger* tipe *straight fin circular tube* tanpa atau dengan penambahan *rectangular obstacles* dengan variasi lokasi, seperti yang ditunjukkan pada Gambar 3.1 dan Gambar 3.2. Rincian ukuran dari model dapat dilihat pada Tabel 3.1. Pada model terdapat empat baris *tube* yang tersusun secara *staggered*.

Gambar 3.1 Geometri straight fin circular tube compact heat exchanger tanpa penambahan rectangular obstacle

Gambar 3.2 Geometri *straight fin circular tube compact heat exchanger* dengan penambahan *rectangular obstacles*

Tabel 3.1	Geometri	straight	fin	circular	tube	compact	heat
	exchanger						

DIMENSI	NILAI
Tube	
Diameter luar tube (D)	15,88 mm
Tranverse pitch (ST)	40 mm
Longitudinal pitch (SL)	34,64 mm
Diagonal pitch (SD)	40 mm
Tube row number (N)	4
Rectangular Obstacles	
Degree (a)	45°
Lebar (w)	1 mm
Panjang (l)	3,176 mm`
Jarak g/ST = $0,04$	1,588 mm
Jarak g/ST = $0,08$	3,176 mm
Jarak g/ST = $0,12$	4,764 mm

3.1.2 Pembuatan Meshing

Model yang telah dibuat dalam GAMBIT 2.4.6 dibagi menjadi elemen-elemen kecil sesuai batas dan parameter yang telah ditentukan. Bentuk *mesh* yang dipilih adalah *quadrilateralmap*. Setelah proses *meshing*, geometri model disimpan dan di*export* ke dalam format .*msh agar dapat terbaca oleh *software* FLUENT.

Meshing untuk pemodelan 2D *compact heat exchanger* tipe *straight fin circular tube* tanpa atau dengan penambahan *rectangular obstacle* dengan variasi lokasi (g/ST), ditunjukkan pada Gambar 3.3 dan Gambar 3.4.

Gambar 3.3 Meshing pada Straight Fin Circular Tube tanpa penambahan Rectangular Obstacle

Gambar 3.4 *Meshing* pada daerah sekitar tube (a) sebelum penambahan *Rectangular Obstacles* dan (b) setelah penambahan *Rectangular Obstacles*

Dari ketiga gambar tersebut dapat dilihat bahwa meshing lebih dirapatkan pada daerah yang dekat tube dan rectangular

obstacles (didefinisikan sebagai *wall*). Kerapatan *meshing* pada bagian geometri tersebut bertujuan untuk meningkatkan ketelitian hasil simulasi. Fenomena dan karakterisitik aliran yang dianalisa secara spesifik adalah daerah celah antar fin (*tube* dan *rectangular obstacle*).

3.1.3 Variabel Penelitian

Pada suatu penelitian diperlukan variabel-variabel yang bertujuan agar penelitian memiliki arah dan tujuan yang jelas mengenai hubungan yang akan dicari dalam suatu penelitian. Dalam penelitian ini, variabel-variabel yang diperlukan, antara lain :

Variabel bebas	:	Lokasi rectangular obstacle
Variabel terkontrol	:	Sudut peletakan rectangular
		obstacles terhadap titik stagnasi
		tube (θ), <i>pitch tube</i> , temperature
		inlet, temperature tube, dan
		kecepatan aliran fluida masuk.

3.2 Processing

Pada tahapan ini dilakukan dengan menggunakan *software* FLUENT 6.3.26 yang terdiri dari beberapa tahapan di bawah ini :

3.2.1 Pemilihan Solver

Pada saat membuka perangkat lunak FLUENT terdapat pilihan untuk menggunakan solver 2D atau 3D dengan keakuratan tunggal atau ganda (single precision/double precision). Sesuai dengan batasan masalah yang telah ditentukan di BAB I, solver yang digunakan adalah 2D dengan keakuratan tunggal. Keakuratan tunggal adalah dimana hanya beberapa kapasitas memori yang digunakan karena penelitian ini masih dalam bentuk 2D dan tidak dalam bentuk yang kompleks, single precision cukup akurat untuk menganalisa dengan baik, lain hal nya dengan solver 3D yang memiliki geometri yang kompleks sangat dianjurkan menggunakan *double precision*.

3.2.2 Validation of Numerical Results

Sebelum data pemodelan dimasukkan ke dalam software Fluent, terlebih dahulu dilakukan meshing pada pemodelan dengan menggunakan software Gambit. Salah satu upaya untuk mendapatkan hasil yang akurat, yaitu dengan membandingkan nilai Nusselt number rata-rata beberapa variasi meshing model dengan Nusselt number rata-rata dengan persamaan Grimisson seperti pada persamaan 2.12. Simulasi tersebut bersifat sementara dengan tujuan untuk mendapatkan meshing model dengan nilai nusselt number rata-rata vang paling mendekati dengan nusselt numher rata-rata Grimisson (teoritis). Pemodelan vang disimulasikan adalah pemodelan tanpa rectangular obstacle, karena perhitungan dengan persamaan Grimisson hanya bisa dilakukan pada tubebanks tanpa obstacle. Meshing model dengan error terkecil ini nantinya akan digunakan pada seluruh pemodelan, baik pemodelan tanpa penambahan rectangular obstacle maupun pemodelan dengan penambahan rectangular obstacle. Variasi jumlah cells yang dibandingkan adalah 21560, 28326, 30610, 32520, 5 9720, dan 64918 cells untuk Revnolds number 1900. Perbedaan jumlah cells terutama difokuskan pada perapatan meshing di daerah kontur tubebanks. Besarnya error untuk setiap jenis meshing model dapat dilihat pada Tabel 3.2, sedangkan gambar-gambar semua jenis meshing model dapat dilihat pada Gambar 3.5

Gambar 3.5 Variasi model *baseline* untuk Grid Independency Validation

$\overline{Nu_{D}}$ Grimisson = 37,765						
Model	Jumlah Cells	$\overline{Nu_D}$	Error (%)			
А	21560	47,148	24,85			
В	28326	42,830	13,41			
С	30610	47,164	24,89			
D	32530	50,814	34,55			
Е	59720	52,788	39,78			
F	64918	56,110	48,58			

Tabel 3.2 Grid independency validation

Berdasarkan tabel 3.2 da pat dilihat bahwa *mesh* B memeliki *error* yang terkecil. Nilai *error* didapatkan dari selisih *Nusselt number* rata-rata persamaan Grimisson dengan hasil perhitungan numerik, yang kemudian dibandingkan dengan *Nusselt number* rata-rata persamaan Grimisson. Oleh karena itu, *mesh* B dengan 28326 *cells* dipilih dalam untuk *meshing* semua pemodelan dalam penelitian ini.

3.2.3 Pemilihan Turbulence Modelling

Penentuan *turbulence modeling* yang akan digunakan dalam simulasi ini mengacu pada penelitian terdahulu bahwa untuk pemodelan ini menggunakan metode *Turbulence Modelling* tipe k- ε RNG (*Re-Normalization Group*).

3.2.4 Pemilihan Operation Conditions

Langkah berikutnya yaitu melakukan pengaturan operation condition. Kondisi operasi yang digunakan dalam penelitian ini adalah tekanan operasi pada saat udara yang dimodelkan sebagai gas ideal melalui celah diantara dua fin dan *rectangular obstacles*. Pada penelitian ini tekanan operasi yang digunakan adalah 101325 Pa (absolut).

3.2.5 Pemilihan Boundary Conditions

Dalam pendefinisian sebuah kasus harus dimasukkan informasi variabel aliran pada domain kasus tersebut. Data yang diperlukan pada batas tergantung dari tipe kondisi batas yang digunakan. Dalam simulasi ini menggunakan kondisi batas yang tertera pada Tabel 3.3 dengan *properties* fluida inlet seperti tertera pada Tabel 3.4.

Tabel 3.3 Boundary conditions straight fin circular tube compact heatexchanger

BOUNDARY CONDITIONS	KETERANGAN
Inlet	Tipe : Velocity Inlet
	Kecepatan inlet : 2 m/s
	Temperatur inlet : 308 K
Outlet	Tipe : Outflow
Tube	Tipe : Stationary Wall
	Temperatur : 325,77 K
Convergency Promoters	Tipe : Stationary Wall
Garis Bantu	Symmetry

Gambar 3.6 Boundary conditions pada model

PROPERTIES	NILAI
Temperatur inlet (K)	308
Density (kg/m ³)	1,149
Panas spesifik (Cp) (KJ/kg.K)	1,00732
Viskositas absolute (μ) (N.s/m ²)	1,884 . 10 ⁻⁵
Viskositas kinematik (m ² /s)	1,669 . 10 ⁻⁵
Prandtl Number (Pr)	0,706
Thermal Conditivity (W/m.K)	2,689.10-2

3.2.6 Solving

3.2.6.1 Solve Metode

Momentum dan energi didiskritisasi dengan *second order upwind scheme. Coupling* antara *velocity and pressure* ditampilkan dengan metode *simple algoritm*.

3.2.6.2 Inisialisasi Medan Aliran

Inisialisasi adalah penentuan kondisi awal untuk memulai perhitungan dengan memasukkan data inlet yang tergolong dalam variabel bebas.

3.2.6.3 Iterasi

Proses iterasi adalah proses perhitungan yang berulangulang dari kondisi batas yang diberikan sampai tercapainya konvergensi. Konvergensi dikatakan baik tidak hanya berdasarkan residual konvergensi, namun juga berdasarkan pengamatan kesetimbangan atau balans massa dan energi. Metode umum yang digunakan untuk pengecekan konvergensi dari hasil iterasi, yaitu Residual Konvergensi. Residual Konvergency merupakan batasan maksimal dalam hasil perhitungan yang kriterianya dapat ditentukan sesuai keinginan, seperti yang ditunjukkan pada Gambar 3.7

Gambar 3.7 Kriteria Konvergensi

Pada umumnya makin kecil nilai konvergensi residual yang dicantumkan dalam proses iterasi, proses iterasi akan memakan waktu yang lebih lama hingga mencapai konvergensi, begitu juga sebaliknya. Namun peningkatan nilai konvergensi residual akan meningkatkan kualitas pengolahan data yang lebih baik. Oleh karena itu pada penelitian ini akan digunakan kriteria konvergensi hingga 10⁻⁶.

3.3 Postprocessing

Proses ini merupakan proses akhir dari simulasi. Hasil simulasi berupa data kualitatif dan kuantitatif. Data kualitatif berupa visualisasi aliran dengan menampilkan pola aliran dalam *compact heat exchanger* tipe *straight fin circular tube* dengan variasi lokasi. Data kuantitatif berupa distribusi kecepatan dan distribusi temperature *compact heat exchanger* tipe *straight fin circular tube*. Data kuantitatif tersebut akan diolah dengan *software* Microsoft Excel 2007 un tuk mendapatkan nilai kecepatan lokal, koefisien konveksi local, koefisien konveksi rata-rata, Nusselt Number local, Nusselt Number rata-rata, dan *pressure coefficient*. Data kuantitatif tersebut nantinya akan ditampilkan dalam bentuk grafik.

3.4 Flowchart Penelitian

Metode penelitian yang digunakan dalam penelitian karakteristik aliran pada *compact heat exchanger* tipe *straight fin circular tube* dapat dilihat pada Gambar 3.8 di bawah ini.

Gambar 3.8 Flowchart Penelitian

[Halaman ini sengaja dikosongkan]

BAB IV ANALISA HASIL DAN PEMBAHASAN

Pada bab ini akan ditampilkan data hasil penelitian dan pembahasan mengenai studi numerik pada pemodelan *straight fin circular tube*yang tersusun *staggered* tanpa dan menggunakan *rectangular obstacle* dengan variasi g/ST. Dari penghitungan numerik dengan *software Fluent 6.3.26* didapatkan hasil data kualitatif berupa *pathline* kecepatan, kontur kecepatan, dan kontur temperatur untuk masing-masing pemodelan. Data kuantitatif disajikan dalam bentuk grafik meliputi data kecepatan aliran fluida, dan *Nusselt number* fluida. Pada masing-masing analisa akan dibandingkan antara pemodelan tanpa *rectangular obstacles* dengan variasi g/ST.

4.1 Analisa Pola Aliran Fluida

Gambar 4.1 Visualisasi Velocity Magnitude Pathline

Suatu aliran yang melintasi bidang tertentu akan membentuk pola mengikuti bentuk bidang yang dilintasinya. Pada penelitian ini bidang yang akan ditinjau berbentuk *straight fin* *circular tube* yang tersusun secara *staggered*. Baris *tube* yang dianalisa berjumlah empat. Suatu aliran dengan kecepatan 2 m/s akan dilewatkan bidang tersebut. Pola aliran yang terjadi akan dianalisa pada pemodelan tanpa dan dengan penambahan *rectangular obstacle* dengan variasi g/ST sebesar 0,04, 0,08, dan 0,12, seperti yang ditunjukkan pada Gambar 4.1.

4.1.1 Pemodelan tanpa Penambahan *Rectangular Obstacle* (*Baseline*)

Gambar 4.2 Visualisasi aliran pada pemodelan tanpa penambahan *rectangular obstacle*

Berdasarkan Gambar 4.2, terlihat bahwa pada *single tube* terjadi perlambatan kecepatan aliran sebelum menumbuk *tube* atau biasa disebut sebagai titik stagnasi. Kemudian aliran terpecah mengalir kedua arah, yaitu mengalir ke bagian atas *tube* dan ke bagian bawah *tube*. Saat aliran mengalir di antara kedua bagian tersebut kecepatan lokal *tube* memliki kecepatan maksimum (V_{max}) karena adanya penyempitan celah laluan aliran (antara *tube* a dan *tube* b). Hal tersebut sesuai dengan karakteristik fluida, apabila fluida melewati celah yang lebih sempit maka kecepatannya akan meningkat. Setelah aliran melewati celah di antara kedua *tube* (*downstream*) dan aliran terseparasi (aliran memisah).Sebagian aliran berolak atau membentuk *vortex* di bagian belakang *tube* dan sebagian lainnya menuju ke *tube* berikutnya, seperti terlihat pada Gambar 4.3.

Gambar 4.3 Perbesaran pola aliran pada daerah downstream tube

Gambar 4.4 Visualisasi pola aliran pada pemodelan setelah penambahan *rectangular obstacle* dengan g/ST = 0,08

Berdasarkan Gambar 4.4, terlihat bahwa pada *single tube* terjadi perlambatan kecepatan aliran sebelum menumbuk *tube* atau biasa disebut sebagai titik stagnasi. Kemudian aliran terpecah mengalir kedua arah yaitu mengalir ke bagian atas *tube* dan ke bagian bawah *tube*. Aliran kemudian memecah lagi mengikuti bentuk dari *rectangular obstacle*, yaitu ke bagian atas dan ke bagian bawah *rectangular obstacle*. Aliran memiliki kecepatan maksimal (V_{max}) pada saat memalui kedua celah antara *tube* a dengan *tube* b dan antara *tube* dengan *rectangular obstacle*. Hal tersebut sesuai dengan karakteristik fluida, apabila fluida melewati celah yang lebih sempit maka kecepatannya akan meningkat. Setelah aliran memalui celah sempit, aliran akan menuju bagian belakang (*downstream*) tube dan aliran akan terpisah (terseparasi). Sebagian aliran akan menuju *tube* berikutnya, sebagian akan membentuk *vortex* di bagian belakang *rectangular obstacle*, dan sebagian akan membentuk *vortex* di bagian belakang *tube* sebelum diteruskan ke *tube* pada baris selanjutnya, seperti yang terlihat pada Gambar 4.5.

Gambar 4.5 Perbesaran pola aliran pada daerah downstream tube

4.2 Analisa Pengaruh Lokasi *Rectangular Obstacle*4.2.1 Analisa Berdasarkan Kontur Kecepatan

Berdasarkan visualisasi kontur kecepatan pada pemodelan tanpa penambahan rectangular obstacle dan dengan penambahan rectangular obstacle dengan variasi g/ST sebesar 0.04, 0.08, dan 0.12 seperti terlihat pada Gambar 4.6, da pat dikatakan bahwa kontur yang dibentuk dari keempat model dilihat dari warna dan bentuknya tampak berbeda-beda. Kesemua pemodelan menggunakan kecepatan masuk yang sama, yaitu sebesar 2 m/s. Kecepatan yang terjadi sepanjang pemodelan divisualisasikan dengan warna sesuai legenda yang disajikan. Kecepatan tertinggi diindikasikan dengan warna merah yaitu sebesar 4,55 m/s, sedangkan kecepatan terendah diindikasikan dengan warna biru gelap yaitu sebesar 0 m/s.

Pada pemodelan tanpa *rectangular obstacle (baseline)* kecepatan aliran mengalami perlambatan sebelum menumbuk tube.Kemudian aliran mengalami percepatan ketika melalui daerah *upstream tube* hingga mencapai kecepatan maksimal (V_{max}) ketika melalui celah sempit di antara kedua tube pada baris pertama.Sebagian aliran kemudian melambat dan membentuk *vortex* pada bagian belakang *tube* sebelum dilanjutkan ke *tube*pada baris selanjutnya.Sebagian aliran sedikit melambat dan diteruskan ke *tube* pada baris selanjutnya.

Gambar 4.6 Visualisasi Kontur Kecepatan

Pada ketiga pemodelan dengan rectangular obstacle kecepatan aliran mengalami perlambatan sebelum menumbuk tube.Kemudian aliran mengalami percepatan ketika melalui daerah upstream tube.Aliran mencapai kecepatan maksimal (V_{max}) ketika melalui celah sempit di antara dua *tube* dalam satu baris dan melalui celah sempit antara tubedengan rectangular obstacle. Sebagian aliran akan melambat dan membentuk vortex pada bagian belakang tube dan rectangular obstacle sebelum dilanjutkan ke tube pada baris berikutnya. Besarnya vortex yang terbentuk berbeda-beda bergantung dari besarnva jarak rectangular obstacle dari tube. Berdasarkan Gambar 4.6 daerah vortex terbesar terbentuk pada pemodelan dengan g/ST sebesar 0,12. Hal tersebut disebabkan aliran yang melalui celah sempit antara *rectangular obstacle* dengantube adalah yang paling besar, sehingga lebih banyak aliran yang bisa dilewatkan dan membentuk vortex. Namun dari keempat model, vortex yang terbentuk dari daerah belakang tube tidak ada yang lebih besar daripada model *baseline*.Pemodelan dengan kecepatan maksimal tertinggi apabila dilihat dari visualisasi gradasi warna adalah pada g/ST sebesar 0,04.

4.2.1 Analisa berdasarkan Kontur Temperatur

Berdasarkan visualisasi kontur temperatur pada pemodelan tanpa penambahan rectangular obstacle dan dengan penambahan rectangular obstacle dengan variasi g/ST sebesar 0,04, 0,08, dan 0,12 seperti terlihat pada Gambar 4.7, da pat dikatakan bahwa kontur yang dibentuk dari keempat model dilihat dari warna dan bentuknya tampak berbeda-beda. Kesemua pemodelan menggunakan temperatur fluida masuk yang sama, vaitu sebesar 308 K dan temperatur tube yang sama, yaitu sebesar 325,77 K. Temperatur yang terjadi sepanjang pemodelan divisualisasikan dengan warna sesuai legenda yang disajikan. Warna biru tua mengindikasikan temperatur fluida terendah, yaitu temperatur masuk sebesar 308 K, sedangkan warna merah mengindikasikan temperatur fluida tertinggi, yaitu temperatur dinding tube sebesar 325,77 K.

Gambar 4.7 Visualisasi Kontur Temperatur

pemodelan tanpa penambahan Pada rectangular obstacle dapat dilihat bahwa temperatur inlet semakin bertambah tinggi ketika melalui tube baris kedua. dan ketiga. keempat.Bertambahnya temperatur pada masing-masing baris membentuk tingkatan temperatur dengan temperatur terendah pada sisi masuk, temperatur pada tube baris kedua lebih tinggi daripada baris pertama, temperatur pada tube baris ketiga lebih tinggi daripada baris kedua, temperatur pada tube baris keempat lebih tinggi daripada baris ketiga, dan temperatur tertinggi pada sisi keluar.Hal tersebut disebabkan temperatur tube yang lebih tinggi daripada temperatur masuk fluida.Sesuai dengan karakteristik perpindahan panas dimana temperatur tinggi mengalir ke temperatur rendah.

Pada ketiga pemodelan dengan penambahan *rectangular obstacle* dapat dilihat peningkatan temperatur yang cukup signifikan dari sisi masuk, tube baris pertama, baris kedua, baris ketiga, baris keempat, dan sisi keluar.*Rectangular obstacle* yang terpasang pada *tube* pada baris pertama memfokuskan temperatur fluida masuk untuk menuju *tube* kedua, dalam hal ini memaksimalkan perpindahan panas antara *tube* pada baris ketiga dan sing panas pada baris pertama namun juga *tube* pada baris ketiga dan keempat. Distribusi temperatur untuk ketiga model tampak berbeda tergantung dari jarak *rectangular obstacle* dengan *tube*.

Gambar 4.8 Distribusi temperatur sisi keluar

Berdasarkan Gambar 4.8 didapatkan bahwa pemodelan tanpa *rectangular obstacle* memiliki temperatur keluar yang lebih rendah daripada pemodelan dengan penambahan *rectangular obstacle*.Nilai distribusi temperatur tertinggi dimiliki oleh pemodelan dengan variasi g/ST sebesar 0,04. Distribusi temperatur keluar untuk setiap pemodelan dapat dilihat pada Tabel 4.1

 Tabel 4.1 Kisaran temperatur keluar rata-rata untuk semua pemodelan

Pemodelan	Baseline	g/ST = 0,04	g/ST = 0,08	g/ST = 0,12
Temperatur (K)	310,81	311,08	310,91	310,85

- 4.3 Analisa Pengaruh Penambahan *Rectangular Obstacle* terhadap Karakteristik Aliran
- 4.3.1 Analisa Kecepatan Lokal Aliran Fluida Melintasi Tube
- 4.3.1.1 Analisa Kecepatan Lokal Aliran Fluida Melintasi Tubepada Pemodelan tanpa *Rectangular Obstacle* (*Baseline*)

Berdasarkan Gambar 4.9, kecepatan lokal aliran fluida melintasi tube saat posisi aliran melintasi sudut 0°, kecepatan bernilai 0 m/s. Hal tersebut karena fluida berkecepatan harus berhenti karena menumbuk *tube* atau yang biasa disebut titik stagnasi. Kemudian aliran fluida akan terpecah menjadi dua yaitu aliran yang mengalir ke bagian atas tube (*upper side*) dan bagian bawah tube (*lower side*). Saat aliran melintasi kedua bagian tersebut terjadi peningkatan kecepatan hingga mencapai kecepatan maksimal di posisi aliran pada sudut 80°. Setelah itu aliran akan melewati sisi belakang tube (*downstream*) dan mengalami perlambatan karena adanya *adverse pressure gradien* pada sudut $80° \le \theta \le 130°$. Aliran kemudian akan terseparasi dimana momentum aliran tidak mampu lagi menahan *adverse* pressure gradient dan friction effect. Aliran akan terlepas dari kontur body tube yang diindikasikan dengan kecepatan 0 m/s. Kecepatan lokal tube yang bernilai negatif (v < 0 m/s) mengindikasikan adanya *back pressure* yang menyebabkan terjadinya vortex di daerah sudut $130^{\circ} \le \le 180^{\circ}$.

Gambar 4.9 Distribusi kecepatan lokal aliran fluida melintasi tube pada pemodelan tanpa *rectangular obstacle(baseline)*

Selain itu, berdasarkan Gambar 4.9, tren grafik untuk masing-masing tube tampak berbeda.Sehingga dapat dikatakan bahwa kecepatan aliran melintasi tube untuk masing-masing tube di tiap barisnya juga berbeda-beda. Tube pada baris 1 mengalami peningkatan kecepatan hingga pada sudut $\theta = 80^{\circ}$, mengalami perlambatan di daerah $80^{\circ} \le \theta \le 130^{\circ}$, dan mengalami vortex di daerah $130^{\circ} \le \theta \le 180^{\circ}$. Sedangkan tube pada baris 2 mengalami peningkatan kecepatan hingga pada sudut $\theta = 70^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 70^{\circ}$, mengalami perlambatan di daerah $71^{\circ} \le \theta \le 126^{\circ}$, dan mengalami vortex di daerah $128^{\circ} \le \theta \le 180^{\circ}$. Pada tube pada baris 3mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, menga

peningkatan kecepatan hingga pada sudut $\theta = 68^{\circ}$, mengalami perlambatan di daerah 70° $\leq \theta \leq 117^{\circ}$, dan mengalami vortex di daerah 118° $\leq \theta \leq 180^{\circ}$. Berdasarkan nilai kecepatan rata-rata, tube pada baris 2 memiliki nilai tertinggi. Hal tersebut disebabkan celah sempit antartube pada baris 1, sehingga kecepatan yang akan menumbuk *tube* pada baris 2 lebih tinggi daripada kecepatan masuk fluida itu sendiri. Untuk besarnya nilai rata-rata kecepatan lokal aliran melintasi *tube* di setiap baris dapat dilihat pada Tabel 4.2

Tabel 4.2 Nilai kecepatan lokal rata-rata di setiap baris pada

Baris	1	2	3	4
Kecepatan (m/s)	1,78	1,84	1,77	1,69

4.3.1.2 Analisa Kecepatan Lokal Aliran Fluida Melintasi Tube pada Pemodelan dengan*Rectangular Obstacle* pada g/ST sebesar 0,04

Pada Gambar 4.10 da pat dilihat bahwa untuk model tanpa penambahan *rectangular obstacle*, jika dilihat dari posisi aliran saat mengalami peningkatan kecepatan, maka *tube* pada baris 2 memiliki kecepatan aliran melintasi tube yang lebih tinggi daripada *tube* pada baris 1. Hal tersebut terjadi karena aliran mengalami kecepatan maksimal (V_{max}) ketika melewati celah sempit antar*rectangular obstacle* pada baris 1, sehingga kecepatan aliran yang akan menumbuk *tube* pada baris 2 lebih tinggi daripada baris 1. Pada pemodelan dengan menggunakan *rectangular obstacle* dengan g/ST sebesar 0,04 di tube pada baris 1, fluida mengalami peningkatan kecepatan hingga mencapai sudut $\theta = 77^{\circ}$. Namun pada daerah $0^{\circ} \le \theta \le 75^{\circ}$ tren grafik yang dibentuk sama dengan model baseline karena belum dikenai pengaruh penambahan *rectangular obstacle*. Perlambatan aliran terjadi di daerah $78^{\circ} \le \theta \le 124^{\circ}$ karena adanya peningkatan tekanan

Gambar 4.10 Distribusi kecepatan aliran dengan penambahan *rectangular obstacle* g/ST = 0,04

pada aliran atau adverse pressure gradien. Kemudian kecepatan meningkat lagi di daerah $125^{\circ} \le \theta \le 140^{\circ}$ dan mengalami separasi ditandai dengan menurunnya kecepatan hingga bernilai negatif di $\theta = 170^{\circ}$. Lalu aliran mengalami vortex ditandai dengan nilai kecepatan yang sangat kecil yaitu sekitar 0 m/s hingga $\theta = 180^{\circ}$. Sedangkan pada tube di baris 2, aliran mengalami peningkatan kecepatan di hingga $\theta = 65^{\circ}$ dan mengalami perlambatan di daerah 66°≤θ≤ 120°.Kemudian kecepatan meningkat lagi di daerah 120°≤0≤ 144° dan mengalami separasi ditandai dengan menurunnya kecepatan hingga bernilai sekitar 0 m/s di $\theta = 172^{\circ}$. Lalu aliran mengalami vortex ditandai dengan kecepatan bernilai negatif hingga $\theta = 180^\circ$. Peningkatan kecepatan kembali terbentuk karena adanya penyempitan antara tube dan rectangular obstacle. Aliran terseparasi karena momentum aliran tidak mampu lagi menahan adverse pressure gradient dan friction effect. Vortex terbentuk karenaadanya back pressure.Pada baris ketiga rata-rata nilai kecepatan aliran fluida yang terjadi lebih kecil daripada baris kedua.Begitu juga dengan pada baris keempat, rata-rata nilai kecepatan aliran fluida yang terjadi lebih kecil daripada tube ketiga. Penurunan kecepatan terjadi karena *vortex* yang terbentuk di daerah belakang *rectangular obstacle* semakin besar.

Nilai distribusi kecepatan aliran melintasi tube untuk model dengan g/ST sebesar 0,04 berbeda dengan model *baseline*. Selain itu, penundaan separasi sebesar 40° dari model baseline (θ = 130°) dengan model dengan penambahan *rectangular obstacle* di g/ST sebesar 0,04 (θ = 170°) pada *tube* 1, disebabkan penambahan *rectangular obstacle* pada baris yang ditinjau. Peningkatan kecepatan di tube pada baris 2 d ipengaruhi oleh penambahan *rectangular obstacle* di tube pada baris 1.Pengaruh penambahan *rectangular obstacle* tampak berpengaruh pada tube kedua dimana tren grafik yang dibentuk lebih tinggi daripada tube baris kedua model *baseline*.Untuk besarnya nilai rata-rata kecepatan lokal dan peningkatan nilai rata-rata kecepatan lokal aliran keempat baris di model dengan penambahan *rectangular obstacle* g/ST sebesar 0,04 dibandingkan model *baseline* dapat dilihat pada tabel 4.3.

Tabel 4.2Nilai dan kisaran kenaikan kecepatan aliran melintasi tube setelah penambahan *rectangular obstacle* pada g/ST = 0,04 dibandingkan model *baseline*

Baris	1	2	3	4
Kecepatan (m/s)	2,17	2,52	2,36	2,20
Kisaran kenaikan	21,65 %	36,96 %	33,13 %	30,39 %

4.3.1.3 Analisa Kecepatan Lokal Aliran Fluida Melintasi Tube pada Pemodelan dengan*Rectangular Obstacle* pada g/ST sebesar 0,08

Gambar 4.11 Distribusi kecepatan aliran dengan penambahan *rectangular obstacle* g/ST = 0,08

Pada Gambar 4.11 da pat dilihat bahwa untuk model tanpa penambahan rectangular obstacle, jika dilihat dari posisi aliran saat mengalami peningkatan kecepatan, maka tube pada baris 2 memiliki kecepatan aliran melintasi tube yang lebih tinggi daripada tube pada baris 1. Hal tersebut terjadi karena aliran mengalami kecepatan maksimal (V_{max}) ketika melewati celah sempit antar*rectangular obstacle* pada baris 1, sehingga kecepatan aliran yang akan menumbuk tube pada baris 2 lebih tinggi daripada baris 1. Pada pemodelan dengan menggunakan rectangular obstacle dengan g/ST sebesar 0,08 di tube pada baris 1, fluida mengalami peningkatan kecepatan hingga mencapai sudut $\theta = 80^\circ$. Namun pada daerah $0^\circ \le \theta \le 75^\circ$ tren grafik yang dibentuk sama dengan model baseline karena belum dikenai pengaruh penambahan rectangular obstacle. Perlambatan aliran terjadi di daerah 81°≤θ≤ 120° karena adanya peningkatan tekanan

pada aliran atau *adverse pressure gradien*. Kemudian pada daerah 124°≤θ≤138°, perubahan kecepatan tidak terjadi secara signifikan karena aliran masih dapat diteruskan melalui celah antara rectangular obstacle dan tube. Pada lokasi g/ST sebesar ini, jarak antara *rectangular obstacle* dantube tidak terlalu berpengaruh terhadap peningkatan kecepatan kembali.Aliran k emudian mengalami separasi ditandai dengan menurunnya kecepatan hingga bernilai sekitar 0 m/s di $\theta = 160^{\circ}$. Lalu aliran mengalami vortex ditandai dengan kecepatan yang bernilai negatif hingga θ = 180°. Sedangkan pada tube di baris 2, a liran mengalami peningkatan kecepatan di hingga $\theta = 68^{\circ}$ dan mengalami perlambatan di daerah 68°≤0≤122°. Kemudian pada daerah $123^{\circ} \le \theta \le 137^{\circ}$, perubahan kecepatan tidak terjadi secara signifikan. mengalami separasi Aliran kemudian ditandai dengan menurunnya kecepatan hingga bernilai sekitar 0 m/s di $\theta = 160^{\circ}$. Lalu aliran mengalami vortex ditandai dengan kecepatan yang bernilai negatif hingga θ = 180°. Aliran terseparasi karena momentum aliran tidak mampu lagi menahan adverse pressure gradient dan friction effect. Vortex terbentuk karenaadanya back pressure.Pada baris ketiga rata-rata nilai kecepatan aliran fluida yang terjadi lebih kecil daripada baris kedua. Begitu juga dengan pada baris keempat, rata-rata nilai kecepatan aliran fluida yang terjadi lebih kecil daripada tube ketiga. Penurunan kecepatan terjadi karena vortex yang terbentuk di daerah belakang rectangular obstacle semakin besar.

Nilai distribusi kecepatan aliran melintasi tube untuk model dengan g/ST sebesar 0,08 berbeda dengan model *baseline*. Selain itu, penundaan separasi sebesar 30° dari model baseline (θ = 130°) dengan model dengan penambahan *rectangular obstacle* di g/ST sebesar 0,08 (θ = 160°) pada *tube* 1, disebabkan penambahan *rectangular obstacle* pada baris yang ditinjau. Peningkatan kecepatan di tube pada baris 2 d ipengaruhi oleh penambahan *rectangular obstacle* di tube pada baris 1.Pengaruh penambahan *rectangular obstacle* tampak berpengaruh pada tube kedua dimana tren grafik yang dibentuk lebih tinggi daripada tube baris kedua model *baseline*.Untuk besarnya nilai rata-rata kecepatan lokal dan peningkatan nilai rata-rata kecepatan lokal aliran keempat baris di model dengan penambahan *rectangular obstacle* g/ST sebesar 0,08 dibandingkan model *baseline* dapat dilihat pada tabel 4.4.

Tabel 4.4 Nilai dan kisaran kenaikan kecepatan aliran melintasi tube setelah penambahan *rectangular obstacle* pada g/ST = 0,08 dibandingkan model *baseline*

Baris	1	2	3	4
Kecepatan (m/s)	2,07	2,41	2,24	2,12
Kisaran kenaikan	16,29 %	30,83 %	26,49 %	25,69 %

4.3.1.4 Analisa Kecepatan Lokal Aliran Fluida Melintasi Tube pada Pemodelan dengan*Rectangular Obstacle* pada g/ST sebesar 0,12

Gambar 4.12 Distribusi kecepatan aliran dengan penambahan rectangular obstacle g/ST = 0.12
Pada Gambar 4.12 da pat dilihat bahwa untuk model tanpa penambahan rectangular obstacle, jika dilihat dari posisi aliran saat mengalami peningkatan kecepatan, maka tube pada baris 2 memiliki kecepatan aliran melintasi tube yang lebih tinggi daripada tube pada baris 1. Hal tersebut terjadi karena aliran mengalami kecepatan maksimal (V_{max}) ketika melewati celah sempit antarrectangular obstacle pada baris 1. sehingga kecepatan aliran yang akan menumbuk tube pada baris 2 lebih tinggi daripada baris 1. Pada pemodelan dengan menggunakan rectangular obstacle dengan g/ST sebesar 0,12 di tube pada baris 1, fluida mengalami peningkatan kecepatan hingga mencapai sudut $\theta = 80^\circ$. Namun pada daerah $0^\circ \le \theta \le 75^\circ$ tren grafik yang dibentuk sama dengan model baseline karena belum dikenai pengaruh penambahan rectangular obstacle. Perlambatan aliran terjadi di daerah 80°≤θ≤148° karena adanya peningkatan tekanan pada aliran atau adverse pressure gradien. Tidak terjadi peningkatan kecepatan kembali karena aliran langsung diteruskan melalui celah antara rectangular obstacle dantube. Penambahan rectangular obstacle tidak menyembabkan peningkatan kecepatan mengalami kembali sebelum separasi. namun hanya memperlambat terjadinya separasi. Separasi terjadi di $\theta = 150^{\circ}$ yang ditandai dengan kecepatan sekitar 0 m/s. Lalu aliran mengalami vortex ditandai dengan nilai kecepatan yang bernilai negatif hingga $\theta = 180^\circ$. Sedangkan pada *tube* di baris 2, aliran mengalami peningkatan kecepatan di hingga $\theta = 68^{\circ}$ dan mengalami perlambatan di daerah $68^{\circ} \le \theta \le 146^{\circ}$. Aliran mengalami separasi ditandai dengan menurunnya kecepatan hingga bernilai sekitar 0 m/s di $\theta = 146^{\circ}$. Lalu aliran mengalami vortex ditandai dengan kecepatan bernilai negatif hingga $\theta = 180^{\circ}$. Aliran terseparasi karena momentum aliran tidak mampu lagi menahan adverse pressure gradient dan friction effect. Vortex terbentuk karenaadanya back pressure.Pada baris ketiga rata-rata nilai kecepatan aliran fluida yang terjadi lebih kecil daripada baris kedua.Begitu juga dengan pada baris keempat, rata-rata nilai kecepatan aliran fluida yang terjadi lebih kecil daripada tube ketiga. Penurunan kecepatan terjadi karena *vortex* yang terbentuk di daerah belakang *rectangular obstacle* semakin besar.

Nilai distribusi kecepatan aliran melintasi tube untuk model dengan g/ST sebesar 0,08 berbeda dengan model *baseline*. Selain itu, penundaan separasi sebesar 30° dari model baseline (θ = 120°) dengan model dengan penambahan *rectangular obstacle* di g/ST sebesar 0,12 (θ = 150°), disebabkan penambahan *rectangular obstacle* pada baris yang ditinjau. Peningkatan kecepatan di tube pada baris 2 dipengaruhi oleh penambahan *rectangular obstacle* di tube pada baris 1.Pengaruh penambahan *rectangular obstacle* tampak berpengaruh pada tube kedua dimana tren grafik yang dibentuk lebih tinggi daripada tube baris kedua model *baseline*.Untuk besarnya nilai rata-rata kecepatan lokal dan peningkatan nilai rata-rata kecepatan lokal aliran keempat baris di model dengan penambahan *rectangular obstacle* g/ST sebesar 0,12 dibandingkan model *baseline* dapat dilihat pada tabel 4.5.

Tabel 4.5Nilai dan kisaran kenaikan kecepatan aliran melintasi tube setelah penambahan *rectangular obstacle* pada g/ST = 0,12 dibandingkan model *baseline*

Baris	1	2	2 3 4 2,29 2,12 2,05 24,09 % 19,78 % 21,37 %		
Kecepatan (m/s)	1,99	2,29	2,05		
Kisaran kenaikan	12,02 %	24,09 %	19,78 %	21,37 %	

- 4.3.2 Analisa Pengaruh Lokasi *Rectangular Obstacle* terhadap Kecepatan Aliran Fluida Melintasi Tube
- 4.3.2.1 Analisa Pengaruh Lokasi *Rectangular Obstacle* terhadap Kecepatan Aliran Fluida Melintasi Tube di Baris 1

Gambar 4.13 Perbandingan kecepatan aliran melintasi tube pada baris 1

Berdasarkan Gambar 4.13, kecepatan aliran melintasi *tube* untuk masing-masing pemodelan tampak berbeda. Pada daerah $0^{\circ} \le \theta \le 75^{\circ}$ nilai kecepatan hampir sama karena belum dipengaruhi oleh adanya penambahan *rectangular obstacle*. Perbedaan terletak terutama pada titik separasi dan kenaikan nilai kecepatan sebelum titik separasi. Pada model baseline, separasi terjadi di sekitar $\theta = 130$. Sedangkan pada model g/ST 0,04 terjadi di $\theta = 170^{\circ}$, g/ST 0,08 terjadi di $\theta = 160^{\circ}$, dan g/ST 0,12 terjadi di $\theta = 150^{\circ}$. Adanya penundaan separasi disebabkan adanya *rectangular obstacle* yang memecah aliran sebelum aliran terseparasi dengan sendiri. Posisi *rectangular obstacle* g/ST 0,04 memiliki kenaikan nilai kecepatantertinggi karena jarak antara *rectangular obstacle* dengan *tube* adalah yang paling kecil, sehingga kecepatan alirannya paling tinggi. Pada model g/ST 0,08 aliran tidak sampai mengalami peningkatan kecepatan kembali, namun sempat memiliki nilai kecepatan yang hampir konstan atau perubahan kecepatan yang tidak signifikan sebelum mencapai titik separasi. Sedangkan pada g/ST 0,12 t idak mengalami kenaikan kembali karena jarak antara *rectangular obstacle* dengan *tube* yang paling lebar sehingga kecepatan alirannya tidak setinggi pemodelan lain. Vortex yang terjadi pada model *baseline* merupakan yang terbesar, dan pada model dengan penambahan *rectangular obstacle* sebesar 0,04 adalah yang paling kecil.

4.3.2.2 Analisa Pengaruh Lokasi *Rectangular Obstacle* terhadap Kecepatan Aliran Fluida Melintasi Tube di Baris 2

Berdasarkan Gambar 4.14, nilai kecepatan aliran melintasi *tube* untuk masing-masing pemodelan tampak berbeda. Perbedaan terletak terutama pada titik separasi dan perubahan nilai kecepatan sebelum titik separasi. Pada model baseline, separasi terjadi di sekitar θ = 126. Sedangkan pada model g/ST 0,04 terjadi di θ = 172°, g/ST 0,08 terjadi di θ = 160°, dan g/ST 0.12 terjadi di $\theta = 146^{\circ}$. Adanya penundaan separasi disebabkan adanya *rectangular obstacle* yang memecah aliran sebelum aliran terseparasi dengan sendiri. Posisi rectangular obstacle g/ST 0,04 memiliki kenaikan kecepatan alirantertinggi karena jarak antara rectangular obtacle dengan tube adalah yang paling kecil, sehingga kecepatan alirannya paling tinggi. Pada model g/ST 0.08 aliran tidak sampai mengalami peningkatan kecepatan kembali, namun sempat memiliki nilai kecepatan yang hampir konstan atau perubahan kecepatan yang tidak signifikan sebelum mencapai titik separasi. Sedangkan pada g/ST 0,12 t idak mengalami kenaikan kembali karena jarak antara rectangular obstacle dengan *tube* yang paling lebar sehingga kecepatan alirannya tidak setinggi pemodelan lain. Pada baris kedua, nilai kecepatan pada daerah upstream juga tampak berbeda, dimana nilai kecepatan pada model dengan penambahan rectangular obstacle lebih tinggi daripada model baseline. Model dengan g/ST 0,04 memiliki nilai kecepatan tertinggi. Pada model baseline peningkatan nilai kecepatan tersebut terjadi karena aliran mengalami kecepatan maksimal (V_{maks}) ketika melewati celah sempit antar tube pada baris 1.Sedangkan pada model dengan penambahan rectangular obstacle disebabkan oleh V_{maks} pada celah antar rectangular obstacle pada baris 1. Sehingga kecepatan aliran yang akan menumbuk *tube* pada baris 2 lebih tinggi daripada baris 1. Vortex yang terjadi pada model baseline merupakan yang terbesar, dan pada model dengan penambahan rectangular obstacle sebesar 0,04 adalah yang paling kecil.

Secara keseluruhan, model dengan penambahan *rectangular obstacle* memiliki rata-rata kecepatan lokal yang lebih tinggi daripada model *baseline*.Besarnya rata-rata kecepatan lokal dan kisaran kenaikan kecepatan lokal aliran melintasi tube untuk setiap model dengan *rectangular obstacle* dibandingkan dengan model baseline dapat dilihat pada Tabel 4.6.

Tabel 4.6 Nilai dan kisaran kenaikan kecepatan aliran melintasi tube setelah penambahan *rectangular obstacle* dibandingkan model *baseline*

Model	Baseline	g/ST 0,04	g/ST 0,08	g/ST 0,12
Kecepatan (m/s)	1,77	2,31	2,21	2,11
Kisaran kenaikan		30,59 %	24,86 %	19,33 %

4.4 Analisa Pengaruh Penambahan *Rectangular Obstacle* terhadap Perpindahan Panas

- 4.4.1 Analisa Distribusi Nusselt Number
- 4.4.1.1Analisa Nusselt Number pada Pemodelan tanpa Rectangular Obstacle (Baseline)

Gambar 4.15 Distribusi *nusselt number* pada pemodelan tanpa *rectangular obstacle (baseline)*

Berdasarkan Gambar 4.15, *nusselt number* memiliki nilai tertinggi pada saat melintasi titik stagnasi di θ

= 0°. P ada daerah tersebut, nilai *temperatuer gradient*, $\frac{\partial T}{\partial y}$, bernilai maksimum.Nilai temperatur ini semakin kecil seiring dengan bertambahnya nilai θ . Sehingga nilai koefisien konveksi juga akan semakin menurun dan mencapai titik minimum di daerah separasi.Sedangkan *nusselt number* berbanding lurus dengan nilai koefisien konveksi. Hal ini dapat dijelaskan dengan persamaan 4.1, persamaan 4.2, da n persamaan 4.3, da n persamaan 4.4 di bawah ini :

$$q'' = h(T_s - T_{\infty})$$
(4.1)

$$h = \frac{q}{T_s - T_\infty} \tag{4.2}$$

$$h_{\theta} = \frac{-k_{f} \frac{\partial T}{\partial y}\Big|_{y=0}}{T_{s} - T_{\infty}}$$

$$Nu_{\theta} = \frac{h_{\theta} D}{k_{f}}$$

$$(4.3)$$

dimana :

q" = heat flux

 h_{θ} = koefisien konveksi lokal

 T_s = temperatur permukaan tube

 T_{∞} = temperatur fluida

 $K_f =$ konduktifitas termal fluida

Aliran kemudian mengalami penurunan *nusselt number* pada daerah $0^{\circ} \le \theta \le 130^{\circ}$. *Nusselt number* kembali naik karena adanya vortex yang terbentuk di daerah *downstream tube*. Tren grafik yang terbentuk pada tube di baris 1 juga hampir sama dengan yang terbentuk pada tube di baris 2, 3, dan 4. Pada tube di baris kedua, *nusselt number* di titik stagnasi memiliki nilai yang lebih tinggi daripada baris 1. Kemudian terjadi penurunan hingga pada saat aliran melintasi $\theta = 50^{\circ}$, *nusselt number* tube di baris 2 menjadi

lebih rendah daripada baris 1. Nusselt number kemudian mengalami penurunan hingga $\theta = 126^{\circ}$ dan naik hingga $\theta =$ 180°.Kenaikan pada daerah stagnasi pada tube di baris 2 disebabkan pada kenaikan kecepatan aliran akibat adanya celah sempit antartube yang terjadi di baris 1 dan mencapai V_{max} . Sehingga sesaat sebelum menumbuk tube pada baris 2 kecepatan aliran lebih tinggi daripada kecepatan saat menumbuk tube pada baris 1. H al tersebut sesuai dengan teori dimana nilai kecepatan aliran fluida sebanding dengan nilai koefisien konveksi.Selain itu juga ada pengaruh dari perubahan temperatur yang terjadi antara fluida dan tube di baris 2. U ntuk nilai heat flux yang sama, apabila selisih temperatur rendah, maka nilai koefisien konveksi akan semakin besar. Rendahnya selisih temperatur disebabkan karena nilai temperatur fluida menumbuk tube baris 2 yang lebih besar akibat perpindahan panas pada yang terjadi sebelumnya di tube pada baris 1. Untuk tube pada baris ke 3 dan 4, m asing-masing memiliki nilai koefisien konveksi yang lebih rendah daripada tube di baris 1 maupun 2 di titik stagnasi. Hal tersebut dikarenakan perpindahan panas yang mulai efektif terjadi pada tube di baris 2 sehingga selisih temperatur fluida ketika menumbuk tube di baris 3 dan 4 semakin besar. Hal tersebut dapat dilihat pula dari penurunan nusselt number di baris 3 ($0^{\circ} \le \theta \le 118^{\circ}$) dan baris 4 ($0^{\circ} < \theta < 117^{\circ}$). Untuk besarnya nilai rata-rata *nusselt* number aliran melintasi tube di setiap baris dapat dilihat pada Tabel 4.

 Tabel 4.7 Nilai nusselt number lokal rata-rata di setiap baris

 pada model baseline

Baris	1	2	3	4
Nusselt number	45,08	45,36	41,68	39,20

4.4.1.2 Analisa Nusselt Number pada Pemodelan dengan Rectangular Obstacle pada g/ST sebesar 0,04

Gambar 4.16 Perbandingan distribusi *nusselt number* dengan penambahan rectangular obstacle g/ST = 0.04

Berdasarkan Gambar 4.16, pa da model dengan penambahan *rectangular obstacles* g/ST sebesar 0,04 tube pada baris 1, terjadi penurunan *nusselt number* aliran melintasi tube hingga $\theta = 124^{\circ}$. Namun pada saat aliran melintasi daerah $0^{\circ} \le 0 \le 60^{\circ}$, aliran memiliki *nusselt number* yang sama denga model *baseline*. Nilai *nusselt number* kemudian kembali naik pada daerah $125^{\circ} \le \theta \le 144^{\circ}$. Kenaikan tersebut terjadi karena kecepatan aliran yang meningkat ketika melewati celah sempit antara *rectangular obstacle* dengan tube. Sesuai dengan teori, dimana

nilai kecepatan aliran berbanding lurus dengan nilai koefisien konveksi dan nusselt number.Nusselt number kemudian mulai menurun lagi pada daerah 145°< θ <170° dan naik lagi hingga θ = 180°. Pada tube di baris kedua, nusselt number di titik stagnasi memiliki nilai yang lebih tinggi daripada baris 1. Kemudian terjadi penurunan hingga pada saat aliran melintasi $\theta = 50^{\circ}$, nusselt number tube di baris 2 menjadi lebih rendah daripada baris 1. Nusselt number kemudian mengalami penurunan hingga mencapai $\theta = 119^{\circ}$. Lalu mengalami kenaikan pada daerah $120^{\circ} \le \theta \le 140^{\circ}$ dan mengalami penurunan lagi pada daerah 144°≤θ≤ 171°. Nusselt number naik lagi hingga mencapai daerah $\theta = 180^{\circ}$. Nusselt number pada daerah ini lebih tinggi daripada baris 1 karena vortex yang terbentuk lebih besar. Fenomena yang terjadi pada baris 3 dan 4 hampir sama dengan baris 1, na mun nusselt number pada baris 3 lebih rendah dan baris 4 adalah yang paling rendah. Perbedaannya terutama terletak pada daerah penurunan nusselt number (separasi) yang terjadi, dimana pada baris 3 terjadi pada $\theta = 171^{\circ}$ dan pada baris 4 terjadi pada $\theta =$ 178°. Hal tersebut mengakibatkan vortex yang terjadi pada downstream tube di baris 4 menjadi yang terkecil.

Nusselt number setelah penambahan rectangular obstacle g/ST = 0,04 c enderung naik dibandingkan model baseline. Tren grafik untuk kedua model pada tube di baris 1 memiliki nilai yang sama di daerah $0^{\circ} \le \theta \le 75^{\circ}$ karena belum adanya pengaruh pemisahan aliran akibat penambahan rectangular obstacle. Untuk besarnya nilai rata-rata nusselt number dan peningkatan nilai rata-rata nusselt number lokal aliran pada keempat baris di model dengan penambahan rectangular obstacle g/ST sebesar 0,04 dibandingkan model baseline dapat dilihat pada tabel 4.8. **Tabel 4.8**Nilai dan kisaran kenaikan *nusselt number* lokal setelah penambahan *rectangular obstacle* pada g/ST = 0,04 dibandingkan model *baseline*

Baris	1	2	3	4
Nusselt number	48,01	48,44	44,07	41,67
Kisaran kenaikan	6,53 %	6,79 %	5,75 %	6,29 %

4.4.1.3 Analisa Nusselt Number pada Pemodelan dengan Rectangular Obstacle pada g/ST sebesar 0,08

Gambar 4.17 Perbandingan distribusi *nusselt number* dengan penambahan rectangular obstacle g/ST = 0.08

Berdasarkan Gambar 4.17, pa da model dengan penambahan *rectangular obstacles* g/ST sebesar 0,08 tube pada baris 1, terjadi penurunan *nusselt number* aliran melintasi tube hingga $\theta = 122^{\circ}$. Namun pada saat aliran melintasi daerah $0^{\circ} \le \theta \le 75^{\circ}$, aliran memiliki *nusselt number* yang sama denga model

baseline. Nusselt numberkemudian mengalami penurunan, namun tidak signifikan pada daerah $124^{\circ} \le \theta \le 137^{\circ}$. Fenomena tersebut terjadi karena kecepatan aliran yang langsung dilewatkan celah antara tube danrectangular obstacle tanpa sempat mengalami kecepatan maksimal. Nusselt number kemudian mulai menurun lagi pada daerah 138° $\leq \theta \leq 160^{\circ}$ dan naik lagi hingga $\theta = 180^{\circ}$. Pada tube di baris kedua, nusselt number di titik stagnasi memiliki nilai yang lebih tinggi daripada baris 1. Kemudian terjadi penurunan hingga pada saat aliran melintasi $\theta = 72^{\circ}$, nusselt number tube di baris 2 menjadi lebih rendah daripada baris 1. Nusselt number kemudian mengalami penurunan hingga mencapai $\theta = 122^{\circ}$. Lalu mengalami perubahan yang tidak signifikan pada daerah $123^{\circ} \le \theta \le 137^{\circ}$ dan mengalami penurunan lagi pada daerah $138^\circ \le \theta \le 160^\circ$. Nusselt number naik lagi hingga mencapai daerah $\theta = 180^{\circ}$. Nusselt number pada daerah ini lebih tinggi daripada baris 1 karena vortex yang terbentuk lebih besar. Fenomena yang terjadi pada baris 3 dan 4 hampir sama dengan baris 1, namun nusselt number pada baris 3 lebih rendah dan baris 4 adalah yang paling rendah. Daerah seperasi pada *tube* di baris 3 sama dengan baris 4. Hal tersebut mengakibatkan vortex yang terjadi pada downstream tube di baris 3 da n 4 m enjadi yang terkecil

Nusselt *number*setelah penambahan rectangular *obstacle* g/ST = 0.08 c enderung naik dibandingkan model baseline. Tren grafik untuk kedua model pada tube di baris 1 memiliki nilai yang sama di daerah 0°≤θ≤ 75° karena belum pengaruh pemisahan aliran akibat penambahan adanya rectangular obstacle. Untuk besarnya nilai rata-rata nusselt number dan peningkatan nilai rata-rata nusselt number lokal aliran pada keempat baris di model dengan penambahan rectangular obstacle g/ST sebesar 0,08 dibandingkan model baseline dapat dilihat pada tabel 4.9.

Tabel 4.9Nilai dan kisaran kenaikan *nusselt number* lokal setelah penambahan *rectangular obstacle* pada g/ST = 0,08 dibandingkan model *baseline*

Baris	1	2	3	4
Nusselt number	47,62	48,13	42,65	40,02
Kisaran kenaikan	5,65 %	6,11 %	2,34 %	2,09 %

4.4.1.4 Analisa Nusselt Number pada Pemodelan dengan Rectangular Obstacle pada g/ST sebesar 0,12

Gambar 4.18 Perbandingan distribusi *nusselt number* dengan penambahan *rectangular obstacle* g/ST = 0,12

Berdasarkan Gambar 4.18, pa da model dengan penambahan *rectangular obstacles* g/ST sebesar 0,12*tube* pada baris 1, t erjadi penurunan *nusselt number*aliran melintasi tube hingga $\theta = 150^{\circ}$. Namun pada saat aliran melintasi daerah $0^{\circ} \le \theta \le$ 75°, aliran memiliki nusselt numberyang sama dengan model baseline. Nusselt numberkemudian kembali naik pa da daerah 150°≤θ≤180°. Tidak terjadi peningkatan nusselt number kembali ketika melewati celah di antara tube dengan rectangular obstacle. Hal tersebut terjadi karena jarak yang terlalu besar, sehingga aliran diteruskan melalui celah tanpa sempat mengalami kecepatan maksimal sebelum mencapai titik separasi.Pada tube di baris kedua, nusselt number di titik stagnasi memiliki nilai yang lebih tinggi daripada baris 1. Kemudian terjadi penurunan hingga pada saat aliran melintasi $\theta = 60^\circ$, *nusselt number* tube di baris 2 menjadi lebih rendah daripada baris 1. Nusselt number kemudian mengalami penurunan hingga mencapai $\theta = 150^{\circ}$. Lalu mengalami kenaikan pada daerah 150°≤θ≤180°. Fenomena yang terjadi pada baris 3 dan 4 hampir sama dengan baris 1, na mun nusselt number pada baris 3 lebih rendah dan baris 4 adalah yang paling rendah. Perbedaannya terutama terletak pada daerah penurunan nusselt number (separasi) yang terjadi, dimana pada baris 3 terjadi pada $\theta = 142^{\circ}$ dan pada baris 4 terjadi pada $\theta =$ 137°. Hal tersebut mengakibatkan vortex yang terjadi pada downstream tube di baris 4 menjadi yang terbesar.

Nusselt *number*setelah penambahan rectangular *obstacle* g/ST = 0.12 c enderung naik dibandingkan model baseline. Tren grafik untuk kedua model pada tube di baris 1 memiliki nilai yang sama di daerah 0°≤θ≤ 75° karena belum adanya pengaruh pemisahan aliran akibat penambahan rectangular obstacle. Untuk besarnya nilai rata-rata nusselt number dan peningkatan nilai rata-rata nusselt number lokal aliran pada keempat baris di model dengan penambahan rectangular obstacle g/ST sebesar 0,12 dibandingkan model baseline dapat dilihat pada tabel 4.10.

Tabel 4.10Nilai dan kisaran kenaikan *nusselt number* lokal setelah penambahan *rectangular obstacle* pada g/ST = 0,12 dibandingkan model *baseline*

Baris	1	2	3	4
Nusselt number	46,79	47,66	41,32	38,98
Kisaran kenaikan	3,83 %	5,07 %	-0,86 %	-0,57 %

4.4.2 Analisa Pengaruh Lokasi Rectangular Obstacle terhadap Distribusi Nusselt Number

4.4.2.1 Analisa Distribusi Nusselt Number di Baris 1

Berdasarkan Gambar 4.19, *nusselt number* untuk masing-masing pemodelan tampak berbeda. Pada daerah $0^{\circ} \le \theta \le 60^{\circ}$ *nusselt number* hampir sama. Perbedaan terletak terutama pada titik separasi dan kenaikan *nusselt number* sebelum titik

separasi. Pada model baseline, separasi terjadi di sekitar $\theta = 130^{\circ}$. Sedangkan pada model g/ST 0,04 terjadi di $\theta = 170^{\circ}$, g/ST 0,08 terjadi di $\theta = 160^{\circ}$, dan g/ST 0,12 terjadi di $\theta = 150^{\circ}$. Adanya penundaan separasi disebabkan adanya rectangular obstacle yang memecah aliran sebelum aliran terseparasi dengan sendiri. Posisi rectangular obstacle g/ST 0,04 memiliki kenaikan nusselt number tertinggi karena jarak antara rectangular obtacle dengan tube adalah yang paling kecil, sehingga kecepatan alirannya paling tinggi. Sedangkan pada g/ST 0,12 tidak mengalami kenaikan kembali karena jarak antara rectangular obstacle dengan tube vang paling lebar sehingga kecepatan alirannya tidak setinggi pemodelan lain. Selain itu pada daerah 160°≤θ≤180°, besarnya nusselt numberyang terjadi setelah model diberi rectangular obstacle tidak sebesar model *baseline*. Hal tersebut disebabkan vortex yang terbentuk di daerah downstream tube tidak sebesar vang terjadi di model baseline. Vortex yang terjadi lebih kecil akibat adanya pemisahan aliran, sebagian membentuk vortex di daerah belakang rectangular obstacle. Pada posisi rectangular obstacle g/ST 0,12nusselt number paling tinggi dibandingkan ketiga pemodelan karena vortex yang dihasilkan di lebih besar di downstream tube.

4.4.2.2 Analisa Distribusi Nusselt Number di Baris 2

Berdasarkan Gambar 4.20, *nusselt number* untuk masing-masing pemodelan tampak berbeda. Perbedaan terletak terutama pada titik separasi dan kenaikan *nusselt number* sebelum titik separasi. Pada model baseline, separasi terjadi di sekitar θ = 126. Sedangkan pada model g/ST 0,04 terjadi di θ = 170°, g/ST 0,08 terjadi di θ = 160°, dan g/ST 0,12 terjadi di θ = 146°. Adanya penundaan separasi disebabkan adanya *rectangular obstacle* yang memecah aliran sebelum aliran terseparasi dengan sendiri. Posisi *rectangular obstacle* g/ST 0,04 memiliki kenaikan *nusselt number* tertinggi karena jarak antara *rectangular obstacle* dengan *tube* adalah yang paling kecil, sehingga kecepatan alirannya paling

Gambar 4.20 Perbandingan distribusi nusselt number di baris 2

tinggi. Sedangkan pada g/ST 0,12 tidak mengalami kenaikan kembali karena jarak antara rectangular obstacle dengan tube yang paling lebar sehingga kecepatan alirannya tidak setinggi pemodelan lain.Pada baris kedua, nusselt number pada daerah upstream juga tampak berbeda, dimana nusselt number pada model dengan penambahan rectangular obstacle lebih tinggi daripada model baseline. Pada model baseline terjadi peningkatan nilai kecepatan karena aliran mengalami kecepatan maksimal (V_{maks}) ketika melewati celah sempit antar tube pada baris 1.Sedangkan pada model dengan penambahan rectangular obstacle disebabkan oleh V_{maks} pada celah antar rectangular obstacle pada baris 1. Sehingga kecepatan aliran yang akan menumbuk tube pada baris 2 lebih tinggi daripada baris 1. Sesuai teori, dimana nilai kecepatan aliran berbanding lurus dengan nusselt number. Selain itu pada daerah 160°≤0≤180°, besarnya nusselt numberyang terjadi setelah model diberi rectangular obstacle tidak sebesar model baseline. Hal tersebut disebabkan vortex yang terbentuk di daerah downstream tube tidak sebesar yang terjadi di model baseline. Vortex yang terjadi lebih kecil

akibat adanya pemisahan aliran, sebagian membentuk vortex di daerah belakang *rectangular obstacle*. Pada posisi *rectangular obstacle* g/ST 0,12*nusselt number* paling tinggi dibandingkan ketiga pemodelan karena vortex yang dihasilkan di lebih besar di *downstream tube*.

4.4.3 Analisa Distribusi Nusselt Number Rata-rata

Gambar 4.21 Distribusi nusselt number rata-rata di setiap baris

Berdasarkan Gambar 4.21, dimana nusselt number rata-rata dianalisa pada masing-masing keempat baris tube untuk masing-masing pemodelan, didapatkan kesimpulan bahwa nusselt number rata-rata untuk model dengan penambahan rectangular obstacle mengalami kenaikan penambahan dibandingkan tanpa model rectangular (baseline). Pemodelan dengan penambahan obstacle rectangular obstacle di g/ST sebesar 0,04 memiliki rata-rata kenaikan nusselt number tertinggi, disusul model g/ST 0,08 dan 0,12. Namun pada pemodelan g/ST 0,12, untuk tube di

baris 3 da n 4 *nusselt number* rata-rata yang dihasilkan sedikit lebih rendah daripada model *baseline*. Meskipun secara keseluruhan *nusselt number* rata-rata untuk pemodelan dengan penambahan *rectangular obstacle* lebih besar daripada model *baseline*, namun kenaikan *nusselt number* yang dihasilkan tidak signifikan. Hal tersebut disebabkan kecepatan fluida masuk yang terlalu kecil untuk geometri pemodelan yang dihasilkan, yaitu 2 m/s atau *reynold number* sekitar 3200. U ntuk besarnya nilai dan kenaikan *nusselt number* untuk setiap pemodelan dengan *rectangular obstacle* bila dibandingkan dengan model *baseline* dapat dilihat pada Tabel 4.11.

Tabel 4.11Nilai dan kisaran peningkatan nusselt numberrata-rata pada pemodelan dengan penambahan rectangular obstacledibandingkan model baseline

Model	Baseline	g/ST 0,04	g/ST 0,08	g/ST 0,12
Kecepatan (m/s)	42,83	45,55	44,61	43,69
Kisaran kenaikan		6,35 %	4,15 %	2,00 %

4.5 Pengaruh Penambahan Rectangular Obstacle terhadap Pressure Drop

Gambar 4.22 Perbandingan pressure drop

Pada Gambar 4.22 di tampilkan grafik perbandingan *pressure drop* yang terjadi pada sisi keluar untuk pemodelan tanpa penambahan *rectangular obstacle* dan pemodelan dengan penambahan *rectangular obstacle*. Nilai *pressure drop* didapatkan dari selisih antara tekanan pada sisi keluar dengan sisi keluar, seperti dijelaskan pada persamaan 4.5.

$$\Delta P = P_{outlet} - P_{inlet} \tag{4.5}$$

Nilai *pressure drop* model tanpa *rectangular obstacle* kemudian dibandingkan dengan model dengan penambahan *rectangular obstacle*. Besarnya kisaran kenaikan *pressure drop* dapat dilihat pada Tabel 4.12.

Tabel 4.12 Kisaran peningkatan nilai *pressure drop* pada pemodelan dengan *rectangular obstacle* dibandingkan dengan model *baseline*

Model	g/ST = 0,04	g/ST = 0,08	g/ST = 0,12
Kisaran kenaikan	97,31 %	81,25 %	79,34 %

Berdasarkan Tabel 4.9, nilai *pressure drop* pemodelan dengan *rectangular obstacle* pada posisi g/ST 0,04 memiliki nilai paling tinggi. Peningkatan *pressure drop* yang signifikan tersebut juga berbanding lurus dengan peningkatan nilai kecepatan dan nilai *nusselt number* pemodelan g/ST 0,04.Hal tersebut dapat dijelaskan dengan Persamaan Bernoulli untuk *incompressible flow* seperti terlihat pada persamaan 4.6.

$$p + \rho gh + \frac{1}{2}\rho v^2 = konstan \tag{4.6}$$

dimana :

p = tekanan fluida (Pa)

 ρ = densitas fluida (kg/m³)

 $g = gravitasi bumi (m/s^2)$

h = ketinggian relatif terhadap suatu permukaan (m)

v = kecepatan fluida (m/s)

Untuk ketinggian dan fluida yang sama, maka persamaan tersebut dapat menjadi :

$$p_{inlet} + v_{inlet} = p_{outlet} + v_{outlet}$$
(4.7)

Berdasarkan persamaan 4.7, untuk tekanan dan kecepatan masuk yang sama, semakin tinggi kecepatan fluida keluar maka semakin rendah tekanan fluida keluar. Sehingga penurunan tekanan atau *pressure drop* semakin besar pada sisi keluar. Sedangkan besarnya nilai kecepatan berbanding lurus dengan *nusselt number* dan koefisien perpindahan panas. Sehingga, dapat disimpulkan

semakin besar *pressure drop* suatu aliran maka semakin besar pula perpindahan panasnya.

[Halaman ini sengaja dikosongkan]

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan penelitian dengan studi numerik yang dilakukan pada *straight fin circular tube* dengan penambahan *rectangular obstacle* pada posisi g/ST sebesar 0,04, 0,08, dan 0,12, didapatkan kesimpulan-kesimpulan sebagai berikut :

- 1. Karakteristik aliran berupa nilai kecepatan aliran yang dihasilkan model dengan penambahan *rectangular obstacle* meningkat sekitar 19,33 30,59 % dibandingkan model *baseline*. Pada posisi *rectangular obstacle* g/ST sebesar 0,04 memiliki kecepatan aliran rata-rata yang paling besar.
- 2. Distribusi temperatur keluaran pada model dengan penambahan *rectangular obstacle* lebih tinggi daripada model *baseline*. Posisi g/ST sebesar 0,04 memiliki distribusi temperatur keluaran terbesar.
- Perpindahan panas yang terjadi setelah penambahan rectangular obstacle lebih baik daripada model baseline. Hal tersebut dapat dilihat dari kontur kecepatan dan temperatur, nusselt number rata-rata, dan nilai pressure drop. Nusselt number rata-rata pada model dengan penambahan rectangular obstacle meningkat sebesar 2 6,35 % dibandingkan model baseline. Sedangkan pressure drop meningkat sebesar 79,34 97,31 % dibandingkan model baseline. Posisi g/ST sebesar 0,04 memiliki perpindahan panas terbesar.

5.2 Saran

Berdasarkan penelitian dengan studi numerik yang dilakukan pada *straight fin circular tube* dengan penambahan *rectangular obstacle* pada posisi g/ST sebesar 0,04, 0,08, dan 0,12, diberikan saran-saran sebagai berikut :

- 1. Sebaiknya dilakukan studi numerik dengan CFD secara 3D untuk mendapatkan hasil yang lebih akurat dan mendekati kondisi yang sebenarnya.
- 2. Sebaiknya penelitian dilakukan dengan menggunakan geometri dan kondisi peralatan yang tersedia oleh perusahaan sehingga hasil yang didapatkan lebih akurat dan mendekati kondisi sebenarnya.
- 3. Perlu dilakukan modifikasi dalam bentuk *obstace* yang lainnya, seperti bentuk *obstacle*, panjang *obstacle*, konfigurasi *tube*, dan lainnya.

DAFTAR PUSTAKA

Adamr. 2009. ARC Nissan R35 GTR GT-R Intercooler
M079R35G M109R35G-Straight fin.
<url:http: www.tunersgroup.com=""></url:http:>
Anonim. 2011. Mengenal Komponen AC dan penyebab
Kerusakannya.
<url:http: 02="" 04="" 2011="" <="" blognyamitra.wordpress.com="" td=""></url:http:>
mengenal-komponen-ac-penyebab-kerusakannya.html>
Cataract Steel Industries. 2014. Custom Engineered Shell &
Tube Heat Exchangers.
<url:http: custome<="" products="" td="" www.cataractsteel.com=""></url:http:>
ngineeredShellTubeHeatExchangers.aspx>
Choirunnisa dan Prabowo. 2013. "Studi Numerik Pengaruh
Penambahan Convergency Promoters (CPs) terhadap
Karakteristik Aliran dan Perpindahan Panas dengan 1/D
= 0,25 pada Tubebanks yang Tersusun Secara
Staggered". JURNAL TEKNIK POMITS, Vol. 2, No.
2 : B 182-187.
Dong et al. 2007. 3D-CFD simulation and neural network
model for the <i>j</i> and <i>f</i> factors of the wavy fin-and-flat
tube heat exchangers.
<pre><url:http: scielo.php?pid="S0104-</pre" www.scielo.br=""></url:http:></pre>
66322011000300016&script=sci_arttext.html>
Eljaz. 2014. Air Conditioner. <url:http: www.savers.pk=""></url:http:>
Halit Arat. 2014. Heat Exchangers.
<url:http: www.halitarat.com=""></url:http:>
Iksan. 2013. Fungsi Kondensor pada Ac.
<url:http: fungsi-kondensor-pada-<="" fungsi.info="" td=""></url:http:>
ac.html>
Incropera, Frank P. and Dewitt, David P. 2002. Fundamentals of
Heat and Mass Transfer, edisi kelima. Singapore :
John Wiley & Sons Inc.

Indiamart Intermesh. 2014. **Heat Exchanger.** <URL: http://www.indiamart.com/steelfab-inds/parts-forheavy-industries.html>

- Jiin-Yuh jang, Ling-Fang Hsu, dan Jin-Sheng Leu. 2012. "Optimization of The Span Angle and Location of Vortex Generators in a Plate Fin and Tube Heat Exchanger". **International Journal of heat and Mass Transfer** 67, 432-444.
- M. V. Ghori dan R. K. Kirar. 2012. "Numerical Analysis of Tube Fin Heat Exchanger using Fluent". **Patel college of Science and Technology, Rajiv Gandhi Proudyogiki Vishwavidhyalaya,** Vol. 1, Issue 2: pp. 37-44.

BIODATA PENULIS

Prisma Pradana Suwarno Putri atau akrab dipanggil Prisma, merupakan anak pertama dari dua bersaudara dari pasangan Suwarno dan Nurkhayati. Penulis lahir di Jombang pada 1 Maret 1994. Riwayat pendidikan penulis dimulai dari TA Al-Burhan pada tahun 1998-2000 dan dilanjutkan pendidikan dasar dari tahun 2000-2006 di SDN Jombatan V Jombang. Penulis melanjutkan pendidikan di SMPN 1 Jombang pada tahun 2006-2008, sedangkan pendidikan tingkat atas ditempuh di SMAN 3 Jombang

dari tahun 2008-2010.

Selanjutnya penulis melanjutkan pendidikan ke tingkat perguruan tinggi di Institut Teknologi Sepuluh Nopember (ITS) Surabaya mengambil jurusan Teknik Mesin. Selama kuliah penulis aktif dalam organisasi pers mahasiswa di dalam jurusan sebagai Staff Biro Majalah Dinding di DIMENSI CLUB periode 2011-2012. Selanjutnya menjadi Kepala Biro Majalah di DIMENSI CLUB periode 2012-2013. Penulis juga aktif dalam kegiatan pelatihan kemahasiswaan yang diadakan jurusan, fakultas, maupun institut. Penulis juga aktif dalam kepanitiaan kegiatan yang diadakan jurusan hingga institut.

Untuk semua informasi dan masukan dapat menghubungi penulis melalui email prismapradanasp@gmail.com

[Halaman ini sengaja dikosongkan]

Lampiran 1

 Tabel Data Pemodelan tanpa Penambahan Rectangular Obstacle (Baseline)

S 4]	Baris <i>Tube</i> .	1		Baris <i>Tube</i> 2	2		Baris <i>Tube</i> .	3		Baris <i>Tube</i>	4
Sudut	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu
0	0,000	99,217	58,589	0,000	103,976	61,399	0,000	95,051	56,129	0,000	92,393	54,559
2	0,169	99,798	58,931	0,146	103,913	61,362	0,145	95,590	56,447	0,134	92,350	54,534
5	0,241	100,575	59,391	0,415	103,732	61,255	0,579	96,305	56,869	0,394	92,207	54,449
7	0,445	100,817	59,533	0,677	103,461	61,095	0,843	96,494	56,981	0,643	91,979	54,315
9	0,651	100,960	59,618	0,938	103,270	60,982	1,079	96,557	57,018	0,894	91,820	54,221
11	0,841	101,047	59,669	1,168	103,188	60,934	1,257	96,583	57,033	1,115	91,753	54,181
14	0,984	101,066	59,681	1,340	103,069	60,863	1,435	96,540	57,008	1,280	91,666	54,130
16	1,131	101,063	59,679	1,513	102,942	60,788	1,611	96,463	56,962	1,448	91,580	54,079
18	1,278	101,042	59,666	1,686	102,807	60,709	1,782	96,375	56,910	1,615	91,491	54,026
20	1,422	101,002	59,643	1,853	102,660	60,622	1,948	96,277	56,852	1,779	91,392	53,968
23	1,563	100,948	59,611	2,015	102,499	60,527	2,109	96,158	56,782	1,939	91,285	53,905
25	1,702	100,873	59,567	2,172	102,317	60,419	2,263	96,015	56,698	2,094	91,160	53,831
27	1,836	100,777	59,510	2,321	102,117	60,301	2,411	95,852	56,602	2,245	91,014	53,745
29	1,967	100,674	59,449	2,464	101,902	60,174	2,551	95,677	56,498	2,389	90,851	53,649
32	2,094	100,563	59,383	2,600	101,673	60,039	2,685	95,485	56,385	2,528	90,677	53,545
34	2,218	100,442	59,312	2,730	101,430	59,895	2,812	95,268	56,256	2,660	90,488	53,434
36	2,338	100,314	59,236	2,853	101,175	59,745	2,932	95,036	56,119	2,786	90,282	53,312
38	2,454	100,179	59,157	2,969	100,904	59,585	3,045	94,794	55,977	2,905	90,063	53,183
41	2,567	100,034	59,071	3,078	100,620	59,417	3,152	94,536	55,825	3,018	89,830	53,045
43	2,676	99,883	58,982	3,180	100,329	59,245	3,252	94,269	55,667	3,124	89,582	52,899
45	2,780	98,719	58,294	3,277	100,017	59,061	3,346	93,980	55,496	3,224	89,311	52,739
47	2,884	97,524	57,589	3,367	99,657	58,848	3,438	93,641	55,296	3,318	88,990	52,550
50	2,989	97,317	57,467	3,455	99,284	58,628	3,519	93,285	55,086	3,410	88,651	52,349
52	3,087	97,093	57,334	3,534	98,889	58,395	3,590	92,907	54,863	3,490	88,282	52,131
54	3,178	96,854	57,193	3,602	98,472	58,149	3,651	92,505	54,625	3,560	87,883	51,896
56	3,263	96,598	57,042	3,661	98,033	57,889	3,703	92,079	54,374	3,620	87,461	51,647
59	3,341	96,317	56,876	3,711	97,573	57,618	3,745	91,624	54,105	3,670	87,013	51,382

Sudut	1	Baris <i>Tube</i> .	1		Baris <i>Tube</i> .	2		Baris <i>Tube</i> .	3	1	Baris <i>Tube -</i>	4
Suuut	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu
61	3,412	96,015	56,698	3,753	97,092	57,334	3,778	91,141	53,820	3,709	86,529	51,096
63	3,474	95,695	56,509	3,786	96,586	57,035	3,801	90,636	53,521	3,738	86,015	50,792
65	3,530	95,356	56,309	3,811	96,057	56,723	3,814	90,103	53,207	3,756	85,469	50,470
68	3,578	94,994	56,095	3,826	95,502	56,395	3,817	89,536	52,872	3,764	84,882	50,124
70	3,619	94,605	55,865	3,833	94,912	56,046	3,810	88,929	52,513	3,761	84,251	49,751
72	3,651	94,188	55,619	3,830	94,284	55,675	3,794	88,281	52,131	3,747	83,566	49,347
74	3,675	93,740	55,355	3,817	93,620	55,283	3,768	87,589	51,722	3,722	82,824	48,908
77	3,689	93,254	55,067	3,796	92,914	54,866	3,731	86,843	51,282	3,685	82,015	48,431
79	3,693	92,726	54,756	3,767	92,155	54,418	3,682	86,035	50,805	3,636	81,123	47,904
81	3,687	92,153	54,417	3,727	91,331	53,932	3,618	85,149	50,282	3,570	80,131	47,318
83	3,671	91,524	54,046	3,674	90,428	53,398	3,539	84,170	49,703	3,488	79,024	46,664
86	3,644	90,822	53,631	3,608	89,435	52,812	3,444	83,086	49,063	3,388	77,782	45,931
88	3,604	90,040	53,169	3,527	88,340	52,165	3,331	81,882	48,352	3,269	76,376	45,101
90	3,549	89,191	52,668	3,431	87,143	51,459	3,202	80,543	47,562	3,129	74,771	44,153
92	3,484	88,278	52,129	3,321	85,845	50,692	3,057	79,057	46,684	2,966	72,931	43,066
95	3,410	87,289	51,545	3,201	84,420	49,851	2,895	77,394	45,702	2,780	70,798	41,807
97	3,325	86,202	50,903	3,066	82,825	48,909	2,711	75,495	44,581	2,571	68,275	40,317
99	3,227	84,974	50,178	2,914	80,987	47,823	2,500	73,259	43,260	2,334	65,223	38,515
101	3,111	83,574	49,351	2,740	78,812	46,539	2,255	70,548	41,659	2,066	61,450	36,287
104	2,976	81,970	48,404	2,536	76,209	45,002	1,979	67,224	39,696	1,766	56,783	33,531
106	2,820	80,106	47,303	2,304	73,047	43,135	1,676	63,150	37,291	1,441	51,190	30,228
108	2,642	77,905	46,004	2,042	69,193	40,859	1,361	58,236	34,389	1,110	44,881	26,503
110	2,438	74,269	43,857	1,756	64,510	38,094	1,048	52,501	31,002	0,794	38,438	22,698
113	2,207	71,102	41,986	1,453	58,911	34,788	0,754	46,175	27,267	0,514	32,743	19,335
115	1,954	68,241	40,297	1,146	53,511	31,599	0,488	39,727	23,459	0,285	28,881	17,054
117	1,677	62,511	36,914	0,849	46,649	27,547	0,260	34,057	20,111	0,104	27,680	16,345
119	1,384	56,856	33,574	0,574	42,121	24,873	0,079	30,493	18,006	-0,052	28,483	16,820

Tabel Data Pemodelan tanpa Penambahan Rectangular Obstacle (Baseline) (lanjutan)

Sudut]	Baris <i>Tube</i> .	1	1	Baris <i>Tube I</i>	2		Baris <i>Tube</i> .	3		Baris <i>Tube -</i>	1
Suuut	v(m/s)	h(W/m²K)	Nu									
122	1,086	50,375	29,747	0,332	36,572	21,596	-0,059	29,742	17,563	-0,158	29,920	17,668
124	0,799	43,453	25,659	0,136	33,590	19,835	-0,165	30,857	18,221	-0,243	31,406	18,546
126	0,532	39,036	23,051	0,016	34,447	20,341	-0,246	32,431	19,151	-0,306	32,723	19,323
128	0,300	32,662	19,287	-0,130	36,276	21,421	-0,306	33,939	20,041	-0,347	33,685	19,892
131	0,115	31,517	18,611	-0,218	38,073	22,482	-0,347	35,229	20,803	-0,369	34,303	20,256
133	-0,025	32,949	19,457	-0,286	39,639	23,407	-0,369	36,156	21,350	-0,372	34,684	20,481
135	-0,131	35,250	20,815	-0,333	40,862	24,129	-0,377	36,755	21,704	-0,362	34,929	20,626
137	-0,213	37,281	22,015	-0,364	41,611	24,572	-0,373	37,098	21,907	-0,351	35,102	20,728
140	-0,271	39,028	23,046	-0,378	42,088	24,853	-0,366	37,317	22,036	-0,337	35,307	20,849
142	-0,315	40,459	23,891	-0,382	42,435	25,058	-0,360	37,548	22,172	-0,329	35,679	21,069
144	-0,346	41,546	24,533	-0,381	42,761	25,251	-0,356	37,895	22,377	-0,327	36,328	21,452
146	-0,366	42,409	25,043	-0,378	43,190	25,504	-0,358	38,453	22,707	-0,330	37,293	22,022
149	-0,375	43,174	25,495	-0,378	43,831	25,883	-0,365	39,302	23,208	-0,338	38,551	22,765
151	-0,380	43,941	25,948	-0,381	44,755	26,428	-0,376	40,489	23,909	-0,350	40,062	23,657
153	-0,382	44,797	26,453	-0,388	45,988	27,156	-0,390	42,005	24,805	-0,364	41,754	24,656
155	-0,384	45,800	27,045	-0,397	47,495	28,046	-0,404	43,758	25,840	-0,377	43,532	25,706
158	-0,385	46,965	27,733	-0,407	49,197	29,051	-0,414	45,623	26,941	-0,388	45,306	26,754
160	-0,385	47,271	27,914	-0,416	50,985	30,107	-0,418	47,487	28,042	-0,394	46,985	27,745
162	-0,382	48,675	28,743	-0,420	52,756	31,153	-0,414	49,261	29,089	-0,393	48,512	28,647
164	-0,376	48,135	28,424	-0,417	54,455	32,156	-0,402	50,904	30,059	-0,384	49,903	29,468
167	-0,365	49,598	29,288	-0,407	56,042	33,093	-0,381	52,410	30,949	-0,369	51,175	30,219
169	-0,346	51,971	30,690	-0,388	57,483	33,944	-0,350	53,764	31,748	-0,346	52,308	30,889
171	-0,320	52,101	30,766	-0,362	58,668	34,644	-0,304	54,908	32,423	-0,319	53,214	31,423
173	-0,268	53,407	31,537	-0,308	59,056	34,873	-0,245	55,949	33,039	-0,268	54,269	32,046
176	-0,201	54,405	32,127	-0,236	61,237	36,161	-0,178	56,749	33,511	-0,202	55,175	32,582
178	-0,117	55,703	32,893	-0,149	61,972	36,595	-0,102	57,210	33,783	-0,127	55,736	32,912
180	-0,051	53,645	31,678	-0,056	69,219	40,875	-0,045	57,238	33,799	-0,046	55,922	33,023

Tabel Data Pemodelan tanpa Penambahan Rectangular Obstacle (Baseline) (lanjutan)

Lampiran 2

Tabel Data Pemodelan dengan penambahan Rectangular Obstacle pada posisi g/ST sebesar 0.04

6	Baris <i>Tube 1</i>				Baris <i>Tube</i> 2	2		Baris <i>Tube</i> .	3	Baris Tube 4		
Sudut	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu
0	0,000	99,203	58,581	0,000	106,885	63,117	0,000	96,003	63,117	0,000	93,356	56,691
2	0,169	99,783	58,923	0,178	106,831	63,085	0,157	96,528	63,085	0,113	93,337	57,000
5	0,240	100,559	59,381	0,524	106,666	62,987	0,370	97,231	62,987	0,408	93,232	57,416
7	0,445	100,801	59,524	0,856	106,405	62,833	0,674	97,432	62,833	0,693	93,047	57,535
9	0,650	100,943	59,608	1,187	106,204	62,715	0,981	97,510	62,715	0,981	92,924	57,580
11	0,839	101,029	59,659	1,477	106,108	62,658	1,254	97,549	62,658	1,236	92,884	57,604
14	0,983	101,048	59,670	1,692	105,978	62,581	1,460	97,529	62,581	1,429	92,828	57,592
16	1,129	101,044	59,668	1,909	105,841	62,500	1,667	97,478	62,500	1,624	92,775	57,561
18	1,276	101,022	59,655	2,124	105,696	62,415	1,873	97,419	62,415	1,821	92,722	57,527
20	1,419	100,980	59,630	2,331	105,539	62,322	2,074	97,353	62,322	2,013	92,662	57,488
23	1,560	100,926	59,598	2,532	105,368	62,221	2,269	97,267	62,221	2,202	92,592	57,437
25	1,698	100,849	59,552	2,724	105,176	62,107	2,459	97,160	62,107	2,387	92,507	57,374
27	1,832	100,752	59,495	2,907	104,964	61,982	2,641	97,033	61,982	2,566	92,401	57,299
29	1,962	100,648	59,434	3,079	104,734	61,846	2,816	96,892	61,846	2,739	92,277	57,216
32	2,089	100,535	59,367	3,242	104,489	61,702	2,983	96,733	61,702	2,904	92,139	57,122
34	2,212	100,412	59,294	3,396	104,226	61,547	3,141	96,545	61,547	3,062	91,985	57,011
36	2,332	100,281	59,217	3,539	103,949	61,383	3,290	96,341	61,383	3,212	91,810	56,890
38	2,447	100,143	59,135	3,673	103,654	61,209	3,431	96,124	61,209	3,353	91,620	56,762
41	2,559	99,995	59,048	3,796	103,343	61,025	3,563	95,888	61,025	3,486	91,412	56,623
43	2,667	99,840	58,957	3,911	103,019	60,834	3,686	95,638	60,834	3,611	91,187	56,475
45	2,771	99,672	58,858	4,015	102,669	60,627	3,800	95,362	60,627	3,726	90,935	56,312
47	2,873	99,472	58,739	4,109	102,268	60,390	3,906	95,034	60,390	3,834	90,632	56,119
50	2,978	99,259	58,614	4,198	101,849	60,143	4,006	94,685	60,143	3,936	90,306	55,912
52	3,074	99,028	58,477	4,274	101,401	59,878	4,094	94,306	59,878	4,025	89,946	55,689
54	3,163	98,782	58,332	4,335	100,927	59,598	4,166	93,897	59,598	4,099	89,548	55,447
56	3,246	98,516	58,175	4,383	100,429	59,304	4,225	93,460	59,304	4,159	89,124	55,189
59	3,323	98,224	58,002	4,419	99,906	58,995	4,271	92,988	58,995	4,205	88,670	54,910

Sudut]	Baris <i>Tube 1</i>			Baris Tube 2 Ba			Baris <i>Tube 3</i>			Baris Tube 4		
Suuur	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	
61	3,391	97,910	57,817	4,444	99,358	58,672	4,305	92,483	58,672	4,238	88,176	54,612	
63	3,450	97,575	57,619	4,457	98,779	58,330	4,326	91,951	58,330	4,258	87,648	54,298	
65	3,503	97,220	57,409	4,460	98,166	57,968	4,335	91,383	57,968	4,264	87,079	53,962	
68	3,548	96,838	57,184	4,450	97,516	57,584	4,331	90,769	57,584	4,257	86,461	53,600	
70	3,584	96,426	56,940	4,429	96,824	57,175	4,315	90,109	57,175	4,237	85,796	53,210	
72	3,612	95,982	56,678	4,398	96,095	56,745	4,287	89,405	56,745	4,205	85,075	52,795	
74	3,630	95,502	56,395	4,357	95,327	56,292	4,249	88,651	56,292	4,160	84,292	52,349	
77	3,637	94,976	56,084	4,306	94,507	55,807	4,198	87,832	55,807	4,101	83,436	51,866	
79	3,634	94,402	55,745	4,244	93,618	55,283	4,134	86,940	55,283	4,027	82,492	51,339	
81	3,621	93,777	55,376	4,168	92,657	54,715	4,054	85,963	54,715	3,934	81,447	50,762	
83	3,597	93,084	54,967	4,077	91,614	54,099	3,959	84,890	54,099	3,823	80,288	50,129	
86	3,561	92,305	54,507	3,973	90,480	53,429	3,847	83,710	53,429	3,695	78,997	49,432	
88	3,510	91,436	53,994	3,854	89,239	52,696	3,719	82,406	52,696	3,547	77,542	48,662	
90	3,443	89,513	52,858	3,720	87,907	51,910	3,573	80,979	51,910	3,378	75,912	47,819	
92	3,364	88,506	52,264	3,570	86,454	51,052	3,410	79,390	51,052	3,186	74,047	46,881	
95	3,277	87,384	51,601	3,410	84,838	50,098	3,231	77,598	50,098	2,972	71,876	45,822	
97	3,179	86,161	50,879	3,238	83,052	49,043	3,036	75,583	49,043	2,736	69,342	44,632	
99	3,068	84,803	50,077	3,050	82,040	48,446	2,824	73,268	47,855	2,476	66,324	43,265	
101	2,943	83,276	49,175	2,844	79,717	47,074	2,589	70,537	46,483	2,189	62,674	41,653	
104	2,801	81,564	48,164	2,615	77,023	45,483	2,330	67,310	44,892	1,878	58,267	39,747	
106	2,643	79,663	47,042	2,366	74,931	44,247	2,049	63,564	43,066	1,549	53,115	37,535	
108	2,473	77,569	45,805	2,103	71,434	42,183	1,758	59,340	41,001	1,223	47,470	35,041	
110	2,294	75,300	44,466	1,836	67,603	39,920	1,470	54,819	38,739	0,915	41,940	32,371	
113	2,111	72,924	43,062	1,576	63,662	37,593	1,199	50,466	36,412	0,653	37,188	29,801	
115	1,933	70,578	41,677	1,338	60,048	35,459	0,966	46,834	34,278	0,434	34,065	27,656	
117	1,770	68,495	40,447	1,139	57,357	33,870	0,780	44,530	32,689	0,261	33,766	26,295	
119	1,638	65,983	38,964	0,997	56,221	33,199	0,650	44,314	32,018	0,146	36,810	26,168	

Tabel Data Pemodelan dengan penambahan Rectangular Obstacle pada posisi g/ST sebesar 0.04 (lanjutan)

S 44]	Baris Tube 1			Baris Tube 2			Baris <i>Tube 3</i>			Baris <i>Tube 4</i>			
Suuut	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu		
122	1,550	65,386	38,611	0,927	56,986	33,651	0,591	46,462	32,470	0,117	42,086	27,436		
124	1,524	64,834	38,285	0,946	59,424	35,091	0,627	50,324	33,910	0,166	47,699	29,717		
126	1,569	67,222	39,695	1,059	62,880	37,131	0,760	54,839	35,950	0,263	52,736	32,383		
128	1,687	69,293	40,918	1,253	66,728	39,403	0,983	59,237	38,222	0,457	57,097	34,980		
131	1,869	71,508	42,226	1,501	69,327	40,938	1,251	63,047	40,348	0,716	60,671	37,230		
133	2,090	71,053	41,958	1,796	72,884	43,039	1,576	65,734	41,858	1,051	63,052	38,817		
135	2,325	73,832	43,598	2,103	74,464	43,972	1,915	67,453	42,791	1,410	64,424	39,831		
137	2,526	74,566	44,032	2,385	76,695	45,289	2,233	68,763	43,518	1,762	65,462	40,605		
140	2,630	74,908	44,234	2,552	76,309	45,061	2,434	69,408	43,880	2,000	65,865	40,986		
142	2,668	74,517	44,003	2,639	76,143	44,963	2,542	69,278	43,782	2,130	65,485	40,910		
144	2,669	73,809	43,585	2,674	75,640	44,666	2,592	68,827	43,485	2,189	64,851	40,643		
146	2,635	72,755	42,963	2,666	73,775	43,565	2,596	68,045	42,974	2,206	64,008	40,182		
149	2,563	71,333	42,123	2,614	73,540	43,426	2,555	66,928	42,245	2,192	62,966	39,522		
151	2,454	69,498	41,039	2,521	71,908	42,463	2,474	65,462	41,282	2,154	61,756	38,656		
153	2,308	67,148	39,652	2,388	69,796	41,215	2,354	63,577	40,034	2,095	60,396	37,543		
155	2,122	64,100	37,851	2,213	67,042	39,589	2,195	61,138	38,408	2,019	58,857	36,103		
158	1,891	60,072	35,473	1,990	63,402	37,440	1,989	57,944	36,259	1,925	57,081	34,217		
160	1,614	55,713	32,899	1,719	58,554	34,577	1,736	53,727	33,396	1,809	54,987	31,726		
162	1,298	48,764	28,795	1,406	52,198	30,824	1,442	48,213	29,643	1,668	52,444	28,470		
164	0,959	40,476	23,901	1,065	43,395	25,625	1,119	41,357	25,035	1,497	49,294	24,422		
167	0,623	32,112	18,963	0,720	34,063	20,115	0,790	33,725	20,115	1,299	45,366	19,915		
169	0,324	28,135	16,614	0,401	29,440	17,384	0,474	27,013	16,203	1,071	40,627	15,951		
171	0,102	24,481	14,456	0,151	25,872	15,278	0,215	23,414	14,687	0,841	34,893	13,826		
173	-0,060	29,662	17,516	-0,040	26,447	15,617	0,031	24,532	16,207	0,559	26,940	14,486		
176	-0,168	32,554	19,223	-0,162	32,365	19,112	-0,134	28,912	19,112	0,267	21,798	17,073		
178	-0,169	35,972	21,242	-0,169	36,821	21,743	-0,157	32,359	21,153	-0,071	21,150	19,108		
180	-0,159	37,184	21,958	-0,141	38,013	22,447	-0,159	33,614	21,857	-0,035	23,646	19,850		

Tabel Data Pemodelan dengan penambahan Rectangular Obstacle pada posisi g/ST sebesar 0.04 (lanjutan)

Lampiran 3

Tabel Data Pemodelan dengan penambahan Rectangular Obstacle pada posisi g/ST sebesar 0,08

S 44	Baris Tube 1			1	Baris <i>Tube</i> 2	2	:	Baris <i>Tube</i> .	3		Baris <i>Tube 4</i>		
Sudut	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	
0	0,000	99,209	58,584	0,000	106,703	63,009	0,000	93,905	55,452	0,000	91,044	53,762	
2	0,169	99,790	58,927	0,175	106,648	62,977	0,143	94,438	55,767	0,151	91,023	53,750	
5	0,240	100,567	59,386	0,515	106,480	62,878	0,362	95,158	56,191	0,423	90,926	53,693	
7	0,445	100,809	59,529	0,842	106,212	62,719	0,652	95,367	56,315	0,690	90,749	53,588	
9	0,650	100,952	59,613	1,167	106,003	62,596	0,946	95,441	56,359	0,962	90,627	53,516	
11	0,840	101,040	59,665	1,451	105,900	62,535	1,206	95,477	56,380	1,201	90,585	53,492	
14	0,983	101,059	59,676	1,662	105,762	62,454	1,403	95,456	56,368	1,382	90,533	53,460	
16	1,130	101,056	59,675	1,874	105,616	62,367	1,600	95,405	56,338	1,566	90,483	53,431	
18	1,277	101,035	59,662	2,084	105,462	62,276	1,797	95,346	56,303	1,751	90,433	53,402	
20	1,421	100,995	59,639	2,287	105,295	62,178	1,988	95,280	56,264	1,932	90,375	53,368	
23	1,562	100,942	59,607	2,482	105,113	62,070	2,174	95,195	56,213	2,109	90,309	53,328	
25	1,700	100,867	59,563	2,669	104,909	61,950	2,354	95,089	56,151	2,283	90,228	53,280	
27	1,835	100,771	59,506	2,846	104,685	61,818	2,529	94,965	56,078	2,452	90,128	53,221	
29	1,965	100,669	59,446	3,013	104,442	61,674	2,696	94,825	55,995	2,615	90,007	53,150	
32	2,092	100,559	59,381	3,170	104,184	61,522	2,855	94,665	55,901	2,772	89,871	53,070	
34	2,216	100,438	59,310	3,318	103,908	61,359	3,007	94,477	55,789	2,921	89,717	52,979	
36	2,336	100,310	59,234	3,456	103,617	61,187	3,150	94,270	55,667	3,063	89,542	52,875	
38	2,452	100,175	59,154	3,584	103,310	61,006	3,285	94,050	55,537	3,198	89,351	52,762	
41	2,565	100,030	59,069	3,703	102,987	60,815	3,411	93,810	55,396	3,325	89,141	52,639	
43	2,674	99,879	58,980	3,813	102,652	60,617	3,530	93,557	55,246	3,445	88,914	52,505	
45	2,778	99,715	58,883	3,913	102,293	60,405	3,640	93,278	55,082	3,556	88,662	52,356	
47	2,882	99,520	58,768	4,003	101,883	60,163	3,743	92,947	54,886	3,661	88,358	52,176	
50	2,987	99,314	58,646	4,090	101,459	59,913	3,843	92,596	54,679	3,763	88,030	51,983	
52	3,085	99,089	58,513	4,165	101,009	59,647	3,929	92,218	54,456	3,851	87,672	51,771	
54	3,176	98,851	58,372	4,226	100,538	59,369	4,004	91,813	54,217	3,928	87,282	51,541	
56	3,260	98,594	58,221	4,275	100,046	59,078	4,066	91,383	53,962	3,993	86,869	51,297	
59	3,339	98,313	58,055	4,315	99,534	58,776	4,118	90,923	53,691	4,047	86,431	51,038	
S d4	Baris <i>Tube 1</i>			Baris Tube 2			Baris Tube 3			Baris Tube 4			
-------	---------------------	----------	--------	--------------	----------	--------	--------------	----------	--------	---------------	----------	--------	--
Sudut	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	
61	3,409	98,011	57,877	4,344	99,002	58,462	4,160	90,435	53,403	4,091	85,960	50,760	
63	3,472	97,691	57,688	4,364	98,447	58,134	4,191	89,928	53,103	4,124	85,464	50,467	
65	3,528	97,353	57,488	4,375	97,870	57,793	4,212	89,396	52,789	4,147	84,940	50,158	
68	3,576	96,992	57,275	4,376	97,264	57,436	4,223	88,834	52,458	4,159	84,386	49,831	
70	3,617	96,604	57,046	4,368	96,624	57,058	4,225	88,237	52,105	4,161	83,798	49,483	
72	3,650	96,189	56,801	4,350	95,954	56,662	4,216	87,604	51,731	4,153	83,168	49,111	
74	3,674	95,745	56,538	4,324	95,257	56,250	4,199	86,934	51,335	4,135	82,495	48,714	
77	3,688	95,264	56,254	4,290	94,524	55,817	4,172	86,218	50,913	4,108	81,778	48,291	
79	3,693	94,744	55,947	4,248	93,747	55,358	4,135	85,457	50,463	4,069	81,009	47,837	
81	3,689	94,181	55,615	4,196	92,918	54,869	4,088	84,639	49,980	4,019	80,176	47,345	
83	3,675	93,568	55,253	4,133	92,032	54,346	4,029	83,753	49,457	3,957	79,272	46,811	
86	3,651	92,889	54,852	4,058	91,080	53,784	3,957	82,793	48,890	3,880	78,287	46,229	
88	3,615	92,142	54,411	3,971	90,057	53,180	3,871	81,755	48,277	3,789	77,212	45,595	
90	3,566	91,344	53,939	3,873	89,976	53,132	3,772	80,649	47,624	3,683	76,056	44,912	
92	3,508	90,502	53,442	3,766	88,850	52,467	3,664	79,485	46,937	3,566	74,829	44,187	
95	3,445	88,613	52,327	3,655	87,670	51,770	3,550	78,259	46,213	3,442	73,517	43,412	
97	3,374	87,660	51,764	3,538	86,421	51,033	3,428	76,946	45,437	3,307	72,095	42,573	
99	3,295	86,628	51,155	3,413	85,076	50,238	3,296	75,518	44,594	3,160	70,530	41,649	
101	3,205	85,514	50,497	3,278	83,619	49,378	3,152	73,963	43,676	2,999	68,801	40,627	
104	3,105	84,321	49,792	3,132	82,053	48,453	2,995	72,273	42,678	2,822	66,892	39,500	
106	2,997	82,057	48,456	2,978	80,379	47,465	2,829	70,452	41,603	2,633	64,796	38,263	
108	2,883	80,733	47,673	2,817	78,612	46,421	2,654	68,507	40,454	2,434	62,513	36,915	
110	2,766	79,365	46,866	2,653	76,771	45,334	2,475	66,456	39,243	2,228	60,075	35,475	
113	2,647	78,985	46,641	2,490	74,891	44,224	2,296	64,352	38,001	2,022	57,571	33,996	
115	2,530	78,630	46,432	2,332	73,035	43,128	2,122	62,292	36,784	1,824	55,193	32,592	
117	2,420	77,342	45,671	2,185	72,294	42,690	1,962	60,414	35,675	1,650	53,083	31,346	
119	2,319	76,171	44,980	2,054	70,768	41,789	1,824	58,866	34,761	1,501	51,289	30,287	

Tabel Data Pemodelan dengan penambahan *Rectangular Obstacle* pada posisi g/ST sebesar 0,08 (*lanjutan*)

S d4	Baris Tube 1			Baris <i>Tube 2</i>			Baris <i>Tube 3</i>			Baris Tube 4			
Sudut	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	
122	2,232	73,162	43,203	1,945	69,572	41,083	1,717	57,666	34,052	1,378	49,912	29,474	
124	2,161	72,343	42,719	1,866	68,736	40,589	1,636	56,781	33,530	1,282	49,039	28,958	
126	2,106	71,722	42,353	1,813	68,160	40,249	1,577	56,210	33,193	1,216	48,650	28,728	
128	2,067	71,293	42,099	1,777	67,729	39,995	1,538	55,875	32,994	1,176	48,633	28,718	
131	2,043	70,917	41,877	1,750	67,342	39,766	1,512	55,632	32,851	1,154	48,806	28,821	
133	2,020	70,407	41,576	1,724	67,859	40,071	1,490	55,310	32,661	1,140	48,930	28,893	
135	1,984	69,685	41,150	1,688	67,157	39,657	1,459	54,752	32,331	1,122	48,805	28,820	
137	1,931	68,721	40,581	1,636	66,170	39,074	1,411	53,871	31,811	1,091	48,325	28,536	
140	1,857	67,340	39,765	1,562	64,702	38,207	1,341	52,491	30,996	1,042	47,367	27,971	
142	1,755	66,415	39,219	1,459	62,615	36,975	1,243	50,492	29,816	0,970	45,828	27,062	
144	1,617	66,794	39,442	1,321	58,759	34,698	1,114	47,759	28,202	0,872	43,626	25,762	
146	1,445	58,319	34,438	1,151	55,020	32,490	0,954	44,244	26,127	0,749	40,761	24,069	
149	1,239	53,857	31,803	0,953	50,374	29,746	0,772	40,032	23,639	0,607	37,357	22,060	
151	1,008	48,378	28,568	0,739	45,002	26,574	0,578	35,457	20,938	0,453	33,760	19,936	
153	0,766	42,125	24,875	0,522	39,510	23,331	0,385	31,274	18,468	0,299	30,616	18,079	
155	0,528	37,849	22,350	0,317	35,099	20,726	0,208	28,578	16,876	0,157	28,689	16,941	
158	0,312	30,963	18,284	0,140	33,114	19,554	0,061	28,043	16,559	0,038	28,307	16,716	
160	0,130	29,931	17,674	0,022	33,744	19,926	-0,071	29,196	17,241	-0,076	29,086	17,176	
162	-0,019	29,814	17,605	-0,121	35,894	21,195	-0,164	31,161	18,401	-0,158	30,490	18,004	
164	-0,118	32,317	19,083	-0,208	38,601	22,794	-0,239	33,510	19,788	-0,225	32,270	19,056	
167	-0,198	35,348	20,873	-0,276	39,481	23,314	-0,298	36,010	21,264	-0,276	34,263	20,232	
169	-0,256	38,402	22,677	-0,324	44,231	26,119	-0,339	38,411	22,682	-0,313	36,239	21,400	
171	-0,294	40,941	24,176	-0,354	44,478	26,265	-0,362	40,443	23,882	-0,332	37,948	22,409	
173	-0,295	44,720	26,407	-0,340	49,097	28,992	-0,346	42,927	25,349	-0,317	40,118	23,690	
176	-0,258	47,008	27,759	-0,297	51,425	30,367	-0,299	45,144	26,658	-0,276	42,154	24,892	
178	-0,178	48,459	28,616	-0,204	53,017	31,307	-0,201	46,558	27,493	-0,191	43,579	25,734	
180	-0,111	48,944	28,902	-0,100	53,585	31,643	-0,127	47,011	27,760	-0,097	44,092	26,036	

Tabel Data Pemodelan dengan penambahan *Rectangular Obstacle* pada posisi g/ST sebesar 0,08 (*lanjutan*)

Lampiran 4

Tabel Data Pemodelan dengan penambahan *Rectangular Obstacle* pada posisi g/ST sebesar 0,12

S 44	Baris <i>Tube 1</i>			Baris Tube 2			Baris Tube 3			Baris Tube 4			
Sudut	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	
0	0,000	99,186	58,571	0,000	106,729	63,025	0,000	93,375	55,139	0,000	91,313	53,921	
2	0,168	99,767	58,914	0,177	106,673	62,991	0,150	93,895	55,446	0,173	91,296	53,911	
5	0,240	100,545	59,373	0,519	106,500	62,889	0,384	94,592	55,858	0,454	91,199	53,854	
7	0,445	100,788	59,516	0,847	106,224	62,726	0,679	94,780	55,968	0,738	91,003	53,738	
9	0,651	100,932	59,601	1,174	106,001	62,595	0,980	94,823	55,994	1,026	90,838	53,641	
11	0,841	101,019	59,653	1,459	105,886	62,527	1,244	94,832	55,999	1,278	90,754	53,591	
14	0,984	101,039	59,665	1,670	105,734	62,437	1,443	94,783	55,970	1,467	90,653	53,532	
16	1,131	101,036	59,663	1,881	105,572	62,341	1,642	94,704	55,923	1,657	90,550	53,471	
18	1,278	101,016	59,651	2,090	105,400	62,240	1,838	94,615	55,871	1,846	90,444	53,408	
20	1,422	100,977	59,628	2,290	105,212	62,129	2,029	94,516	55,813	2,030	90,327	53,339	
23	1,563	100,924	59,597	2,482	105,008	62,008	2,213	94,397	55,742	2,208	90,198	53,263	
25	1,701	100,850	59,553	2,665	104,782	61,875	2,390	94,256	55,659	2,380	90,053	53,177	
27	1,836	100,756	59,497	2,838	104,533	61,728	2,561	94,095	55,564	2,546	89,886	53,078	
29	1,967	100,655	59,438	3,000	104,263	61,568	2,724	93,916	55,459	2,705	89,697	52,967	
32	2,094	100,545	59,373	3,152	103,977	61,399	2,878	93,714	55,339	2,855	89,489	52,844	
34	2,218	100,426	59,303	3,293	103,672	61,219	3,022	93,482	55,202	2,997	89,263	52,711	
36	2,338	100,300	59,228	3,424	103,353	61,031	3,158	93,230	55,053	3,130	89,014	52,564	
38	2,455	100,166	59,149	3,546	103,017	60,833	3,286	92,965	54,896	3,255	88,750	52,407	
41	2,568	100,023	59,065	3,658	102,664	60,624	3,404	92,679	54,728	3,371	88,467	52,240	
43	2,677	99,873	58,976	3,761	102,298	60,408	3,514	92,377	54,550	3,480	88,165	52,062	
45	2,782	99,712	58,881	3,853	101,909	60,178	3,616	92,048	54,355	3,580	87,835	51,868	
47	2,886	99,520	58,767	3,937	101,468	59,918	3,709	91,663	54,128	3,672	87,448	51,639	
50	2,993	99,317	58,647	4,016	101,016	59,651	3,799	91,260	53,890	3,760	87,043	51,400	
52	3,091	99,096	58,517	4,084	100,541	59,370	3,876	90,833	53,638	3,836	86,609	51,143	
54	3,183	98,861	58,379	4,140	100,047	59,079	3,942	90,381	53,371	3,901	86,148	50,871	
56	3,269	98,610	58,230	4,185	99,536	58,777	3,998	89,908	53,091	3,956	85,670	50,589	
59	3,348	98,335	58,068	4,221	99,009	58,466	4,044	89,408	52,796	4,001	85,172	50,295	

Sudut	Baris Tube 1			Baris Tube 2			Baris <i>Tube 3</i>			Baris <i>Tube 4</i>		
	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu
61	3,420	98,040	57,894	4,249	98,465	58,144	4,081	88,885	52,487	4,037	84,649	49,986
63	3,484	97,728	57,709	4,268	97,902	57,812	4,110	88,346	52,169	4,064	84,107	49,666
65	3,542	97,399	57,515	4,280	97,322	57,469	4,129	87,788	51,840	4,083	83,545	49,334
68	3,592	97,048	57,308	4,283	96,719	57,113	4,140	87,206	51,496	4,092	82,959	48,988
70	3,636	96,672	57,086	4,277	96,087	56,740	4,142	86,596	51,136	4,094	82,346	48,626
72	3,671	96,273	56,850	4,264	95,430	56,352	4,137	85,956	50,758	4,087	81,698	48,243
74	3,698	95,845	56,598	4,243	94,749	55,950	4,123	85,285	50,362	4,071	81,014	47,840
77	3,717	95,385	56,326	4,215	94,039	55,531	4,101	84,576	49,943	4,047	80,294	47,414
79	3,726	94,890	56,033	4,180	93,295	55,092	4,071	83,829	49,502	4,014	79,532	46,964
81	3,726	94,356	55,718	4,138	93,510	55,218	4,031	83,034	49,033	3,971	78,715	46,482
83	3,717	92,777	54,786	4,085	92,672	54,724	3,981	82,179	48,528	3,917	77,837	45,964
86	3,698	92,142	54,411	4,022	91,776	54,195	3,919	81,258	47,984	3,851	76,887	45,403
88	3,669	91,448	54,001	3,947	90,820	53,630	3,845	80,268	47,399	3,772	75,856	44,794
90	3,628	90,712	53,566	3,862	89,817	53,038	3,759	79,220	46,780	3,679	74,759	44,146
92	3,580	89,940	53,110	3,770	88,782	52,427	3,664	78,126	46,134	3,576	73,604	43,464
95	3,526	89,128	52,631	3,675	87,705	51,791	3,564	76,979	45,457	3,467	72,379	42,741
97	3,466	88,263	52,120	3,574	87,567	51,709	3,457	75,756	44,735	3,349	71,056	41,960
99	3,397	87,331	51,570	3,466	86,346	50,988	3,340	74,427	43,950	3,218	69,602	41,101
101	3,319	86,327	50,977	3,348	85,030	50,211	3,210	72,970	43,089	3,073	67,987	40,147
104	3,231	84,250	49,750	3,219	83,608	49,371	3,067	71,368	42,143	2,910	66,184	39,083
106	3,135	83,103	49,073	3,080	82,068	48,462	2,909	69,605	41,102	2,731	64,162	37,888
108	3,031	81,884	48,354	2,931	80,403	47,479	2,738	67,652	39,949	2,536	61,879	36,540
110	2,921	80,593	47,591	2,774	78,595	46,411	2,554	65,480	38,666	2,325	59,316	35,027
113	2,804	78,232	46,197	2,607	76,621	45,246	2,358	63,099	37,260	2,100	56,580	33,411
115	2,683	76,793	45,347	2,432	75,491	44,578	2,152	60,612	35,792	1,880	53,712	31,717
117	2,557	75,267	44,446	2,252	73,259	43,260	1,954	58,019	34,261	1,663	50,644	29,906
119	2,426	74,656	44,085	2,075	71,980	42,505	1,758	55,226	32,611	1,443	47,441	28,014

Tabel Data Pemodelan dengan penambahan *Rectangular Obstacle* pada posisi g/ST sebesar 0,12 (*lanjutan*)

Sudut	Baris Tube 1			Baris Tube 2				Baris Tube 3			Baris Tube 4			
	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu	v(m/s)	h(W/m²K)	Nu		
122	2,292	71,981	42,506	1,906	69,568	41,081	1,557	52,268	30,865	1,228	44,244	26,126		
124	2,158	71,266	42,083	1,733	66,938	39,528	1,356	49,244	29,079	1,025	41,213	24,337		
126	2,027	67,468	39,840	1,554	64,111	37,858	1,163	46,255	27,314	0,841	38,459	22,710		
128	1,894	65,463	38,657	1,373	61,112	36,087	0,981	43,363	25,606	0,675	36,040	21,282		
131	1,749	62,151	36,701	1,193	57,958	34,225	0,811	40,596	23,972	0,525	34,023	20,091		
133	1,590	60,449	35,696	1,017	54,641	32,266	0,651	37,967	22,420	0,392	32,452	19,163		
135	1,415	57,325	33,851	0,843	50,227	29,659	0,502	35,580	21,010	0,272	31,423	18,556		
137	1,234	53,962	31,865	0,678	47,014	27,762	0,366	33,717	19,910	0,166	31,009	18,311		
140	1,051	50,095	29,582	0,526	43,867	25,904	0,247	32,373	19,117	0,079	31,057	18,340		
142	0,862	45,823	27,059	0,380	41,110	24,276	0,138	31,741	18,743	-0,011	31,433	18,561		
144	0,672	41,328	24,405	0,243	39,176	23,134	-0,041	31,816	18,788	-0,076	31,935	18,858		
146	0,490	38,025	22,454	0,120	38,421	22,688	-0,050	32,348	19,102	-0,138	32,415	19,142		
149	0,321	34,650	20,461	-0,016	38,774	22,896	-0,124	33,034	19,507	-0,192	32,830	19,387		
151	-0,172	33,019	19,498	-0,081	39,743	23,469	-0,188	33,743	19,926	-0,237	33,229	19,622		
153	-0,046	33,366	19,703	-0,158	40,900	24,152	-0,241	34,500	20,373	-0,276	33,692	19,895		
155	-0,058	34,986	20,659	-0,221	42,135	24,881	-0,286	35,370	20,886	-0,307	34,228	20,212		
158	-0,141	37,021	21,861	-0,274	43,491	25,682	-0,322	36,336	21,457	-0,332	34,836	20,571		
160	-0,208	39,140	23,112	-0,316	44,950	26,543	-0,350	37,376	22,071	-0,349	35,573	21,006		
162	-0,261	41,273	24,372	-0,349	46,428	27,416	-0,367	38,537	22,757	-0,360	36,503	21,556		
164	-0,300	42,301	24,979	-0,369	45,915	27,113	-0,377	39,857	23,536	-0,367	37,659	22,238		
167	-0,324	45,100	26,632	-0,377	49,431	29,189	-0,381	41,330	24,406	-0,370	39,029	23,047		
169	-0,330	46,679	27,565	-0,375	50,978	30,103	-0,378	42,931	25,351	-0,369	40,562	23,952		
171	-0,324	48,002	28,346	-0,367	52,449	30,971	-0,371	44,486	26,269	-0,364	42,079	24,848		
173	-0,287	51,665	30,509	-0,331	54,460	32,159	-0,336	46,564	27,497	-0,333	44,140	26,065		
176	-0,234	51,153	30,206	-0,272	56,333	33,265	-0,273	48,356	28,555	-0,274	45,995	27,161		
178	-0,146	51,997	30,705	-0,180	57,585	34,004	-0,171	49,312	29,119	-0,182	47,203	27,874		
180	-0,087	52,216	30,834	-0,080	58,026	34,265	-0,094	49,547	29,258	-0,083	47,622	28,121		

Tabel Data Pemodelan dengan penambahan *Rectangular Obstacle* pada posisi g/ST sebesar 0,12 (*lanjutan*)

Lampiran 5

Grafik Perbandingan Kecepatan Lokal pada Tube di Baris 3

Lampiran 6 Grafik Perbandingan Kecepatan Lokal pada Tube di Baris 4

Lampiran 7 Grafik Perbandingan *Nusselt Number* pada *Tube* di Baris 3

Lampiran 8 Grafik Perbandingan *Nusselt Number* pada *Tube* di Baris 4

Lampiran 9

Katalog geometri *circular tube heat exchanger* dari produk kondensor milik Karyer Group Company

 Finlerimiz rezistans delikli olarak da uretilebilir. / Fins can be produced with holes for heating elements. Unsere Lamellen konnen auch mit Locher für die Heizstäbe hergestellt werden.

K-01.12/16.Rev7-0210

[Halaman ini sengaja dikosongkan]