

TUGAS AKHIR - TM184835

PENGARUH TEMPERATUR TERHADAP PENYERAPAN HIDROGEN PADA BAJA SA 210 A1 MENGGUNAKAN METODE CYCLIC VOLTAMMETRY

MUHAMMAD FURQON NUGROHO PUTRO NRP. 02111640000058

Dosen Pembimbing Suwarno, S.T., M.Sc., Ph.D.

DEPARTEMEN TEKNIK MESIN Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2021

TUGAS AKHIR - TM184835

PENGARUH TEMPERATUR TERHADAP PENYERAPAN HIDROGEN PADA BAJA SA 210 A1 MENGGUNAKAN METODE CYCLIC VOLTAMMETRY

MUHAMMAD FURQON NUGROHO PUTRO NRP. 02111640000058

Dosen Pembimbing SUWARNO S.T., M.Sc., Ph.D.

DEPARTEMEN TEKNIK MESIN Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2021

FINAL PROJECT - TM184835

THE EFFECT OF TEMPERATURE ON THE HYDROGEN SORPTION IN SA 210 A1 STEEL USING CYCLIC VOLTAMMETRY METHOD

MUHAMMAD FURQON NUGROHO PUTRO NRP. 02111640000058

Supervisor SUWARNO S.T., M.Sc., Ph.D.

DEPARTMENT OF MECHANICAL ENGINEERING Faculty of Industrial Technology and Systems Engineering Sepuluh Nopember Institute of Technology Surabaya 2021

HALAMAN PENGESAHAN

PENGARUH TEMPERATUR TERHADAP PENYERAPAN HIDROGEN PADA BAJA SA 210 A1 MENGGUNAKAN METODE CYCLIC VOLTAMMETRY

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Bidang Studi Metalurgi Program Studi S-1 Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember

Oleh: MUHAMMAD FUROON NUGROHO PUTRO NRP. 02111640000058

SURABAYA MARET, 2021

(Halaman ini sengaja dikosongkan)

PENGARUH TEMPERATUR TERHADAP PENYERAPAN HIDROGEN PADA BAJA SA 210 A1 MENGGUNAKAN METODE CYCLIC VOLTAMMETRY

: Muhammad Furqon Nugroho Putro
: 02111640000058
: Teknik Mesin
: Suwarno S.T., M.Sc., Ph.D.

ABSTRAK

Kerusakan hidrogen (hydrogen damage) adalah istilah umum yang mengacu pada kerusakan mekanis suatu logam yang disebabkan oleh adanya atau interaksi dengan hidrogen. Kerusakan hidrogen sering muncul pada dunia industri seperti industri petroleum, pembangkit listrik tenaga uap, dan lainlainnya. Pada pembangkit listrik tenaga uap, kerusakan hidrogen dapat terjadi pada waterwall tube yang berada di dalam boiler. Kerusakan hidrogen pada boiler biasanya terjadi pada waterwall tube vang berisi air untuk diubah menjadi uap air bertekanan. Kerusakan hidrogen akan mengakibatkan penurunan kualitas dan kegagalan pada tube boiler yang dapat mengakibatkan kerugian vang besar, seperti kehilangan produksi dan biaya perawatan yang tinggi. Selain itu, pada saat pengelasan, logam las cair, weld metal menyerap hidrogen dalam jumlah yang relative besar. Hidrogen dalam logam cair ini akan diserap oleh logam pada daerah pengaruh panas bersamaan dengan terjadinya pembekuan logam las cair. Hal ini terjadi karena kelarutan hidrogen temperatur rendah sangat terbatas. Semakin rendah temperatur, maka kelarutan hidrogen pada logam semakin rendah. Hal ini akan menyebabkan kecenderungan terbentuknya retak dingin.

Penelitian dilakukan dengan beberapa langkah untuk memenuhi tujuan dari penelitian. Tahap awal adalah penyiapan spesimen yang akan digunakan untuk penelitian. Kemudian dilakukan pengujian electrochemical hydrogen uptake test untuk melihat pengaruh temperatur. Dilakukan juga pengujian lain yaitu pengujian metalografi, pengujian kekerasan dan pengujian SEM untuk melihat pengaruh dari temperatur yang dilakukan. Metode yang digunakan dalam penelitian ini yaitu cyclic voltametric dan potentiostatic polarization. Metode ini dapat digunakan untuk mengetahui faktor-faktor yang mempengaruhi difusi hidrogen ke dalam logam atau paduan seperti temperatur hydrogen charging. Prosedur ini terdiri dari lima siklus CV pertama berturut-turut (pretreatment dan referensi CV), diikuti oleh pengisian hidrogen secara katodik (H-charging), dan pemindaian lima siklus CV setelah pengisian hidrogen untuk mempelajari dan mengukur penyerapan/desorpsi hidrogen.

Dari penelitian yang dilakukan didapatkan kesimpulan bahwa temperatur pengujian H-charging pada spesimen dapat mempengaruhi penyerapan hidrogen. Hal ini dibuktikan dengan adanya perbedaan puncak atau peak dari grafik CV after Habsorption antar variasi temperatur. Semakin tinggi peak a.1 pada hasil CV after H-absorption menandakan semakin banyak konsentrasi hidrogen yang terabsorpsi pada spesimen. Atom hidrogen yang berdifusi ke dalam spesimen menyebabkan kenaikan nilai kekerasan dikarenakan terjebak di dalam struktur mikro seperti batas butir. Temperatur ruangan $(27^{\circ}C)$ dirasa memiliki efek paling minimal dibandingkan temperatur $55^{\circ}C$ dan $80^{\circ}C$.

Kata Kunci: Kerusakan hidrogen, difusi hidrogen, electrochemical hydrogen test.

THE EFFECT OF TEMPERATURE ON THE HYDROGEN SORPTION IN SA 210 A1 STEEL USING CYCLIC VOLTAMMETRY METHOD

Student's Name	: Muhammad Furqon Nugroho Putro
NRP	: 02111640000058
Department	: Mechanical Engineering
Supervisor	: Suwarno S.T., M.Sc., Ph.D.

ABSTRACT

Hydrogen damage is a general term that refers to the mechanical damage to a metal caused by the presence or interaction with hydrogen. Hydrogen damage often appears in industries such as the petroleum industry, steam power plants, and others. In steam power plants, hydrogen damage can occur in the waterwall tube inside the boiler. Hydrogen damage to the boiler usually occurs in a waterwall tube containing water to be converted into pressurized water vapor. Hydrogen damage will result in quality degradation and failure of boiler tubes which can result in large losses, such as lost production and high maintenance costs. In addition, when welding, molten weld metal absorbs relatively large amounts of hydrogen. The hydrogen in the liquid metal will be absorbed by the metal in the area of heat influence along with the freezing of the molten weld metal. This happens because the solubility of low temperature hydrogen is very limited. The lower the temperature, the lower the solubility of hvdrogen in the metal. This will lead to a tendency for cold cracks to form.

The research was conducted with several steps to meet the objectives of the study. The initial stage is the preparation of specimens that will be used for research. Then the electrochemical hydrogen uptake test was carried out to see the effect of temperature. Other tests were also carried out, namely metallographic testing, hardness testing and SEM testing to see the effect of the temperature being carried out. The method used in this research is cyclic voltametric and potentiostatic polarization. This method can be used to determine the factors that influence the diffusion of hydrogen into metals or alloys such as the hydrogen charging temperature. This procedure consists of the first five consecutive CV cycles (pretreatment and CV reference), followed by cathodic hydrogen charging (H-charging), and a five-cycle CV scan after hydrogen charging to study and measure hydrogen absorption / desorption.

From the research conducted, it was found that the Hcharging test temperature of the specimen can affect hydrogen absorption. This is evidenced by the difference in the peak or peak of the CV after H-absorption graph between temperature variations. The higher the peak a.1 in the CV after H-absorption results, the more hydrogen concentration is absorbed in the specimen. The hydrogen atoms that diffuse into the specimen cause an increase in the hardness value due to being trapped in the microstructure such as grain boundaries. Room temperature $(27^{\circ}C)$ is considered to have the least effect compared to temperatures of $55^{\circ}C$ and $80^{\circ}C$.

Keywords: hydrogen breakdown, hydrogen diffusion, electrochemical hydrogen uptake test.

KATA PENGANTAR

Segala puji syukur ke hadirat Allah Subhanahu Wa Ta'ala, yang telah melimpahkan rahmat-Nya dan hidayah-Nya, serta perjuangan Nabi Muhammad Subhanahu Wa Ta'ala yang telah membawa umat dari zaman jahiliyah ke zaman yang terang benderang ini, sehingga penulis dapat menyelesaikan tugas akhir ini.

Dalam rangka mempersiapakan dan menyelesaikan pengerjaan tugas akhir ini penulis telah banyak memperoleh bantuan baik berupa bimbingan, informasi maupun fasilitas yang sangat membantu kelancaran penulisan ini. Pada kesempatan ini penulis ingin menyampaikan rasa terimakasih yang sedalamdalamnya kepada berbagai pihak yang telah memberikan bantuan serta dorongan selama penulisan, khususnya kepada:

- 1. Bapak Dr. Ir. Atok Setiawan, M.Eng.Sc., selaku kepala departemen Teknik mesin serta selaku dosen wali yang telah memberikan banyak nasihat dan membimbing penulis selama perkuliahan.
- 2. Bapak Suwarno, S.T., M.Sc., Ph.D., selaku dosen pembimbing yang telah dengan sabar memberikan petunjuk, ilmu, nasihat, serta bimbingan yang sangat bermanfaat.
- 3. Orang tua penulis, Bapak Agung Dwiputro dan Ibu Feri Ratna Kustilasari yang tak henti hentinya memberikan doa, dorongan dalam bentuk moril maupun materil, dan berbagai macam nasehat yang selalu akan teringat selama hidup.
- 4. Kak Fadhiil, Ifa dan Nayla, yang telah memberikan tawa maupun keributan dalam keseharian penulis.
- 5. Dewi Komalasari yang telah meluangkan waktu dan tenaga dalam melewati hari-hari senang maupun sedih bersama serta mendengar keluh kesah penulis.

- 6. Partner tugas akhir, Fariza Julio, yang selalu memberikan diskusi tak perlu dan telah menemani keluh kesah bahtera tugas akhir bersama.
- 7. Sahabat Maria kos, Lanang, Habib, Nuge, Along, Adde, Abdur yang telah membantu fasilitas maupun ilmu-ilmu jasmani maupun rohani.
- 8. Pejuang Metal, Mbak Manda, Bang Aldo, Mas Tegar, Eja yang telah menemani berjuang dan membantu penyelesaian Tugas Akhir.
- 9. Seluruh teman-teman M59 Departemen Teknik Mesin yang menemani selama perkuliahan.
- 10. Warga laboratorium Metalurgi yang selalu menemani, mendukung, dan memberikan hiburan untuk penulis.
- 11. Seluruh dosen, karyawan, dan civitas akademika Teknik Mesin, terimakasih atas segala bantuan dan kerjasamanya.

Penulis sadar bahwa penulisan laporan tugas akhir ini tidak sempurna, namun semoga laporan ini dapat memberikan kontribusi yang berarti dan menambah wawasan yang bermanfaat bagi pembaca, keluarga besar Teknik Mesin khusunya, dan civitas akademika ITS pada umumnya. Semoga laporan tugas akhir ini dapat bermanfaat sebagai referensi pengerjaan laporan tugas akhir bagi mahasiswa lain.

Surabaya, 7 Maret 2021

Penulis

DAFTAR ISI

HALAMAN PENGESAHAN	.vii
ABSTRAK	ix
ABSTRACT	xi
KATA PENGANTAR	xiii
DAFTAR ISI	.xv
DAFTAR GAMBAR	xix
DAFTAR TABELx	xiii
BAB I PENDAHULUAN	. 25
1.1 Latar Belakang	. 25
1.2 Perumusan Masalah	. 26
1.3 Tujuan Penelitian	. 27
1.4 Batasan Masalah	. 27
1.5 Manfaat Penelitian	. 27
BAB II TINJAUAN PUSTAKA	. 29
2.1 Baja	. 29
2.1.1 Klasifikasi Baja	. 29
2.1.2 Carboon Steel SA 210 A1	. 30
2.2 Korosi	. 31
2.2.1 Jenis-Jenis Korosi	. 32
2.2.2 Polarisasi	. 36
2.2.3 Dampak Korosi	. 37
2.3 Hydrogen Damage	. 38
2.3.1 Sumber Hidrogen	. 39
2.3.2 Hydrogen Embrittlement	. 39
2.3.3 Hydrogen Attack	.40
2.3.4 Hydrogen Blistering	.40
2.4 Heat Treatment	.41
2.4.1 Diagram Fasa Fe-Fe ₃ C	.42
2.4.2 Full Annealing	.42
2.5 Penelitian Terdahulu	.44
2.6 Electrochemical Hydrogen Test	.47
2.6.1 Cyclic Voltametric dan Potentiostatic Polarization.	.47
BAB III METODE PENELITIAN	. 51

3.1 Diag	ram Alir Penelitian	51
3.2 Mate	rial dan Spesimen	52
3.2.1	Material Uji	52
3.2.2	Spesimen Uji	52
3.3 Peral	latan Penelitian	53
3.3.1	Penggaris dan Jangka Sorong	53
3.3.2	Gerinda dan Mesin Bubut	53
3.3.3	Mesin Grinding dan Polishing	54
3.3.4	Peralatan Etching	54
3.3.5	Mikroskop	54
3.3.6	Mesin Micro Vickers Hardness	54
3.3.7	Mesin Scanning Electron Microscope	55
3.3.8	Furnace	55
3.3.9	Charging Cell	55
3.3.1	0Potensiostat	56
3.3.1	1Heater	57
3.4 Lang	kah-Langkah Penelitian	58
3.4.1	Studi Literatur	58
3.4.2	Perumusan Masalah dan Tujuan Penelitian	58
3.4.3	Pembuatan Peralatan Untuk Kebutuhan Penelitian	58
3.4.4	Persiapan Spesimen Uji	59
3.4.5	Analisa Komposisi Kimia	60
3.4.6	Heat Treatment	60
3.4.7	Electrochemical Hydrogen Test	61
3.4.8	Pengujian Micro Vickers Hardness	65
3.4.9	Pengujian Scanning Electron Microscope	65
BAB IV_H	IASIL DAN PEMBAHASAN	67
4.1Hasil	Uji Spesimen Base Metal	67
4.1.1	Foto Makro	67
4.1.2	Metalografi	68
4.1.3	Electrochemical Hydrogen Test	70
4.1.4	Hardness	75
4.2 Hasi	l Uji Spesimen Full Annealing	77
4.2.1	Foto Makro	78
4.2.2	Metalografi	79
	-	

4.2.3 Electrochemical Hydrogen Test	81
4.2.4 Hardness	85
4.3 Pembahasan Electrochemical Hydrogen Test Setiap	Variasi
Temperatur	
4.3.1 EHT Spesimen Base Material	
4.3.2 EHT Spesimen Full Annealing	90
4.4 SEM-EDS	94
4.5 Perbandingan Hasil Pengujian Base Metal dat	n <i>Full</i>
Annealing	97
4.5.2 Perbandingan Nilai Kekerasan	99
BAB V_KESIMPULAN DAN SARAN	105
5.1 Kesimpulan	105
5.2 Saran	105
DAFTAR PUSTAKA	107
LAMPIRAN	111
BIODATA PENULIS	127

(Halaman ini sengaja dikosongkan)

DAFTAR GAMBAR

Gambar 2.1 Polarisasi Aktivasi Yang Menunjukkan Perilaku Tafel
(Jones, 1992)
Gambar 2.2 Hidrogen Terjebak (Utomo, 2015)40
Gambar 2.3 Diagram Skema Migrasi Hidrogen dan Pembentukan
Blister (Jones, 1992)41
Gambar 2.4 Diagram Fasa Fe-Fe ₃ C (Callister, 2007)42
Gambar 2.5 Interval Temperatur Full Annealing Pada Baja Karbon
(Callister, 2007)
Gambar 2.6 Diagram Full Annealing (Nugroho, L., 2007)44
Gambar 2.7 Hasil Cyclic Voltamogram (a) Sebelum (b) Sesudah
Pemasukan Hidrogen Selama 30 Menit (Berk, Ozdirik et. Al.
(2017))
Gambar 2.8 Kurva Permeasi Hidrogen Dalam Spesimen Pada
Temperatur Yang Berbeda Diukur Dengan Teknik Permeasi
Elektrokimia Standar (Zheng, Shuqi et. al. (2013))46
Gambar 2.9 Koefisien Difusi Hidrogen Dalam Spesimen (Zheng,
Shuqi et. al. (2013))46
Gambar 2.10 Cycle Voltametry (Merdeka, 2017)48
Gambar 2.11 Hasil Cyclic Voltammogram Sebelum dan Sesudah
Pemasukan Hidrogen Selama 30 Menit (Merdeka, 2017)48
Gambar 3.1 Diagram Alir Penelitian51
Gambar 3.2 Spesimen Uji53
Gambar 3.3 Olympus Stereo Microscope54
Gambar 3.4 Furnace Nabertherm55
Gambar 3.5 Charging Cell
Gambar 3.6 Potensiotat57
Gambar 3.7 <i>Heater</i>
Gambar 3.8 Diagram Proses Perlakuan Panas60

Gambar 3.9 Skema Susunan Peralatan Uji Electrochemical
Hydrogen Uptake Test61
Gambar 3.10 Pemasangan Spesimen Uji62
Gambar 3.11 Program Nova 2.1.4 (a) Cyclic Voltammetry (b)
Pengaturan Yang Digunakan Di Pengujian63
Gambar 3.12 Program Nova 2.1.4 Untuk Hydrogen Charging64
Gambar 4.1 Foto Makro Spesimen Base Metal (a) Sebelum
Pengujian EHUT (b) Spesimen BM27 (c) Spesimen BM55 (d)
Spesimen BM8068
Gambar 4.2 Struktur Mikro Spesimen Base Metal Sebelum
<i>Electrochemical Hydrogen Test</i> (a) Perbesaran 100x (b)
Perbesaran 200x (c) Perbesaran 500x70
Gambar 4.3 Grafik Cyclic Voltametry Before After H-absorption
Spesimen BM27
Gambar 4.4 Grafik Cyclic Voltammetry Before-After H-absorption
Spesimen BM55
Gambar 4.5 Grafik Cyclic Voltammetry Before-After H-absorption
Spesimen BM80
Gambar 4.6 Titik Pengambilan Nilai kekerasan Pada Spesimen
Base Metal
Gambar 4.7 Grafik Kekerasan Spesimen Base Metal Setelah
Pengujian Hidrogen
Gambar 4.8 Foto Makro Spesimen Full Annealing (a) Sebelum
Pengujian EHUT (b) Spesimen B27 (c) Spesimen B55 (d)
Spesimen B80
Gambar 4.9 Struktur Mikro Spesimen Full Annealing Sebelum
Electrochemical Hydrogen Uptake Test (a) 100x (b) 200x
(c) 500x80
Gambar 4.10 Grafik Cyclic Voltammetry Before-After H-
absorption Spesimen B27

Gambar 4.11 Grafik Cyclic Voltammetry Before-After	Н-
absorption Spesimen B55	.82
Gambar 4.12 Grafik Cyclic Voltammetry Before-After	H-
absorption Spesimen B80	.83
Gambar 4.13 Titik Pengambilan Nilai kekerasan Pada Spesin	nen
Full Annealing	.85
Gambar 4.14 Grafik Kekerasan Spesimen Full Annealing Sete	lah
Pengujian Hidrogen	.86
Gambar 4.15 Hasil Pengujian Spesimen Base Metal	(a)
Perbandingan CV Sebelum Charging Hydrogen (b) Perbanding	gan
Grafik Charging Hydrogen (c) Perbandingan Hasil CV Sete	lah
Charging Hydrogenxx	.88
Gambar 4.16 Hasil Pengujian Spesimen Full Annealing	(a)
Perbandingan CV Sebelum Charging Hydrogen (b) Perbanding	gan
Grafik Charging Hydrogen (c) Perbandingan Hasil CV Sete	lah
Charging Hydrogen	.92
Gambar 4.17 Hasil Pengujian SEM Base Metal Perbesaran 100)0x
(a) Spesimen BM27 (b) Spesimen BM55 (c) Spesimen BM80	.95
Gambar 4.18 Perbandingan Base Metal dan Full Annealing	(a)
emperatur 27°C (b) temperatur 55°C (c) temperatur 80°C	.98

(Halaman ini sengaja dikosongkan)

DAFTAR TABEL

Tabel 3.1 Komposisi Kimia Baja Karbon SA 210 A1 Ber	dasarkan
Hasil Uji Spektro	52
Tabel 3.2 Dimensi Spesimen Yang Digunakan	
Tabel 4.1 Nilai Kekerasan HV Spesimen Base Metal	76
Tabel 4.2 Hasil Uji Kekerasan Full Annealing Setelah I	Permeasi
Hidrogen	
Tabel 4.3 Hasil Pengujian SEM-EDS Spesimen Base Met	al96
Tabel 4.4 Nilai Kekerasan Base Metal	100
Tabel 4.5 Nilai Kekerasan Full Annealing	101

(Halaman ini sengaja dikosongkan)

BAB I PENDAHULUAN

1.1 Latar Belakang

Pemilihan ienis logam vang dipakai perlu mempertimbangkan beberapa aspek, seperti fungsi dari alat atau mesin itu sendiri dan kondisi lingkungan dari alat atau mesin tersebut yang akan digunakan perlu diperhatikan dalam pemilihan jenis material atau logam yang akan digunakan. Mulai dari penggunaan logam yang berada pada suhu tinggi, logam yang akan digunakan adalah logam yang paling tahan panas seperti tungsten. Pada lingkungan lembab pun jenis logam yang digunakan akan memperhatikan jenis logam yang paling tahan terhadap korosi seperti alumunium. Pada lingkungan yang terdapat gas hidrogen juga perlu memperhatikan penggunaan logam yang akan digunakan. Dalam pemilihan jenis logam yang akan digunakan pada lingkungan yang terdapat gas hidrogen, perlu diketahui terlebih dahulu dampak apa yang akan ditimbulkan dari hidrogen terhadap material yang digunakan dan apa yang bisa dilakukan untuk mencegah atau mengurangi dampak negatif vang ditimbulkan kepada alat atau mesin yang akan digunakan pada lingkungan tersebut.

Kerusakan hidrogen (*hydrogen damage*) adalah istilah umum yang mengacu pada kerusakan mekanis suatu logam yang disebabkan oleh adanya atau interaksi dengan hidrogen. Permasalahan ini selalu muncul dalam dunia industri yang menggunakan alat atau mesin pada lingkungan yang mengandung hidrogen. Tentunya hal ini perlu diperhatikan mengingat kerusakan hidrogen yang terjadi pada alat atau mesin yang dipakai akan mempengaruhi biaya dalam dunia industri dan keamanan alat atau mesin tersebut selama pemakaian.

Kerusakan hidrogen sering muncul pada dunia industri seperti industri *petroleum*, pembangkit listrik tenaga uap, dan lainlainnya. Pada pembangkit listrik tenaga uap, kerusakan hidrogen dapat terjadi pada *waterwall tube* yang berada di dalam *boiler*.

Boiler itu sendiri merupakan salah satu alat penukar panas yang berfungsi mengubah air menjadi uap air bertekanan. Boiler memanfaatkan kalor yang diperoleh dari hasil pembakaran batu bara atau gas alam. Kalor tersebut kemudian ditransfer ke air melalui pipa-pipa besi (waterwall tube) yang berada pada setiap dinding *boiler*. Kerusakan hidrogen pada *boiler* biasanya terjadi pada waterwall tube yang berisi air untuk diubah menjadi uap air bertekanan. Kerusakan hidrogen akan mengakibatkan penurunan kualitas dan kegagalan pada *tube boiler* yang dapat mengakibatkan kerugian yang besar, seperti kehilangan produksi dan biaya perawatan yang tinggi. Selain itu, pada saat pengelasan, logam las cair, weld metal menyerap hidrogen dalam jumlah yang relatif besar. Hidrogen dalam logam cair ini akan diserap oleh logam pada daerah pengaruh panas bersamaan dengan terjadinya pembekuan logam las cair. Hal ini terjadi karena kelarutan hidrogen temperatur rendah sangat terbatas. Semakin rendah temperatur, maka kelarutan hidrogen pada logam semakin rendah. Hal ini akan menyebabkan kecenderungan terbentuknya retak dingin. Dari permasalahan ini, maka diperlukan penelitian mengenai difusi hidrogen ke dalam logam atau paduan sehingga kerusakan hidrogen dalam berbagai aplikasi dunia industri dapat diminimalisir. Selain itu, juga dapat mengurangi biaya dalam dunia industri dan memastikan keamanan alat tersebut selama pemakaian.

Dari permasalahan yang muncul di industri, perlu nya dilakukan penelitian mengenai faktor-faktor yang menyebabkan terjadi kerusakan hidrogen di dunia industri. Penelitian yang dilakukan dengan pengujian *electrochemical hydrogen test* pada baja karbon SA 210 BM27 dengan variasi temperatur untuk pengaruh difusi hidrogen, mengamati perubahan nilai kekerasan, dan lapisan oksida yang terbentuk.

1.2 Perumusan Masalah

Adapun rumusan masalah dari penelitian ini adalah bagaimana pengaruh temperatur terhadap penyerapan hidrogen

pada baja SA 210 BM27 dengan pengujian *electrochemical hydrogen test* menggunakan metode *cyclic voltammetry*?

1.3 Tujuan Penelitian

Adapun tujuan dari penelitian ini adalah mengetahui pengaruh temperatur terhadap laju penyerapan hidrogen pada baja SA 210 BM27 dengan pengujian *electrochemical hydrogen test* menggunakan metode *cyclic voltammetry*.

1.4 Batasan Masalah

Untuk dapat menyelesaikan permasalahan yang muncul dalam penelitian ini dan mencapai tujuan yang diinginkan, maka diperlukan batasan masalah dalam penelitian ini, antara lain:

- 1. Alat uji *Charging Cell* dianggap sesuai dan dapat memenuhi kebutuhan eksperimen.
- 2. Seluruh spesimen mengalami proses permesinan yang sama.
- 3. Nilai kekerasan seluruh spesimen uji *base metal* dianggap sama
- 4. Nilai kekerasan seluruh spesimen uji *full annealing* dianggap sama

1.5 Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan manfaat baik untuk berbagai kalangan. Adapun manfaat yang bisa diberikan yaitu sebagai berikut:

- 1. Meningkatkan pengetahuan mengenai pengaruh temperatur terhadap laju kecepatan penyerapan hidrogen.
- 2. Memberikan pengetahuan mengenai kondisi lingkungan yang akan mempengaruhi logam mengalami kerusakan hidrogen.
- 3. Penelitian ini diharapkan memberikan manfaat dan menambah wawasan bagi peneliti.

(Halaman ini sengaja dikosongkan)

BAB II TINJAUAN PUSTAKA

2.1 Baja

Baja adalah paduan besi-karbon yang mengandung konsentrasi yang cukup besar dari elemen paduan lainnya (Callister, 2007). Fungsi karbon pada baja adalah sebagai elemen pengerasan pada kisi kristal atom besi. Selain karbon menjadi elemen paduan utama pada baja, terdapat elemen lain seperti titanium, kromium, nikel, vanadium, kobalt dan tungsten. Unsur paduan pada baja akan mempengaruhi sifat mekanik baja tersebut. Persentase karbon dalam baja secara langsung mempengaruhi kekerasan baja. Oleh karena itu perlu dilakukan penentuan kandungan karbon suatu bahan sesuai dengan kebutuhan dan fungsi bahan tersebut.

2.1.1 Klasifikasi Baja

Klasifikasi baja menurut konsentrasi elemen paduan, yaitu Baja Karbon Biasa dan Baja Paduan (Callister, 2007). Baja karbon biasa hanya mengandung konsentrasi sisa pengotor selain karbon dan sedikit mangan. Untuk baja paduan, lebih banyak elemen paduan yang sengaja ditambahkan dalam konsentrasi tertentu. Elemen paduan ini biasanya merupakan ikatan yang berasal dari proses pembuatan besi seperti mangan, silikon, dan beberapa unsur lainnya, seperti belerang, posfor, oksigen, nitrogen dan lainlain yang bertujuan untuk memberikan sifat-sifat seperti ketahanan aus, ketahanan asam dan masih banyak lagi fungsi dari penambahan unsur- unsur tersebut.

Beberapa dari baja yang lebih umum diklasifikasikan menurut konsentrasi karbon yaitu, jenis baja karbon rendah, baja karbon menengah, dan baja karbon tinggi.

a. Baja Karbon Rendah (Low-Carbon Steels)

Di antara semua jenis baja, baja yang paling banyak diproduksi diklasifikasikan sebagai baja karbon rendah. Biasanya mengandung karbon kurang dari sekitar 0,25% berat dan tidak merespon perlakuan panas yang bertujuan membentuk martensit (Callister, 2007). Paduan ini relatif bersifat lembut dan lemah, tetapi memiliki keuletan (*ductility*) dan ketangguhan (*toughness*) yang sangat baik. Selain itu, baja jenis ini dapat dengan mudah diproses melalui proses permesinan, dapat dilas, dan memiliki biaya produksi terendah dari semua baja. Aplikasi dari baja karbon jenis ini meliputi komponen bodi mobil dan lembaran baja untuk pipa, bangunan, jembatan, dan kaleng.

b. Baja Karbon Menengah (Medium-Carbon Steels)

Baja karbon menengah memiliki konsentrasi karbon antara sekitar 0,25 sampai 0,60% berat (Callister, 2007). Baja jenis ini dapat diperbaiki sifat mekaniknya melalui proses perlakuan panas austenizing, quenching, dan tempering. Baja karbon menengah lebih kuat dibanding baja karbon rendah, tetapi baja karbon rendah lebih baik dalam hal keuletan dan kekerasan. Aplikasi dari baja jenis ini mencakup roda dan rel kereta api, roda gigi, poros engkol, dan komponen mekanis lainnya, serta komponen struktural berkekuatan tinggi vang membutuhkan kombinasi kekuatan, ketahanan aus, dan ketangguhan yang tinggi.

c. Baja Karbon Tinggi (*High-Carbon Steels*)

Baja karbon tinggi umumnya memiliki konsentrasi karbon antara sekitar 0,6 sampai 1,4% berat (Callister, 2007). Sifat mekaniknya dapat dinaikkan melalui perlakuan panas *austenitizing, quenching, dan tempering*. Baja jenis ini merupakan baja paling keras, paling kuat, dan paling getas di antara ejnis baja karbon lainnya serta tahan aus.

2.1.2 Carboon Steel SA 210 A1

Material ASTM SA 210 grade A-1 (baja karbon SA 210 A1) adalah baja karbon yang biasa digunakan untuk *tube boiler*. Nilai kekerasan maksimum menurut standar sebesar

143 HB. Material ASTM SA 210 A1 bisa dikategorikan sebagai baja karbon menengah (*medium carbon steel*). Fasa-fasa yang terbentuk dapat ditunjukkan melalui diagram Fe-Fe3C.

2.2 Korosi

Korosi adalah suatu peristiwa kerusakan atau penurunan kualitas suatu bahan logam yang disebabkan oleh terjadinya reaksi terhadap lingkungan (Jones, 1992). Korosi atau pengkaratan merupakan suatu peristiwa kerusakan atau penuruan kualitas suatu bahan logam yang disebabkan oleh terjadinya reaksi terhadap lingkungan. Beberapa pakar berpendapat definisi hanya berlaku pada logam saja, tetapi para insinyur korosi juga ada yang mendefinisikan istilah korosi berlaku juga untuk material non logam, seperti keramik, plastik, karet (AR Hakim, 2012).

Korosi didefinisikan sebagai degradasi material akibat reaksi kimia antar material maupun antara material dengan lingkungannya. Korosi dapat diklasifikasikan menjadi dua, yaitu korosi basah dan korosi kering. Korosi basah terjadi saat material berinteraksi dengan uap dan gas, dimana korosi kering sering dihubungkan dengan korosi pada temperatur tinggi (Fontana, 1986).

Terdapat tiga aspek utama yang mempengaruhi proses korosi, yaitu material, lingkungan dan reaksi yang terjadi. Struktur metalurgi dan sifat material sangat berpengaruh terhadap korosi. Sifat material dapat terbentuk karena proses perlakuan ataupun dikarenakan sifat komposisi kimia yang terkandung. Kondisi material yang menerima perlakuan memiliki ketahanan korosi yang lebih rendah bila dibandingkan dengan material yang tidak terhadap menerima perlakuan. Perlakuan material dapat menyebabkan perubahan sifat dari material itu, seperti perubahan besar butir, presipitasi, homogenitas, atau adanya deformasi plastis. Semua perubahan yang terjadi pada material akibat perlakuan menunjukkan adanya perubahan energi dari kondisi ekuilibriumnya, dimana semakin tidak ekuilbrium material maka semakin mudah material untuk terkorosi.

2.2.1 Jenis-Jenis Korosi

Berdasarkan bentuk kerusakan yang dihasilkan, penyebab korosi, lingkungan tempat terjadinya korosi, maupun jenis material yang diserang, korosi terbagi menjadi beberapa jenis, diantaranya adalah:

1. Korosi Merata

Korosi merata adalah bentuk korosi yang pada umumnya sering terjadi. Hal ini biasanya ditandai dengan adanya reaksi kimia atau elektrokimia yang terjadi pada permukaan yang bereaksi. Logam menjadi tipis dan akhirnya terjadi kegagalan pada logam tersebut. Sebagai contoh, potongan baja atau seng dicelupkan pada asam sulfat encer, biasanya akan terlarut secara seragam pada seluruh permukaannya. Contoh lain dari korosi merata adalah pada pelat baja atau profil, permukaannya bersih dan logamnya homogen, bila dibiarkan di udara biasa beberapa bulan maka akan terbentuk korosi merata pada permukaanya. Korosi merata merupakan seluruh keadaan kerusakan yang sangat besar terhadap material, namun demikian korosi ini kurang diperhatikan karena umur dari peralatan dapat diperkirakan secara akurat dengan pengujian lain yang lebih sederhana. Korosi merata dapat dilakukan pencegahan dengan cara pelapisan, inhibitor dan proteksi katodik.

2. Korosi Atmosfer

Korosi ini terjadi akibat proses elektrokimia antara dua bagian benda padat khususnya metal besi yang berbeda potensial dan langsung berhubungan dengan udara terbuka.

3. Korosi Galvanis

Korosi galvanis adalah jenis korosi yang terjadi ketika dua macam logam yang berbeda berkontak langsung dalam media korosif. Logam yang memiliki potensial korosi lebih tinggi akan terkorosi lebih hebat dari pada kalau ia sendirian dan tidak dihubungkan langsung dengan logam yang memiliki potensial korosi yang lebih rendah. Logam yang memiliki potensial korosi yang lebih rendah akan kurang terkorosi dari pada kalau ia sendirian dan tidak dihubungkan langsung dengan logam yang memiliki potensial korosi yang lebih tinggi. Pada kasus ini terbentuk sebuah sel galvanik, dengan logam yang berpotensial korosi lebih tinggi sebagai anoda dan logam yang berpotensial korosi lebih rendah sebagai katoda.

4. Korosi Regangan

Korosi ini terjadi karena pemberian tarikan atau kompresi yang melebihi batas ketentuannya. Kegagalan ini sering disebut retak karat regangan (RKR). Sifat retak jenis ini sangat spontan (tiba-tiba terjadinya), regangan biasanya bersifat internal atau merupakan sisa hasil pengerjan (residual) seperti pengeringan, pengepresan dan lain-lain.

5. Korosi Celah

Korosi celah ialah sel korosi yang diakibatkan oleh perbedaan konsentrasi zat asam. Karat ini terjadi, karena celah sempit terisi dengan elektrolit (air yang pHnya rendah) maka terjadilah suatu sel korosi dengan katodanya permukaan sebelah luar celah yang basa dengan air yang lebih banyak mengadung zat asam dari pada bagian sebelah dalam celah yang sedikit mengandung zat asam sehingga bersifat anodic. Korosi celah termasuk jenis korosi lokal. Jenis korosi ini terjadi pada celah-celah konstruksi, seperti kaki-kaki konstruksi, drum maupun tabung gas. Korosi jenis ini juga dapat dilihat pada celah antara tube dari Heat Exchanger dengan tubesheet-nya. Adanya korosi bisa ditandai dengan warna coklat di sekitar celah. Tipe korosi ini terjadi akibat terjebaknya elektrolit sebagai lingkungan korosif di celah-celah yang terbentuk diantara peralatan konstruksi.

6. Korosi Sumuran

Korosi sumuran juga termasuk korosi lokal. Jenis korosi ini mempunyai bentuk khas yaitu seperti sumur, sehingga disebut korosi sumuran. Arah perkembangan korosi tidak menyebar ke seluruh permukaaan logam melainkan menusuk ke arah ketebalan logam dan mengakibatkan konstruksi mengalami kebocoran. Walaupun tidak sampai habis terkorosi, konstruksi tidak dapat beroperasi optimal, bahkan mungkin tidak dapat dipergunakan lagi karena kebocoran yang timbul. Korosi sumuran sering terjadi pada stainless-steel, terutama pada lingkungan yang tidak bergerak (stasioner) dan nonoksidator (tidak mengandung oksigen).

7. Korosi Erosi

Korosi erosi adalah proses korosi yang bersamaan dengan erosi/abrasi. Korosi jenis ini biasanya menyerang peralatan yang lingkungannya adalah fluida yang bergerak, seperti aliran dalam pipa ataupun hantaman dan gerusan ombak ke kaki-kaki jetty. Keganasan fluida korosif yang bergerak diperhebat oleh adanya dua fase atau lebih dalam fluida tersebut, misalnya adanya fase liquid dan gas secara bersamaan, adanya fase liquid dan solid secara bersamaan ataupun adanya fase liquid dan solid secara bersamaan. Kavitasi adalah contoh erosion corrosion pada peralatan yang berputar di lingkungan fluida yang bergerak, seperti impeller pompa dan sudu-sudu turbin. Erosion / abrassion corrosion juga terjadi di saluran gas-gas hasil pembakaran.

8. Hydrogen Attack

Hydrogen attack mengakibatkan logam menjadi rapuh akibat penetrasi hidrogen ke kedalaman logam. Peristiwa perapuhan ini biasa disebut dengan *"Hydrogen* *Embrittlement*". Logam juga bisa retak oleh invasi hidrogen.

9. Korosi Antar Batas Butir

Di daerah batas butir memilki sifat yang lebih reaktif. batas butir Banyak-sedikitnya akan sangat mempengaruhi kegunaan logam tersebut. Jika semakin sedikit batas butir pada suatu material maka akan menurunkan kekuatan material tersebut. Jika logam terkena karat, maka di daerah batas butir akan terkena serangan terlebih dahulu dibandingkan daerah yang jauh dari batas butir. Serangan yang terjadi pada daerah batas butir dan daerah yang berdekatan dengan batas butir hal ini biasa disebut intergranular corrosion. Intergranular corrosion dapat terjadi karena adanya kotoran pada batas butir, penambahan pada salah satu unsur paduan, atau penurunan salah satu unsur di daerah batas butir. Sebagai contoh paduan besi dan alumunium, dimana kelarutan besi lambat maka akan terjadi serangan pada batas butir.

Berdasarkan lingkungannya, korosi dapat dibedakan menjadi dua kategori yaitu sebagai berikut :

- 1. Korosi Lingkungan Gas (Dry Corrosion)
- 2. Korosi Lingkungan Cairan (Wet Corrosion)

Korosi lingkungan gas dapat terjadi pada lingkungan atmosfir maupun lingkungan gas yang lain. Korosi lingkungan cairan dapat terjadi pada lingkungan air maupun cairan yang lain. Korosi dapat dibedakan berdasarkan suhu korosif yang melingkungi konstruksi logam. Berdasarkan suhu korosif ini, korosi dibedakan menjadi dua kategori, yaitu :

- 1. Korosi Suhu Tinggi (High Temperature Corrosion)
- 2. Korosi Biasa/ Suhu Kamar (Normal Temperature Corrosion)

High Temperature Corrosion terjadi pada burner, boiler, reformer, reaktor, dsb. Korosi jenis ini banyak terjadi dalam suasana lingkungan gas.

2.2.2 Polarisasi

Pada pengukuran laju korosi, elektroda tidak berada pada keadaan kesetimbangan ketika dialiri oleh arus. Potensial yang diukur dari elektroda dipengaruhi oleh besarnya arus eksternal dan arah potensial. Perubahan arah potensial berlawanan bergeser selalu dari kesetimbangannya, hal itu dikarenakan adanya arus berlawanan dari eksternal maupun dari galvanik. Saat arus mengalir dalam sel galvanik, anoda bersifat lebih katodik dan katoda menjadi lebih anodik. Perbedaan potensial antara anoda dan katoda menjadi lebih kecil dengan meningkatnya arus. Perubahan potensial yang disebabkan pergerakan arus ke atau dari elektroda, diukur dalam volt, disebut dengan polarisasi (Uhlig, 2008).

Polarisasi (η) adalah perubahan potensial dari potensial kesetimbangan elektroda setengah sel yang disebabkan oleh laju reaksi permukaan yang tetap untuk reaksi setengah sel (Jones, 1992). Untuk polarisasi katodik (η_c), elektron disuplai ke permukaan dan terjadi penumpukan pada logam dikarena laju reaksi yang lambat menyebabkan potensial permukaan logam menjadi negatif. Untuk polarisasi anodik (η_a), elektron dikeluarkan dari logam. Kekurangan elektron ini menghasilkan perubahan potensial menjadi positif karena pembebasan elektron yang lambat oleh reaksi pada permukaan logam.

Apabila tahapan pada reaksi setengah sel mengatur laju dari elektron, reaksi tersebut berada di bawah kontrol aktivasi atau *charge-transfer control* yang dapat disebut Polarisasi Aktivasi (Jones, 1992). Pada permukaan logam, terdapat elektron yang diberikan dari luar sehingga dapat membentuk H₂ dengan tahapan sebagai berikut:

Dengan adanya atom hidrogen teradsorpsi pada permukaan logam, dapat membentuk molekul hidrogen dengan reaksi antar dua atom hidrogen.
Dengan mengontrol reaksi pertama, dapat mengakibatkan Polarisasi Aktivasi. Untuk polarisasi anodik yang terjadi, akan menghasilkan η_a positif dan untuk polarisasi katodik, akan menghasilkan η_c negatif. *Density current* anodik dan *density current* katodik akan mengalir berlawanan arus.

Gambar 2.1 Polarisasi Aktivasi Yang Menunjukkan Perilaku Tafel (Jones, 1992)

2.2.3 Dampak Korosi

Korosi merupakan proses atau reaksi elektrokimia yang bersifat alamiah dan berlangsung spontan, oleh karena itu korosi tidak dapat dicegah atau dihentikan sama sekali. Korosi hanya bisa dikendalikan atau diperlambat lajunya sehingga memperlambat proses kerusakannya. Banyak sekali dampak yang diakibatkan oleh korosi ini, berikut beberapa dampak negatif yang bisa ditimbulkan oleh proses korosi diantaranya adalah :

- a. Patahnya peralatan yang berputar karena korosi, yang merugikan dari segi materil dan mengancam keselamatan jiwa.
- b. Pecahnya peralatan bertekanan dan/atau bersuhu tinggi karena korosi, yang selain merusak alat juga membahayakan keselamatan
- c. Hancurnya peralatan karena lapuk oleh korosi sehingga tidak bisa dipakai lagi sebagai bahan konstruksi, dan harus diganti dengan yang baru.
- d. Hilangnya keindahan konstruksi karena produk korosi yang menempel padanya.
- e. Bocornya peralatan, seperti: tangki, pipa dan sebagainya, sehingga tidak bisa berfungsi optimal. Peralatan yang bocor/rusak juga mengakibatkan produk ataupun fluida kerja terkontaminasi oleh fluida atau bahan-bahan lain, maupun oleh senyawa-senyawa hasil korosi. Bocor/rusaknya peralatan juga merugikan dari segi produksi, akibat hilangnya produk berharga. Kebocoran/kerusakan bisa mengakibatkan terhentinya operasi pabrik, bahkan membahayakan lingkungan akibat terlepasnya bahan berbahaya ke lingkungan.

2.3 Hydrogen Damage

Hydrogen damage adalah istilah umum yang mengacu pada kerusakan mekanis dari logam yang disebabkan adanya interaksi antara logam dengan hidrogen. Awal masuknya hidrogen dapat mengakibatkan hilangnya keuletan dan brittle cracking (Jones, 1992). Kerusakan yang diakibatkan oleh hydrogen damage ini seperti terbentuknya crack, blistering, pembentukan hidrida, serta berkurangnya sifat keuletan dari suatu logam. Hydrogen damage sendiri diklasifikasikan menjadi empat tipe yang berbeda. Tipe dari hydrogen damage antara lain, yaitu hydrogen blistering, hydrogen embrittlement, decarburization, dan hydrogen attack.

2.3.1 Sumber Hidrogen

Hidrogen yang menempel pada permukaan logam dapat berasal dari beberapa sumber seperti reaksi reduksi dari hidrogen atau air (H_20) seperti reaksi berikut:

$H_2O+2e^-\rightarrow 2OH^-+H$

Reaksi reduksi ini dapat timbul dari proses korosi, proteksi katodik, pengawetan, dan proses pembersihan. Atom hidrogen akan masuk ke dalam kisi (*lattice*) yang nantinya dapat membentuk molekul H₂ pada permukaan logam atau pada *void* yang ada di dalam logam. Proses yang melibatkan polarisasi katodik, seperti proteksi katodik dan *electroplating*, dapat mempercepat pembentukan hidrogen dari reaksi reduksi air atau ion hidrogen yang ada di sekitar logam. Oleh karena itu, pemilihan logam dan paduan yang digunakan harus dipilih secara tepat untuk menghindari kerusakan akibat hidrogen.

2.3.2 Hydrogen Embrittlement

Hydrogen embrittlement disebabkan karena adanya hidrogen penetrasi oleh ke dalam logam yang mengakibatkan hilangnya ductility dan tensile strength, dimana atom hidrogen tersebut tidak membentuk molekul gas hidrogen seperti pada hydrogen blistering. (academia edu). Mekanisme proses terjadinya hydrogen embrittlement bermacam-macam, beberapa diantaranya terjadi pada material khusus dan lainnya berlaku umum untuk semua material. Mekanisme tersebut antara lain, vaitu dislocation locking (hidrogen terjebak), precipitate crack nucleation (retak endapan), hydride formation atau pembentukan gas hidrogen, dan grain boundary decohesion (kegagalan batas butir). Dislocation locking (hidrogen terjebak), pada mekanisme tersebut atom hidrogen dalam logam terdilokasi, untuk mengurangi beban tegangan maka atom tersebut harus bergerak ke daerah lain dalam logam. Namun, atom tersebut tidak bisa bergerak jauh karena mendapat desakan dari atom hidrogen lain yang masuk ke daerah dislokasi sehingga atom terjebak. Adanya atom yang terjebak inilah yang disebut dengan penggetasan (*embrittlement*).

Gambar 2.2 Hidrogen Terjebak (Utomo, 2015)

2.3.3 Hydrogen Attack

Hidrogen dalam baja pada suhu tinggi dapat bereaksi dengan karbida untuk membentuk gas metana yang tidak dapat dengan mudah berdifusi keluar karena ukurannya. Gelembung metana terbentuk dan tumbuh pada batas butir sehingga menimbulkan *stress*. Dekarburasi bersama dengan retakan dapat menghasilkan penurunan kekuatan dan keuletan meterial. Kejadian ini akan menimbulkan *microcrack* pada batas butir dan berakumulasi hingga material tidak dapat menahan tekanan.

2.3.4 Hydrogen Blistering

Hydrogen blistering dengan hydrogen embrittlement memiliki perbedaan dalam perusakkan material, dimana pada hydrogen blistering, atom hidrogen berdifusi masuk ke dalam logam dan mengisi void sehingga atom-atom tersebut bergabung menjadi molekul hydrogen dimana konsentrasi molekul hydrogen akan semakin meningkat yang menyebabkan peningkatan tekanan di dalam void yang selanjutnya akan menyebabkan terjadinya cracking, sedangkan pada hydrogen embrittlement, penyebab awalnya sama seperti *hydrogen blistering* yaitu terjadi difusi atom *hydrogen* ke dalam struktur logam. Atom-atom *hydrogen* tersebut tidak membentuk molekul gas *hydrogen* melainkan menyisip di antara dislokasi.

Gambar 2.3 Diagram Skema Migrasi Hidrogen dan Pembentukan Blister (Jones, 1992)

2.4 Heat Treatment

Perlakuan panas atau *heat treatment* dapat diartikan sebagai kombinasi dari proses pemanasan atau pendinginan pada logam atau paduan untuk jangka waktu tertentu untuk mendapatkan sifat tertentu. Langkah pertama dalam proses perlakuan panas adalah memanaskan logam atau paduan ke suhu tertentu, kemudian menyimpannya pada suhu tersebut selama jangka waktu tertentu, dan kemudian mendinginkannya pada tingkat pendinginan tertentu. Selama proses pemanasan dan pendinginan ini, beberapa perubahan mikrostruktur akan terjadi, fasa dan / atau bentuk atau ukuran butiran kristal dapat berubah, dan perubahan struktur mikro ini akan menyebabkan perubahan sifat logam atau paduan.

Mikrostruktur yang muncul tidak hanya ditentukan oleh komposisi kimia logam atau paduan dan proses perlakuan panas yang dialami, tetapi juga oleh struktur atau kondisi awal benda kerja. Jika kondisi awal berbeda dan memiliki komposisi kimia yang sama, paduan yang telah mengalami proses perlakuan panas yang sama dapat memiliki struktur dan sifat yang berbeda. Struktur atau kondisi awal ini sangat bergantung pada pekerjaan dan / atau perilaku termal yang dialami. Suherman (Suherman, 2001)

2.4.1 Diagram Fasa Fe-Fe₃C

Baja dan besi tuang yang banyak digunakan pada dasarnya adalah paduan besi dengan karbon. Karbon di dalam paduan ini dapat berupa karbon bebas (grafit), atau berupa senyawa interstisial (sementit). Grafit adalah karbon dalam bentuk paling stabil, karena itu sistem paduan dimana karbonnya berupa grafit dinamakan sistem paduan Fe-C yang stabil. Sedang sementit adalah suatu struktur yang metastabil, dan sistem paduan ini dinamakan sistemn Fe-C yang metastabil.

Gambar 2.4 Diagram Fasa Fe-Fe₃C (Callister, 2007) 2.4.2 *Full Annealing*

Annealing adalah perlakuan panas yang umumnya digunakan untuk menghilangkan efek yang timbul dari cold working, seperti meningkatkan keuletan logam yang sebelumnya mengalami strain hardening. Ini biasanya terjadi dalam proses manufaktur yang membutuhkan deformasi plastik skala besar untuk memungkinkan deformasi terus menerus tanpa merusak logam atau mengonsumsi energi yang berlebihan (Callister, 2007).

Full annealing biasanya dilakukan untuk menghaluskan butiran kritstal dari benda kerja yang berbutir kasar (butiran yang kasar biasanya bersifat getas) yang dihasilkan dari proses tempa atau yang mengalami pemanasan berlebihan (Suherman, 2001).

Gambar 2.5 Interval Temperatur *Full Annealing* Pada Baja Karbon (Callister, 2007)

Temperatur yang dipilih untuk austenisasi tergantung pada kadar karbon dari baja yang bersangkutan. Full annealing untuk baja hypoeutectoid dilakukan pada temperatur austenisasi sekitar 25°C-50°C di atas garis BM80 dan untuk baja hypereutectoid dilakukan dengan cara memanaskan baja pada temperatur 25°C-50°C di atas garis BM27. Baja tersebut kemudian didinginkan dengan tungku yaitu, tungku perlakuan panas dimatikan dan tungku maupun baja mendingin hingga suhu kamar pada kecepatan yang sama dan membutuhkan waktu beberapa jam. Full annealing akan menaikkan kekuatan material. menghaluskan butir-butir kristal dan juga dapat memperbaiki machineability.

2.5 Penelitian Terdahulu

Penelitian mengenai *hydrogen damage* dimaksudkan untuk mengetahui fenomena difusi atom hidrogen ke dalam logam yang menjadi permasalahan pada industri dengan lingkungan hidrogen. Penelitian terdahulu menambahkan faktor-faktor lain dalam pengamatan perilaku difusi hidrogen, seperti temperatur percobaan dan struktur mikro dari logam yang diuji.

Berk, Ozdirik et. Al. (2017) melakukan penelitian yang berjudul "Development of an Electrochemical Procedure for Monitoring Hydrogen Sorption/Desorption in Steel" vang bertujuan untuk mengetahui pengaruh-pengaruh yang dihasilkan dari pengujian cyclic voltametric dengan berbagai metode yang dilakukan. Penelitian dilakukan beberapa cara seperti menambahkan thiourea ke dalam larutan 1 M NaOH, waktu eksperimen, dan hot extraction hidrogen. Penelitian ini menyimpulkan bahwa adanya pengaruh dari penambahan thiourea dan waktu eksperimen. Dengan begitu, didapatkan prosedur paling baik dalam melakukan eksperimen menggunakan metode cyclic voltametric.

Gambar 2.7 Hasil *Cyclic Voltamogram* (a) Sebelum (b) Sesudah Pemasukan Hidrogen Selama 30 Menit (Berk, Ozdirik et. Al. (2017))

Zheng, Shuqi et. al. (2013) melakukan penelitian pengaruh temperatur pada perilaku permeasi hidrogen dari pipa L360NCS di lingkungan 1MPa H₂S. Uji permeasi hidrogen dilakukan untuk mengetahui pengaruh temperatur lingkungan terhadap difusi hidrogen, yang terkait dengan kerusakan hidrogen (*hydrogen damage*). Konsep alat yang digunakan pada penelitian ini sama dengan Devanathan-Stachurski Cell. Akan tetapi, atom hidrogen diproduksi dari gas H₂S. Atom hidrogen yang terdifusi ke dalam spesimen dioksidasi. Di sisi katodik, sel diisi dengan larutan uji yang mengandung gas H₂S pada tekanan 1 MPa dan tegangan (voltase) tidak diterapkan. Namun, sisi pendeteksian (sel anodik) diisi dengan larutan NaOH 0,2 N dan tegangan (voltase) lebih dari 0 mVSCE diberikan untuk mengoksidasi hidrogen yang terdifusi. Sisi deteksi membran baja dilapisi dengan paladium untuk menghilangkan impedansi permukaan yang membatasi fluks dan untuk memastikan keandalan arus oksidasi hidrogen. Ketebalan benda uji adalah 3 mm. Untuk mendapatkan D_{eff} (*effective hydrogen diffusivity*) atom hidrogen dalam logam dasar pada temperatur yang berbeda, kurva permeasi untuk spesimen pada temperatur yang berbeda diukur dengan teknik permeasi elektrokimia standar.

Gambar 2.8 Kurva Permeasi Hidrogen Dalam Spesimen Pada Temperatur Yang Berbeda Diukur Dengan Teknik Permeasi

Gambar 2.9 Koefisien Difusi Hidrogen Dalam Spesimen (Zheng, Shuqi et. al. (2013))

2.6 Electrochemical Hydrogen Test

Penurunan sifat mekanik dari logam yang disebabkan oleh penyerapan hidrogen mengancam keamanan peralatan yang bekerja atau berada di lingkungan hidrogen. Teknik elektrokimia memungkinkan hidrogen melewati membran logam adalah metode umum untuk mempelajari difusivitas hidrogen dan fenomena penggetasan (*embrittlement*) logam. Umumnya, hidrogen diperoleh dari larutan elektrolit percobaan atau gas H₂S. Atom hidrogen yang didifusi ke dalam logam. Peralatan standar untuk pengujian ini mampu menghasilkan energi listrik dari reaksi kimia atau menggunakan energi listrik untuk menjalankan reaksi kimia.

2.6.1 Cyclic Voltametric dan Potentiostatic Polarization

Cyclic voltammetry (CV) merupakan suatu metoda digunakan untuk mengamati sifat kapasitan dari material. Cyclic voltammetry dilakukan menggunakan potentiostat vang dikontrol dengan komputer. Teknik elektroanalisis menggunakan Cyclic Voltammetry pada dasarnya adalah teknik elektroanalisis dengan memberikan voltase yang berubah-rubah secara linear (ramp voltage) pada sebuah elektroda. Voltase yang diteliti (VoltageScan) pada umumnya berkisar $\pm 2V$ dari potensial elektroda ketika tidak diberi arus (potensial jeda) sehingga reaksi pada elektroda dapat diteliti dengan baik. Selagi voltase yang diberikan mendekati potensial reversibel, arus mengalir yang besarnya meningkat secara parabolik namun kemudian berhenti pada potensial tertentu dikarenakan berkurangnya reaktan. Berkurangnya reaktan ini disebabkan oleh reaksi yang berlangsung di permukaan elektroda.

Gambar 2.10 *Cycle Voltametry* (Merdeka, 2017) *Cyclic voltammetry* memberikan informasi kualitatif dan kuantitatif mengenai karakter redoks elektroda. Berdasarkan karakteristik daripada grafik yang didapatkan dari pengujian maka dapat ditentukan apakah reaksi reduksi yang terjadi *reversible, semi-reversible,* atau *irreversible.*

Gambar 2.11 Hasil *Cyclic Voltammogram* Sebelum dan Sesudah Pemasukan Hidrogen Selama 30 Menit (Merdeka, 2017)

Pada gambar 2.11 terlihat adanya beberapa puncak atau *peak* yang menjadi indikasi penting dalam pengujian. Terlihat terdapat puncak a.1 dan puncak a.2 dimana berkaitan dengan pengisian hidrogen ke dalam spesimen. Puncak a.1 dan a.2 dianggap berasal dari oksidasi hidrogen yang terserap dan reaksi terkait tiourea. Untuk puncak b dan c umumnya dikaitkan dengan reaksi oksidasi / reduksi baja atau spesimen yang digunakan. Untuk eksperimen mengenai kerusakan hidrogen, biasanya hanya melihat dari puncak a.1 karena berkaitan erat dengan hidrogen yang terserap ke dalam spesimen. Untuk puncak a.2 hanya berkaitan dengan reaksi dari tiourea yang digunakan dalam eksperimen.

Potentiostatic polarization merupakan salah satu metode yang digunakan untuk memasukan atau difusi hidrogen ke dalam baja. Pada lingkungan elektrokimia, atom hidrogen dapat dihasilkan oleh reduksi katodik air (H₂O) dan dapat teradsorpsi pada permukaan logam. Hidrogen yang teradsorpsi pada permukaan dapat terjadi rekombinasi untuk menghasilkan gas hidrogen yang dapat meninggalkan permukaan sampel lagi atau absorpsi dan difusi dalam mikrostruktur logam. Laju absorpsi hidrogen dapat sangat dipengaruhi oleh apa yang disebut "racun rekombinasi", yang membatasi reaksi pembentukan gas hidrogen. Dari beberapa literatur thiourea dianggap sebagai penghambat korosi dan digunakan untuk meningkatkan absorpsi hidrogen ke dalam kisi logam transisi inang Fe, Ti, Pd dan Ni. (Halaman ini sengaja dikosongkan)

BAB III METODE PENELITIAN

3.1 Diagram Alir Penelitian

Pada penelitian ini akan dilakukan uji permeasi hidrogen pada baja karbon SBM5510 BM27 dengan diagram alir penelitian sebagai berikut:

Gambar 3.1 Diagram Alir Penelitian

3.2 Material dan Spesimen 3.2.1 Material Uji

Material yang digunakan pada penelitian ini adalah pipa baja karbon SA 210 A1 yang telah diuji komposisi kimia di Laboratorium Uji Bahan, Politeknik Perkapalan Negeri Surabaya dengan hasil sebagai berikut:

Tabel 3.1 Komposisi Kimia Baja Karbon SA 210 A1 Berdasarkan Hasil Uji Spektro

Komposisi Kimia	% Berat
Besi (Fe)	98,6
Karbon (C)	0,227
Silika (Si)	0,19
Mangan (Mn)	0,825
Fosfor (P)	<0,003
Sulfur (S)	<0,002
Nikel (Ni)	0,0079
Alumunium (Al)	0,0048
Kromium (Cr)	0,045
Mlibdenum (Mo)	0,0053
Tungsten (W)	0,0529
Timbal (Pb)	0,0265

3.2.2 Spesimen Uji

Dari pipa baja karbon SA 210 A1 dipotong untuk menghasilkan spesimen berupa plat berbentuk lingkaran. Berikut foto makro dari spesimen yang digunakan:

Gambar 3.2 Spesimen Uji

Spesimen yang digunakan memiliki dimensi sebagai berikut:

Tabel 3.2 Dimensi Spesimen Yang Digunakan

Ukuran Spesimen	
Diameter	35 mm
Ketebalan	1.5 mm

3.3 Peralatan Penelitian

Peralatan yang digunakan untuk mendukung peneliti dalam mengumpulkan data dan melakukan eksperimen antara lain:

3.3.1 Penggaris dan Jangka Sorong

Penggaris yang digunakan memiliki ketelitian 0,1 mm, sedangkan jangka sorong yang digunakan memiliki ketelitian 0,02 mm. Penggaris dan jangka sorong digunakan untuk mengukur dimensi dari pipa baja karbon dalam proses pemotongan, ketebalan spesimen, diameter spesimen, serta mengukur dimensi lain yang dianggap perlu dalam penelitian yang akan menjadi objek pada penelitian tugas akhir ini.

3.3.2 Gerinda dan Mesin Bubut

Gerinda digunakan untuk memotong pipa baja karbon yang digunakan dalam penelitian ini sehingga berbentuk spesimen yang diinginkan. Dari hasil pemotongan menggunakan gerinda, dilakukan proses permesinan menggunakan mesin bubut untuk mendapatkan permukaan yang rata serta dimensi yang diinginkan.

3.3.3 Mesin Grinding dan Polishing

Mesin grinding dan polishing digunakan untuk membuat spesimen menjadi datar dan memperhalus spesimen menggunakan kertas gosok. Hasil dari mesin grinding dan polishing adalah permukaan spesimen yang halus dan mengkilap, serta menghilangkan goresan yang dihasilkan dari proses permesinan.

3.3.4 Peralatan Etching

Dalam melakukan pengujian metalografi, spesimen dietsa menggunakan nital. Diperlukan peralatan seperti pipet, wadah kaca, pengering, gelas ukur, sarung tangan, dan peralatan lainnya untuk menunjang proses etsa spesimen.

3.3.5 Mikroskop

Mikroskop adalah sebuah alat untuk melihat objek yang terlalu kecil untuk dilihat secara kasatmata. Mikroskop digunakan untuk mengamati struktur mikro dari spesimen yang digunakan. Mikroskop yang digunakan adalah *Olympus Stereo Microscope*.

Gambar 3.3 Olympus Stereo Microscope 3.3.6 Mesin Micro Vickers Hardness

Pada dasarnya, uji kekerasan logam memiliki tujuan untuk mengukur nilai kekerasan dari sebuah bahan atau sebuah logam terhadap deformasi plastis. Uji kekerasan merupakan salah satu uji merusak material dimana material di uji dengan beban tertentu.

3.3.7 Mesin Scanning Electron Microscope

Peralatan ini digunakan untuk mendapatkan data berupa *topography*, *morphology*, komposisi, dan informasi kristalografi. Dengan menggunakan elektron, elektron akan berinteraksi dengan atom yang membentuk spesimen menghasilkan sinyal yang berisi informasi tentang spesimen dari permukaan topografi, komposisi dan sifat lainnya seperti daya konduksi listrik.

3.3.8 Furnace

Furnace atau tungku adalah alat atau mesin yang digunakan untuk memanaskan spesimen uji dengan tujuan tertentu sesuai dasar teori dari *heat treatment*. Pada percobaan ini, *furnace* digunakan untuk proses *normalizing* spesimen yang dibutuhkan karena spesimen telah melewati berbagai proses permesinan. *Furnace* yang digunakan pada penelitian ini adalah *furnace Nabertherm* yang berada pada Laboratorium Cor.

Gambar 3.4 Furnace Nabertherm

3.3.9 Charging Cell

Charging Cell digunakan sebagai wadah untuk melakukan pengujian cyclic voltametric dan potentiostatic polarization. Charging Cell memiliki double jacket sebagai wadah media pendingin dan pemanas untuk memenuhi keperluan pengujian. Agar alat ini dapat berjalan dan memenuhi fungsi nya dalam eksperimen ini, diperlukan peralatan tambahan lainnya seperti, *heater* dan potensiostat.

Gambar 3.5 Charging Cell

3.3.10 Potensiostat

Potensiostat adalah perangkat keras elektronik yang digunakan dengan prinsip kerja mengontrol sel tiga elektroda dan digunakan pada sebagian besar eksperimen elektroanalitik yang berhubungan dengan arus listrik (ampere) atau tegangan listrik (voltase). Pada percobaan ini, potensiostat digunakan untuk mengatur voltase pada *charging cell* untuk memunculkan atom hidrogen. Penggunaan potensiostat ini memerlukan tiga jenis elektroda, yaitu *working electrode*, *reference electrode*, dan *counter electrode*.

Gambar 3.6 Potensiotat

3.3.11 Heater

Heater digunakan untuk memanaskan air yang digunakan sebagai media pemanas pada *Charging Cell*. Media pemanas ini masuk kedalam *double jacket* yang terdapat pada *Charging Cell*. Media pemanas hanya bisa menggunakan air dikarenakan pompa yang terdapat pada *heater* hanya dikhususkan untuk penggunaan air panas. Air yang sudah dipanaskan didorong menggunakan pompa dengan kecepatan 8 liter/menit dan dibagi dua cabang untuk mengisi kedua sel. *Heater* ini didesain untuk dapat memanaskan air hingga titik didih.

Gambar 3.7 Heater

3.4 Langkah-Langkah Penelitian 3.4.1 Studi Literatur

Studi literatur dilakukan dengan tujuan untuk memperoleh teori-teori yang berhubungan korosi, *hydrogen damage*, *electrochemical hydrogen permeation test*, dan pembuatan peralatan yang digunakan dalam penelitian ini. 3.4.2 Perumusan Masalah dan Tujuan Penelitian

Perumusan masalah ini didapatkan melihat dari penelitian sebelumnya dan latar belakang yang ada. Untuk memperjelas dan membatasi lingung penelitian yang akan dilakukan, dibuat batasan masalah. Adapaun tujuan dari penelitian ini, yaitu mengetahui mekanisme dari proses terjadinya *hydrogen damage* pada baja karbon SBM5510 BM27 dengan pengujian permeasi hidrogen dan mengetahui pengaruh variasi temperatur uji terhadap uji permeasi hidrogen secara elektrokimia.

3.4.3 Pembuatan Peralatan Untuk Kebutuhan Penelitian

Sebelum pembuatan peralatan yang digunakan untuk penelitian, peneliti merancang secara garis besar penelitian yang akan dilakukan. Peneliti berkonsultasi dengan dosen pembimbing dan vendor yang akan membuat peralatan penilitian. Dalam pembuatan peralatan yang digunakan dalam penelitian, melihat dari penelitian sebelumnya yang pernah dilakukan.

Peneliti membuat *charging cell* yang digunakan untuk penelitian. Peneliti juga membuat *heater* yang digunakan untuk memanaskan media pemanas (air) untuk mendukung peneliti mencapai tujuan dari penelitian. *Heater* dapat mengalirkan media pemanas dengan debit 4L/min untuk setiap sel. Media pemanas hanya terbatas untuk air dikarenakan pompa yang terpasang dikhususkan untuk penggunaan air saja.

3.4.4 Persiapan Spesimen Uji

Material yang digunakan pada penelitian ini berupa pipa baja karbon SA 210 A1. Untuk menghasilkan spesimen uji yang diinginkan, diperlukan beberapa proses permesinan sebagai berikut:

- 1. Pipa baja karbon SA 210 A1 dipotong melintang menggunakan gerinda
- 2. Potongan melintang hasil proses pertama, ditempa (tanpa menggunakan panas) menjadi datar dan diukur untuk membentuk spesimen.
- 3. Hasil tempa dipotong menggunakan gerinda hingga membentuk lingkaran. Pada proses pemotongan menggunakan gerinda, gerinda memotong secara perlahan agar tidak menimbulkan panas.
- 4. Hasil potongan menggunakan gerinda mengalami proses *finishing* menggunakan mesin bubut. Hal ini bertujuan agar hasil spesimen berbentuk lingkaran rapih, memiliki permukaan yang rata, dan dapat mengurangi ketebalan dari spesimen.
- 5. Spesimen mengalami proses *normalizing* akibat adanya tegangan sisa yang ditimbulkan pada proses permesinan (pada proses tempa).
- 6. Spesimen dibersihkan dan diukur dimensi nya. Dimensi dicatat.

3.4.5 Analisa Komposisi Kimia

Pengujian komposisi kimia ini dilakukan di Laboratorium Uji Bahan, Politeknik Perkapalan Negeri Surabaya. Pengujian ini bertujuan untuk mengetahui komposisi kimiawi yang ada pada spesimen uji. Pada penelitian ini, hasil dari pengujian ini digunakan untuk mencari proses *full annealing* dengan melihat kadar karbon yang ada pada spesimen uji.

3.4.6 Heat Treatment

Heat treatment yang dilakukan pada penelitian ini adalah *full annealing. Full annealing* diperlukan untuk menghaluskan butiran dari benda kerja yang berbutir kasar (butiran yang kasar biasanya bersifat getas) yang dihasilkan dari proses tempa atau yang mengalami pemanasan berlebihan. *Full annealing* dilakukan dengan cara memanaskan spesimen sampai suhu 850°C dan *holding time* untuk proses ini sebesar 45 menit. Proses pendinginan sangat lambat di dalam oven.

Gambar 3.8 Diagram Proses Perlakuan Panas

3.4.7 Electrochemical Hydrogen Test

Gambar 3.9 Skema Susunan Peralatan Uji Electrochemical Hydrogen Test

Pengujian *Electrochemical Hydrogen Test* terbagi menjadi beberapa Langkah. Langkah-langkah yang dilakukan adalah sebagai berikut:

- 1. Persiapan alat, seluruh peralatan disusun dan dinyalakan sesuai dengan skema yang terdapat pada gambar 3.9. Peralatan yang digunakan adalah sebagai berikut:
 - a. Spesimen Uji sebagai working electrode
 - b. Charging Cell
 - c. Potensiostat
 - d. Heater
 - e. Counter Electrode untuk potensiostat (platina)
 - f. Reference Electrode untuk potensiostat (Ag.AgCl)

Gambar 3.10 Pemasangan Spesimen Uji

- 2. Pemasangan spesimen uji sebagai *working electrode*, Platina sebagai *counter electrode*, dan Ag.AgCl sebagai *reference electrode* seperti pada gambar 3.10
- 3. Pembuatan larutan elektrolit dengan 10 gram NaOH + 2 gram Thiourea + 250 gram H_2O yang akan dituangkan ke dalam *charging cell*.
- 4. Air pada *heater* dipompa ke *jacket cell* dan diatur temperaturnya untuk semua variasi temperatur yang digunakan. Untuk prosedur CV menggunakan temperatur 27^oC.

5. Temperatur pada elektrolit diukur dengan menggunakan *thermocouple* agar pengujian sesuai dengan temperatur yang diinginkan.

- **Gambar 3.11** Program Nova 2.1.4 (a)*Cyclic Voltammetry* (b) Pengaturan Yang Digunakan Di Pengujian
 - 6. Mengatur program Nova 2.1.4 seperti pada gambar 3.11
 (a) untuk mencari *cyclic voltammetry before H-absorption*, lalu program dijalankan

- 7. *Open current potential* dicari dengan program Nova 2.1.4 yang dilakukan selama 3600 detik. Langkah ini dilakukan agar spesimen yang akan diuji sudah *steady state*.
- 8. *Cylic voltammetry before H-absorption* dilakukan dengan *start* dan *stop* potential diatur pada -1,4 V, batas atas -0,2 V dan *scan rate* 0,005 V/s. Pengaturan ini dapat dilihat pada gambar 3.11 (b).
- 9. *Cyclic voltammetry before H-absorption* dilakukan sampai 5 kali *scan* dan grafik akan terdeteksi pada program Nova 2.1.4.

Gambar 3.12 Program Nova 2.1.4 Untuk Hydrogen Charging

- 10.Setelah selesai pengujian *cyclic voltametric*, temperatur *heater* dinaikkan sesuai variasi temperatur selama 15 menit.
- 11.Setelah 15 menit, dipastikan temperatur elektrolit sudah sesuai
- 12. Mengatur program Nova 2.1.4 seperti pada gambar 3.12 untuk melakukan *hydrogen charging*, lalu program dijalankan.
- 13.*Hydrogen charging* dilakukan dengan memberi potensial sebesar -1,25 V dan waktu 7200 detik.
- 14. Grafik *hydrogen charging* akan terdeteksi pada program Nova 2.1.4.

- Setelah selesai uji hydrogen charging, temperatur larutan diturunkan sampai 27⁰C dengan cara mengganti air panas di heater dengan air biasa.
- 16. Mengatur program Nova 2.1.4 seperti pada gambar 3.11 untuk mencari *cyclic voltammetry after H-charging*, lalu program dijalankan
- 17. *Open current potential* dicari dengan program Nova 2.1.4 yang dilakukan selama 3600 detik.
- 18. *Cylic voltammetry after H-absorption* dilakukan dengan *start* dan *stop potential* diatur pada -1,4 V dan *scan rate* -0,005 V/s.
- 19. *Cyclic voltammetry after H-absorption* dilakukan sampai 5 kali scan dan grafik akan terdeteksi pada program Nova 2.1.4.
- 20. Grafik hasil cyclic voltammetry before H-absorption dan after H-absorption dibandingkan dan dianalisa pengaruh hydrogen charging pada pengujian electrochemical hydrogen uptake test.

3.4.8 Pengujian Micro Vickers Hardness

Uji kekerasan merupakan salah satu uji destruktif yang dilakukan pada material yang diuji dengan beban tertentu. Mesin uji kekerasan yang digunakan dalam penelitian ini menggunakan mesin *micro vickers hardness*. Pengujian kekerasan dilakukan untuk mengetahui pengaruh dari hidrogen. Pengujian kekerasan dilakukan langsung setelah *electrochemical hydrogen test* selesai dilakukan.

3.4.9 Pengujian Scanning Electron Microscope

Mesin *Scanning Electron Microscope* (SEM) digunakan untuk mengamati struktur mikro dan komposisi yang ada pada permukaan spesimen. Pada pengujian SEM ini akan diperoleh informasi topografi, morfologi, komposisi dan kristalografi. Elektron berinteraksi dengan atom yang menyusun sampel dan menghasilkan sinyal yang berisi informasi tentang topografi, komposisi, dan karakteristik sampel lainnya, seperti konduktivitas material. SEM nantinya dapat menghasilkan gambar permukaan spesimen dengan resolusi tinggi.

BAB IV HASIL DAN PEMBAHASAN

Hasil penelitian mengenai pengaruh temperatur terhadap laju penyerapan hidrogen diperoleh data berupa angka (nilai), grafik, dan gambar. Pengujian yang dilakukan meliputi uji komposisi kimia, *electrochemical hydrogen test*, pengamatan struktur mikro, serta nilai kekerasan.

4.1 Hasil Uji Spesimen Base Metal

Pengujian *electrochemical hydrogen uptake* untuk spesimen *base metal* terdiri dari tiga variasi temperature, yaitu 27°C, 55°C, dan 80°C dengan kode spesimen BM27 untuk 27°C, kode spesimen BM55 untuk 55°C, dan kode spesimen BM80 untuk 80°C. Sebelum melakukan pengujian *electrochemical hydrogen uptake*, spesimen *base metal* diuji beberapa pengujian seperti komposisi kimia, metalografi dan *hardness*. Setelah itu, spesimen BM27, BM55, dan BM80 diuji *electrochemical hydrogen uptake*, hardness, dan SEM-EDS.

4.1.1 Foto Makro

Setelah dilakukan pengujian, spesimen mengalami perubahan warna dikarenakan adanya lapisan oksida yang terbentuk seperti pada gambar 4.1.

Gambar 4.1 Foto Makro Spesimen *Base Metal* (a) Sebelum Pengujian EHUT (b) Spesimen BM27 (c) Spesimen BM55 (d) Spesimen BM80

Spesimen berdiamter ±35mm tidak seluruh vang permukaannya terkena elektrolit. Selama pengujian berlangsung, permukaan spesimen berubah warna dan permukaan ini saja yang terkena elektrolit. Pada spesimen BM27 dan BM55 permukaan spesimen berwarna coklat. Sedangkan untuk spesimen BM80 permukaan memiliki warna coklat terang dan hitam. Perbedaan warna pada spesimen BM80 dikarenakan ada nya larutan yang menguap selama proses *charging* sehingga isi gelas berkurang dan menyisakan sampai bagian hitam spesimen untuk pengujian CVafter. Hal ini menyebabkan data yang didapatkan tidak valid dikarenakan kondisi pengujian yang berbeda antara CV-before dan CV-after.

4.1.2 Metalografi

Spesimen jenis *base metal* yang akan digunakan untuk pengujian, diuji metalografi dan nilai kekerasan awalnya sebelum mengalami pengujian *electrochemical hydrogen uptake test.* Pengamatan metalografi ini menggunakan mikroskop optik dengan perbesaran 100x, 200x dan 500x. Gambar 4.2 menunjukkan hasil pengamatan struktur mikro pada spesimen *base metal* sebelum dilakukan pengujian *electrochemical hydrogen uptake test*.

(a. (100x))

(b. (200x))

(c. (500x))

Gambar 4.2 Struktur Mikro Spesimen *Base Metal* Sebelum *Electrochemical Hydrogen Test* (a) Perbesaran

100x (b) Perbesaran 200x (c) Perbesaran 500x

Dari hasil pengujian metalografi yang dilakukan terlihat bahwa struktur mikro didominasi dengan fasa perlit yang memiliki butiran tidak teratur. Pada gambar 4.2(c), fasa perlit ditunjukkan dengan warna yang lebih gelap dari ferrit dan menggumpal. Untuk fasa ferrit ditunjukkan dengan warna yang lebih terang.

4.1.3 Electrochemical Hydrogen Test

Sifat penyerapan hidrogen dari spesimen dianalisa menggunakan metode eletrokimia dengan prosedur *cyclic voltametric* dan *potentiostatic polarization* pada seluruh spesimen. Prosedur yang dilakukan terdiri dari 5 CV *scan before charging, cathodic H-charging (potentiostatic polarization)*, dan 5 CV *scan after charging*. Pada pengujian yang dilakukan menggunakan variasi temperatur, yaitu 27°C, 55°C, dan 80°C. Variasi temperatur digunakan hanya pada *cathodic H-charging* dan temperatur pada setiap pengujian *cyclic voltametric* menggunakan temperatur 27°C. Dari pengujian yang didapatkan hasil berupa grafik CV *scan* *before charging, cathodic H-charging,* dan CV *scan after charging* untuk setiap spesimen.

a. Spesimen BM27 Cyclic Voltametric Before After

Gambar 4.3 Grafik Cyclic Voltametry Before After Habsorption Spesimen BM27

Dari gambar 4.3 dapat terlihat adanya perbedaan ketinggian *peak* antara CV *before* dan *after H-Absorption*. Dengan melihat dari grafik *CV* yang ada dapat dilihat dan dianalisa pengaruh yang ada diakibatkan variasi temperatur *charging hydrogen* yang dilakukan. Pada gambar 4.3 terlihat perbedaan ketinggian pada setiap puncak atau *peak* nya. Hal ini menunjukkan adanya pengaruh yang diberikan dari proses *charging hydrogen* yang diberikan.

Garis berwarna biru menunjukkan kurva *CV* spesimen BM27 sebelum mengalami *H-charging*. Kurva *CV* spesimen BM27 tidak memiliki puncak a.1, sedangkan puncak a.2 berada pada 0,00559 A. Untuk puncak b berada pada 0,00453 A dan puncak c berada pada -0,0053 A. Garis berwarna merah menunjukkan kurva *CV* spesimen BM27 setelah mengalami *H-charging*. Puncak a.1 berada pada 0,00546 A, sedangkan puncak a.2 berada pada 0,00421 A. Untuk puncak b berada pada 0,00674 A dan puncak c berada pada -0,0067 A.

Dari gambar 4.3 terlihat puncak a.1 *CV before* dan *after H-Absorption* memiliki perbedaan ketinggian. Pada *CV before* tidak memiliki puncak a.1, tetapi memiliki puncak a.2. Sedangkan, pada CV *after* memiliki puncak a.2 dan memiliki puncak a.1 Hal ini dikarenakan ada pengaruh dari *H-Absorption* yang dilakukan selama 7200 s. Puncak a.1 inilah yang paling penting untuk dipertimbangkan dalam mengetahui fenomena hidrogen terserap. Grafik pada gambar 4.3 menunjukkan adanya hidrogen yang terserap di dalam spesimen dikarenakan adanya perbedaan puncak a.1 CV *before* dan *after H-Absorption*.

b. Spesimen BM55 Cyclic Voltametric Before After

Gambar 4.4 Grafik Cyclic Voltammetry Before-After Habsorption Spesimen BM55

Dari gambar 4.4 dapat terlihat adanya perbedaan ketinggian *peak* antara *CV before* dan *after H-Absorption*. Dengan melihat dari grafik *CV* yang ada dapat dilihat dan dianalisa pengaruh yang ada diakibatkan variasi temperatur
charging hydrogen yang dilakukan. Pada gambar 4.4 terlihat perbedaan ketinggian pada setiap puncak atau *peak* nya. Hal ini menunjukkan adanya pengaruh yang diberikan dari proses *charging hydrogen* yang diberikan.

Garis berwarna biru menunjukkan kurva *CV* spesimen BM55 sebelum mengalami *H-charging*. Kurva CV spesimen BM55 tidak memiliki puncak a.1, sedangkan puncak a.2 berada pada 0,00536 A. Untuk puncak b berada pada 0,00416 A dan puncak c berada pada -0,00504 A. Garis berwarna merah menunjukkan kurva *CV* spesimen BM55 setelah mengalami *H-charging*. Puncak a.1 berada pada 0,00551 A, sedangkan tidak memiliki puncak a.2. Untuk puncak b berada pada 0,00670 A dan puncak c berada pada -0,00658 A.

Dari gambar 4.4 terlihat puncak a.1 CV before dan after H-Absorption memiliki perbedaan ketinggian. Pada CV before tidak memiliki puncak a.1, tetapi memiliki puncak a.2. Sedangkan, pada CV after tidak memiliki puncak a.2, tetapi tidak memiliki puncak a.1 Hal ini dikarenakan ada pengaruh dari *H-Absorption* vang dilakukan selama 7200 s. Puncak a.1 inilah yang paling dalam untuk dipertimbangkan mengetahui penting fenomena hidrogen terserap. Grafik pada gambar 4.4 menunjukkan adanya hidrogen yang terserap di dalam spesimen dikarenakan adanya perbedaan puncak a.1 CV before dan after H-Absorption.

c. Spesimen BM80 Cyclic Voltametric Before After

Gambar 4.5 Grafik Cyclic Voltammetry Before-After Habsorption Spesimen BM80

Dari gambar 4.5 dapat terlihat adanya perbedaan ketinggian *peak* antara *CV before* dan *after H-Absorption*. Dengan melihat dari grafik *CV* yang ada dapat dilihat dan dianalisa pengaruh yang ada diakibatkan variasi temperatur *charging hydrogen* yang dilakukan. Pada gambar 4.5 terlihat perbedaan ketinggian pada setiap puncak atau *peak* nya. Hal ini menunjukkan adanya pengaruh yang diberikan dari proses *charging hydrogen* yang diberikan.

Garis berwarna biru menunjukkan kurva *CV* spesimen BM80 sebelum mengalami *H-charging*. Kurva *CV* spesimen BM80 tidak memiliki puncak a.1, sedangkan puncak a.2 berada pada 0,00586 A. Untuk puncak b berada pada 0,00455 A dan puncak c berada pada -0,00544 A. Garis berwarna merah menunjukkan kurva CV spesimen BM80 setelah mengalami *H-charging*. Puncak a.1 berada pada 0,00116 A, sedangkan puncak a.2 sebesar 0,00490 A. Untuk puncak b berada pada 0,00523 A dan puncak c berada pada -0,00544 A.

Dari gambar 4.5 terlihat puncak a.1 *CV before* dan *after H-Absorption* memiliki perbedaan ketinggian. Pada *CV*

before tidak memiliki puncak a.1, tetapi memiliki puncak a.2. Sedangkan, pada CV after tidak memiliki puncak a.2, tetapi tidak memiliki puncak a.1 Hal ini dikarenakan ada pengaruh dari H-Absorption yang dilakukan selama 7200 s. Puncak a.1 inilah vang paling penting untuk dipertimbangkan dalam mengetahui fenomena hidrogen terserap. Grafik pada gambar 4.5 menunjukkan adanya hidrogen yang terserap di dalam spesimen dikarenakan adanya perbedaan puncak a.1 CV before dan after H-Absorption. Akan tetapi, spesimen BM80 mengalami masalah dalam proses pengambilan data nya, dimana saat melakukan eksperimen larutan menguap dan menghasilkan grafik yang sangat berbeda dengan spesimen BM27 dan spesimen BM55 Permasalahan ini akan dibahas lebih dalam di Subbab 4.4.

4.1.4 Hardness

Pengujian kekerasan dilakukan pada permukaan spesimen awal sebelum *electrochemical hydrogen uptake test* dan permukaan spesimen setelah *electrochemical hydrogen uptake test*. Pengujian kekerasan dilakukan pada permukaan spesimen sebanyak 8 titik yang berbeda yang tersebar secara merata sepanjang permukaan spesimen seperti pada gambar 4.6. Pada pengujian ini digunakan mesin *vickers microhardness*. Tabel 4.1 menunjukkan hasil pengujian kekerasan pada spesimen awal sebelum dilakukan pengujian permeasi hidrogen.

Gambar 4.6 Titik Pengambilan Nilai kekerasan Pada Spesimen *Base Metal*

Spesimen	Titik							Rata-	
	1	2	3	4	5	6	7	8	rata
NO CHARGING	204	205	201	207	204	219	204	211	206,875
BM27	202	204	218	221	205	206	219	217	211,5
BM55	239	199	229	214	201	213	221	235	218,9
BM80	286	237	249	245	277	236	284	284	262,25

Gambar 4.7 Grafik Kekerasan Spesimen *Base Metal* Setelah Pengujian Hidrogen

Pada gambar 4.7 didapatkan nilai kekerasan pada permukaan spesimen jenis *base metal* setelah mengalami pengujian hidrogen. Rata-rata nilai kekerasan meningkat seiring dengan meningkatnya suhu *charging hydrogen*. Rata-rata nilai kekerasan tertinggi berada pada spesimen BM80 dengan nilai kekerasan sebesar 262,25 HV. Sedangkan rata-rata nilai kekerasan terendah berada pada spesimen BM27 dengan nilai kekerasan sebesar 211,5 HV. Peningkatan nilai rata-rata kekerasan spesimen BM27 sebesar 4,6 HV dari nilai kekerasan awal sebelum pengujian EHUT. Peningkatan nilai rata-rata kekerasan spesimen BM55 sebesar 12 HV dari nilai kekerasan awal sebelum pengujian EHUT. Peningkatan nilai rata-rata kekerasan spesimen BM80 sebesar 55,4 HV dari nilai kekerasan awal sebelum pengujian EHT.

Peningkatan nilai kekerasan diakibatkan atom hidrogen bergabung membentuk molekul di batas butir struktur mikro spesimen sehingga butir mengalami dislokasi yang membuat butiran tidak mudah bergerak. Hal ini menyebabkan peningkatan nilai kekerasan. Oleh karena itu, setelah pengujian hidrogen semua spesimen mengalami peningkatan nilai kekerasan. Perbedaan nilai kekerasan antar variasi temperatur juga meningkat dikarenakan semakin cepat difusi atom hidrogen yang masuk ke spesimen

Grafik persebaran kekerasan permukaan cenderung datar dari titik 1 hingga titik ke 8. Hal ini menunjukan persebaran kekerasan pada penampang cukup merata, namun ada beberapa titik dimana nilai kekerasan memiliki perbedaan cukup jauh.

4.2 Hasil Uji Spesimen Full Annealing

Pengujian *electrochemical hydrogen uptake* untuk spesimen *base metal* terdiri dari tiga variasi temperature, yaitu 27°C, 55°C, dan 80°C dengan kode spesimen B27 untuk 27°C, kode spesimen B55 untuk 55°C, dan kode spesimen B80 untuk 80°C. Sebelum melakukan pengujian *electrochemical hydrogen uptake*, spesimen *base metal* diuji beberapa pengujian seperti komposisi kimia, metalografi dan *hardness*. Setelah itu, spesimen B27, B55, dan B80 diuji *electrochemical hydrogen uptake*, hardness, dan SEM-EDS.

4.2.1 Foto Makro

Setelah dilakukan pengujian, spesimen mengalami perubahan warna dikarenakan adanya lapisan oksida yang terbentuk seperti pada gambar 4.8.

Gambar 4.8 Foto Makro Spesimen *Full Annealing* (a) Sebelum Pengujian EHUT (b) Spesimen B27 (c) Spesimen B55 (d) Spesimen B80

Selama pengujian berlangsung, permukaan spesimen berubah warna. Pada spesimen B27 memiliki permukaan spesimen berwarna coklat. Untuk spesimen B55 memiliki permukaan spesimen berwarna coklat tua. Sedangkan untuk spesimen B80 permukaan memiliki warna coklat tua dan hitam. Perbedaan warna pada spesimen B80 dikarenakan ada nya larutan yang menguap selama proses *charging* sehingga isi gelas berkurang dan menyisakan sampai bagian hitam spesimen untuk pengujian CV *after*.

4.2.2 Metalografi

Spesimen *full annealing* yang akan digunakan untuk pengujian, diuji metalografi dan nilai kekerasan awalnya sebelum mengalami pengujian *electrochemical hydrogen test.* Pengamatan ini menggunakan mikroskop optik dengan perbesaran 100x, 200x dan 500x. Gambar 4.9 menunjukkan hasil pengamatan struktur mikro pada spesimen *full annealing* sebelum dilakukan pengujian *electrochemical hydrogen uptake test.*

(a. (100x))

(c. (500x)) Gambar 4.9 Struktur Mikro Spesimen *Full Annealing* Sebelum *Electrochemical Hydrogen Test* (a) 100x (b) 200x (c) 500x

Struktur mikro pada spesimen *full annealing* terdiri dari *pearlite* dan *ferrite* dengan bulir yang teratur. Pada gambar 4.9(c), fasa perlit ditunjukkan dengan warna yang lebih gelap dari ferrit. Untuk fasa ferrit ditunjukkan dengan warna yang lebih terang.

4.2.3 Electrochemical Hydrogen Test

Gambar 4.10 Grafik Cyclic Voltammetry Before-After Habsorption Spesimen B27

Dari gambar 4.10 dapat terlihat adanya perbedaan ketinggian *peak* antara *CV before* dan *after H-Absorption*. Dengan melihat dari grafik *CV* yang ada dapat dilihat dan dianalisa pengaruh yang ada diakibatkan variasi temperatur *charging hydrogen* yang dilakukan. Pada gambar 4.10 terlihat perbedaan ketinggian pada setiap puncak atau *peak* nya. Hal ini menunjukkan adanya pengaruh yang diberikan dari proses *charging hydrogen* yang diberikan.

Garis berwarna biru menunjukkan kurva *CV* spesimen B27 sebelum mengalami *H-charging*. Kurva CV spesimen B27 tidak memiliki puncak a.1, sedangkan puncak a.2 berada pada 0,00527 A. Untuk puncak b berada pada 0,0038 A dan puncak c berada pada -0,00429 A. Garis berwarna merah menunjukkan kurva *CV* spesimen B557 setelah mengalami *H-charging*. Puncak a.1 berada pada 0,00524 A, sedangkan puncak a.2 berada pada 0,00387 A. Untuk puncak b berada pada 0,00646 A dan puncak c berada pada -0,00632 A.

Dari gambar 4.10 terlihat puncak a.1 *CV before* dan *after H-Absorption* memiliki perbedaan ketinggian. Pada *CV*

before tidak memiliki puncak a.1, tetapi memiliki puncak a.2. Sedangkan, pada CV after tidak memiliki puncak a.2, tetapi tidak memiliki puncak a.1 Hal ini dikarenakan ada pengaruh dari H-Absorption yang dilakukan selama 7200 s. Puncak a.1 inilah vang paling penting untuk dipertimbangkan dalam mengetahui fenomena hidrogen terserap. Grafik pada gambar 4.10 menunjukkan adanya hidrogen yang terserap di dalam spesimen dikarenakan adanya perbedaan puncak a.1 CV before dan after H-Absorption.

Gambar 4.11 Grafik Cyclic Voltammetry Before-After Habsorption Spesimen B55

Dari gambar 4.11 dapat terlihat adanya perbedaan ketinggian *peak* antara *CV before* dan *after H-Absorption*. Dengan melihat dari grafik *CV* yang ada dapat dilihat dan dianalisa pengaruh yang ada diakibatkan variasi temperatur *charging hydrogen* yang dilakukan. Pada gambar 4.11 terlihat perbedaan ketinggian pada setiap puncak atau *peak* nya. Hal ini menunjukkan adanya pengaruh yang diberikan dari proses *charging hydrogen* yang diberikan.

Garis berwarna biru menunjukkan kurva CV spesimen B55 sebelum mengalami *H-charging*. Kurva CV spesimen

B55 tidak memiliki puncak a.1, sedangkan puncak a.2 berada pada 0,00577 A. Untuk puncak b berada pada 0,00488 A dan puncak c berada pada -0,00505 A. Garis berwarna merah menunjukkan kurva *CV* spesimen B55 setelah mengalami *H-charging*. Puncak a.1 berada pada 0,00566 A, sedangkan puncak a.2 berada pada 0,00395 A. Untuk puncak b berada pada 0,00683 A dan puncak c berada pada -0,00679 A.

Dari gambar 4.11 terlihat puncak a.1 CV before dan after H-Absorption memiliki perbedaan ketinggian. Pada CV before tidak memiliki puncak a.1, tetapi memiliki puncak a.2. Sedangkan, pada CV after tidak memiliki puncak a.2, tetapi tidak memiliki puncak a.1 Hal ini ada pengaruh dari H-Absorption dikarenakan vang dilakukan selama 7200 s. Puncak a.1 inilah yang paling dipertimbangkan untuk dalam mengetahui penting fenomena hidrogen terserap. Grafik pada gambar 4.11 menunjukkan adanya hidrogen yang terserap di dalam spesimen dikarenakan adanya perbedaan puncak a.1 CV before dan after H-Absorption.

Gambar 4.12 Grafik Cyclic Voltammetry Before-After Habsorption Spesimen B80

Dari gambar 4.12 dapat terlihat adanya perbedaan ketinggian *peak* antara *CV before* dan *after H-Absorption*. Dengan melihat dari grafik *CV* yang ada dapat dilihat dan dianalisa pengaruh yang ada diakibatkan variasi temperatur *charging hydrogen* yang dilakukan. Pada gambar 4.12 terlihat perbedaan ketinggian pada setiap puncak atau *peak* nya. Hal ini menunjukkan adanya pengaruh yang diberikan dari proses *charging hydrogen* yang diberikan.

Garis berwarna biru menunjukkan kurva *CV* spesimen B80 sebelum mengalami *H-charging*. Kurva *CV* spesimen B80 tidak memiliki puncak a.1, sedangkan puncak a.2 berada pada 0,00581 A. Untuk puncak b berada pada 0,00476 A dan puncak c berada pada -0,00526 A. Garis berwarna merah menunjukkan kurva *CV* spesimen B80 setelah mengalami *H-charging*. Puncak a.1 berada pada 0,00098 A, sedangkan puncak a.2 berada pada 0,00457 A. Untuk puncak b berada pada 0,00491 A dan puncak c berada pada -0,00533 A.

Dari gambar 4.12 terlihat puncak a.1 CV before dan after H-Absorption memiliki perbedaan ketinggian. Pada CV before tidak memiliki puncak a.1, tetapi memiliki puncak a.2. Sedangkan, pada CV after tidak memiliki puncak a.2, tetapi tidak memiliki puncak a.1 Hal ini dikarenakan ada pengaruh dari H-Absorption yang dilakukan selama 7200 s. Puncak a.1 inilah yang paling penting untuk dipertimbangkan dalam mengetahui fenomena hidrogen terserap. Grafik pada gambar 4.12 menunjukkan adanya hidrogen yang terserap di dalam spesimen dikarenakan adanya perbedaan puncak a.1 CV before dan after H-Absorption. Akan tetapi, spesimen B80 mengalami masalah dalam proses pengambilan data nya, dimana saat melakukan eksperimen larutan menguap dan menghasilkan grafik yang sangat berbeda dengan spesimen B27 dan spesimen B55. Permasalahan ini akan dibahas lebih dalam di Subbab 4.4.

4.2.4 Hardness

Pengujian kekerasan pada spesimen *full annealing* dilakukan pada permukaan spesimen. Hal ini dilakukan untuk mengetahui pengaruh permeasi hidrogen terhadap kekerasan yang terbentuk setelah permeasi hidrogen dilakukan. Selain itu, juga untuk mengetahui pengaruh temperatur permeasi hidrogen pada kekerasan spesimen *full annealing*. Berdasarkan data hasil pengujian yang ditunjukan pada tabel 4.2 diketahui nilai kekerasan permukaan spesimen setelah mengalami pengujian hidrogen dengan variasi temperatur. Nilai yang didapatkan dituangkan pada grafik kekerasan spesimen *full annealing* pada gambar 4.14.

Gambar 4.13 Titik Pengambilan Nilai kekerasan Pada Spesimen Full Annealing

Tabel 4	4.2	Hasil	Uji	Kekerasan	Full	Annealing	Setelah	Permeasi
Hidroge	en							

				Ti	tik				Dete sete
Spesimen	1	2	3	4	5	6	7	8	Kata-rata
NO CHARGING	132	139	134	138	130	125	137	130	133,125
B27	135	140	140	138	138	136	135	150	139,0
B55	142	157	171	149	175	162	160	188	163,0
B80	180	160	172	165	185	168	181	170	172,625

Pada gambar 4.14 didapatkan nilai kekerasan pada permukaan spesimen jenis *full annealing* setelah mengalami pengujian hidrogen. Rata-rata nilai kekerasan meningkat seiring dengan meningkatnya suhu *charging hydrogen*. Rata-rata nilai kekerasan tertinggi berada pada spesimen B80 dengan nilai kekerasan sebesar 172,625 HV. Sedangkan rata-rata nilai kekerasan terendah berada pada spesimen B27 dengan nilai kekerasan sebesar 133,125 HV. Peningkatan nilai rata-rata kekerasan spesimen B27 sebesar 5,9 HV dari nilai kekerasan awal sebelum pengujian *EHT*. Peningkatan nilai kekerasan awal sebelum pengujian *EHT*. Peningkatan nilai rata-rata kekerasan spesimen B55 sebesar 29,9 HV dari nilai kekerasan awal sebelum pengujian *EHT*. Peningkatan nilai rata-rata kekerasan spesimen B80 sebesar 39,5 HV dari nilai kekerasan awal sebelum pengujian *EHT*.

Peningkatan nilai kekerasan diakibatkan atom hidrogen bergabung membentuk molekul di batas butir struktur mikro spesimen sehingga butir mengalami dislokasi yang membuat butiran tidak mudah bergerak. Hal ini menyebabkan peningkatan nilai kekerasan. Oleh karena itu, setelah pengujian hidrogen semua spesimen mengalami peningkatan nilai kekerasan. Perbedaan nilai kekerasan antar variasi temperatur juga meningkat dikarenakan semakin cepat difusi atom hidrogen yang masuk ke spesimen

Grafik persebaran kekerasan permukaan cenderung datar dari titik 1 hingga titik ke 8 pada semua spesimen. Hal ini menunjukan persebaran kekerasan pada penampang cukup merata, namun ada beberapa titik dimana nilai kekerasan memiliki perbedaan cukup jauh.

4.3 Pembahasan *Electrochemical Hydrogen Test* Setiap Variasi Temperatur

4.3.1 EHT Spesimen Base Material

Untuk melihat pengaruh temperatur terhadap hidrogen perlu menganalisa dan membandingkan dari hasil cyclic voltametric dan potentiostatic polarization yang dilakukan pada spesimen base metal. Dari gambar 4.15 menunjukkan perbandingan grafik antar spesimen base metal yang diuji menggunakan variasi temperatur pada tahap charging hydrogen.

(c)

Gambar 4.15 Hasil Pengujian Spesimen *Base Metal* (a) Perbandingan CV Sebelum *Charging Hydrogen* (b) Perbandingan Grafik *Charging Hydrogen* (c) Perbandingan Hasil CV Setelah *Charging Hydrogen*

Pada gambar 4.15 menunjukkan hasil yang didapatkan dari pengujian yang dilakukan pada spesimen

base metal. Pada gambar 4.15(a) menunjukkan grafik CV *before* antar spesimen yang tidak berbeda jauh antar *peak* a.2, b, dan c. Akan tetapi, tidak terdapat *peak* a.1 pada hasil *CV before* seluruh spesimen. Pada spesimen BM27, *peak* a.2 senilai 0,00563, *peak* b senilai 0,00453, dan *peak* c senilai -0,00534. Pada spesimen BM55, *peak* a.2 senilai 0,00558, *peak* b senilai 0,00417, dan *peak* c senilai -0,00504. Pada spesimen BM80, *peak* a.2 senilai 0,00597, *peak* b senilai 0,00498, dan *peak* c senilai -0,00561. Nilai *peak* antar spesimen memiliki sedikit perbedaan. Hal ini menunjukkan spesimen *base metal*, antara spesimen BM27, BM55, dan BM80, dirasa cukup homogen kondisi awalnya sebelum dilakukan pengujian.

Pada gambar 4.15(b) menunjukkan grafik *H*-*Charging* antar spesimen yang berbeda-beda. Terlihat dari grafik tersebut, *slope* pada grafik spesimen BM27 memiliki peningkatan lebih banyak dibandingkan *slope* grafik spesimen BM55 dan BM80. Pada grafik spesimen BM27, *slope* berada pada -0,00249 A dan sudah terjadi saturasi. Pada grafik spesimen BM55, *slope* berada pada -0,00435 A namun masih meningkat. Pada grafik spesimen BM80, *slope* berada pada -0,00544 A namun grafik masih bergerak turun dan naik kembali.

Pada gambar 4.15(c) menunjukkan grafik *CV after* pada spesimen BM27, BM55, dan BM80. Spesimen BM27 memiliki grafik CV *after* yang hampir sama persis dengan grafik CV *after* spesimen BM55. Tetapi, spesimen BM80 memiliki grafik yang sangat berbeda dibandingkan grafik CV *after* spesimen lain. Pada spesimen BM27, *peak* a.1 senilai 0,00545, *peak* a.2 senilai 0,00419, *peak* b senilai 0,00681, dan *peak* c senilai -0,0067. Pada spesimen BM55, *peak* a.1 senilai 0,00546, *peak* b senilai 0,0067, dan *peak* c senilai -0,0066. Pada spesimen BM80, *peak* a.1 senilai 0,00127, *peak* a.2 senilai 0,0049, *peak* b senilai 0,00514, dan *peak* c senilai -0,00544. Dengan melihat puncak dari a.1,

dapat diketahui spesimen mana yang mengalami kerusakan atau penyerapan hidrogen lebih banyak setelah dilakukan *Hcharging* selama 7200 s. Spesimen BM55 memiliki tinggi puncak a.1 lebih tinggi dari spesimen lainnya. Akan tetapi, perbedaan yang terjadi sangat sedikit. Grafik CV *after* spesimen BM80 memiliki karakter grafik yang sangat berbeda dengan lainnya. Hal ini dikarenakan larutan menguap yang mengakibatkan perbedaan kondisi eksperimen dengan spesimen *base metal* lainnya.

Kurva *cyclic voltammetry* pada gambar 4.15 memiliki tiga jenis *peak* yaitu a, b, dan c. *Peak* a.1 dan a.2 pada kurva CV *before H-absorption* menunjukkan kurva referensi dari spesimen uji dan reaksi yang berkaitan dengan thiourea (zat yang membantu pembacaan current pada percobaan). Puncak b dan c secara berurutan menunjukkan reaksi oksidasi dan reduksi dari spesimen uji terhadap ion yang ada pada elektrolit. Pada CV *after H-absorption*, puncak a.1 menunjukkan reaksi oksidasi yang dianggap berasal dari hidrogen yang telah terabsorpsi kedalam spesimen dan puncak a.2 menunjukkan reaksi yang berkaitan dengan thiourea. Pada puncak b dan c secara berurutan menunjukkan reaksi oksidasi dan reduksi dari spesimen uji terhadap ion yang ada pada elektrolit.

4.3.2 EHT Spesimen Full Annealing

Untuk melihat pengaruh temperatur terhadap hidrogen perlu menganalisa dan membandingkan dari hasil *cyclic voltametric* dan *potentiostatic polarization* yang dilakukan pada spesimen *full annealing*. Dari gambar 4.16 menunjukkan perbandingan grafik antar spesimen *full annealing* yang diuji menggunakan variasi temperatur pada tahap *charging hydrogen*.

Gambar 4.16 Hasil Pengujian Spesimen *Full Annealing* (a) Perbandingan *CV* Sebelum *Charging Hydrogen* (b) Perbandingan Grafik *Charging Hydrogen* (c) Perbandingan Hasil *CV* Setelah *Charging Hydrogen*

Pada gambar 4.16 menunjukkan hasil vang didapatkan dari pengujian yang dilakukan pada spesimen full annealing. Pada gambar 4.16(a) menunjukkan grafik CV before antar spesimen yang memiliki perbedaan antar peak a.2, b, dan c. Pada spesimen B27, peak a.2 senilai 0,00543, peak b senilai 0,00399, dan peak c senilai -0,00473. Pada spesimen B55, peak a.2 senilai 0,00594, peak b senilai 0,00503, dan peak c senilai -0,00562. Pada spesimen B80, peak a.2 senilai 0,00599, peak b senilai 0,00549, dan peak c senilai -0,00576. Nilai peak antar spesimen B55 dan B80 memiliki nilai *peak* yang sedikit berbeda. Hal ini menunjukkan spesimen base metal, antara spesimen B55 dan B80, dirasa cukup homogen kondisi awalnya sebelum dilakukan pengujian.

Pada gambar 4.16(b) menunjukkan grafik *H*-*Charging* antar spesimen yang berbeda-beda. Terlihat dari grafik tersebut, *slope* pada grafik spesimen B27 memiliki peningkatan lebih banyak dibandingkan *slope* grafik spesimen B55 dan B80. Akan tetapi, nilai pada spesimen B80 mengalami peningkatan. Nilai untuk spesimen B80 lebih tinggi dibandingkan dengan nilai B55. Pada grafik spesimen B27, *slope* berada pada -0,00335 A dan sudah terjadi saturasi. Pada grafik spesimen B55, *slope* berada pada -0,00791 A namun masih meningkat. Pada grafik spesimen B80, *slope* berada pada -0,00792 A namun grafik masih meningkat.

Pada gambar 4.16(c) menunjukkan grafik CV after pada spesimen B557, B55, dan B80. Pada spesimen B27, peak a.1 senilai 0,00531, peak a.2 senilai 0,00296, peak b senilai 0,00642, dan peak c senilai -0,0063. Pada spesimen B55, peak a.1 senilai 0,00567, peak b senilai 0,00685, dan peak c senilai -0,00682. Pada spesimen B80, peak a.1 senilai -0,00026, peak a.2 senilai 0,00571, peak b senilai 0,00556, dan peak c senilai -0,00564. Dari grafik CV after terlihat spesimen B55 memiliki nilai *peak* yang lebih tinggi diantara spesimen lainnya. Tetapi, spesimen B80 memiliki grafik yang sangat berbeda dibandingkan grafik CV after spesimen lain karena memiliki peak a.1. Dengan melihat puncak dari a.1, dapat diketahui spesimen mana yang mengalami kerusakan atau penyerapan hidrogen lebih banyak setelah dilakukan H-charging selama 7200 s. Spesimen B55 memiliki tinggi puncak a.1 lebih tinggi dari spesimen lainnya. Akan tetapi, perbedaan yang terjadi sangat sedikit. Grafik CV after spesimen B80 memiliki karakter grafik yang sangat berbeda dengan lainnya. Hal ini dikarenakan larutan menguap yang mengakibatkan perbedaan kondisi eksperimen dengan spesimen full annealing lainnya.

Kurva *cyclic voltammetry* pada gambar 4.16 memiliki tiga jenis *peak* yaitu a, b, dan c. *Peak* a.1 dan a.2 pada kurva *CV before H-absorption* menunjukkan kurva referensi dari spesimen uji dan reaksi yang berkaitan dengan thiourea (zat yang membantu pembacaan current pada percobaan). Puncak b dan c secara berurutan menunjukkan reaksi oksidasi dan reduksi dari spesimen uji terhadap ion yang ada pada elektrolit. Pada *CV after H-absorption*, puncak a.1 menunjukkan reaksi oksidasi yang dianggap berasal dari hidrogen yang telah terabsorpsi kedalam spesimen dan puncak a.2 menunjukkan reaksi yang berkaitan dengan thiourea. Pada puncak b dan c secara berurutan menunjukkan reaksi oksidasi dan reduksi dari spesimen uji terhadap ion yang ada pada elektrolit.

4.4 SEM-EDS

Pengujian Scanning Electron Microscope dilakukan untuk mengetahui lapisan oksida yang terbentuk pada permukaan spesimen setelah pengujian electrochemical hydrogen test. Selain itu, SEM juga dilakukan untuk melihat unsur apa yang terkandung pada permukaan spesimen setelah pengujian electrochemical hydrogen test. Gambar 4.17 menunjukkan hasil pengujian SEM pada spesimen base metal dengan variasi temperatur yang digunakan.

⁽a)

Gambar 4.17 Hasil Pengujian SEM *Base Metal* Perbesaran 1000x (a) Spesimen BM27 (b) Spesimen BM55 (c) Spesimen BM80

Dari gambar 4.17 ditunjukkan hasil pengujian SEM pada spesimen *base metal* dengan perbesaran 1000x. Dari gambar yang ditunjukkan terlihat terdapat kerak dan lapisan oksida yang terbentuk pada permukaan spesimen. Pada gambar 4.17 (a), spesimen BM27 memiliki lapisan oksida yang rata dan hanya terdapat sedikit kerak terbentuk pada permukaan spesiman. Pada gambar 4.17 (b) spesimen BM55 terdapat kerak cukup besar dan lapisan oksida merata di seluruh permukaan spesimen. Pada gambar 4.17 (c) Spesimen BM80 terdapat sedikit kerak dan lapisan oksida merata dan tipis.

iber 4.5 Hash Tengujian SEM-EDS Spesimen Base Metai							
	Spesimen	Spesimen	Spesimen				
Element	BM27	BM55	BM80				
	Weight (%)						
СК	1,51	1,6	1,85				
O K	12,63	13,92	8,96				
Na K	0,87	7,58	10,32				
Si K	0,61	0,54	0,44				
Mn K	0,63	0,49	0,51				
Fe K	83,75	75,87	75,87				

Tabel 4.3 Hasil Pengujian SEM-EDS Spesimen Base Metal

Dari hasil pengujian SEM-EDS, diketahui unsur pada permukaan spesimen setelah dilakukan *electrochemical hydrogen uptake test*. Untuk melihat banyak lapisan oksida pada permukaan dapat dilihat dari jumlah element O yang terkandung pada permukaan spesimen. Spesimen BM27 memiliki kandungan unsur O sebesar 12,63%. Untuk spesimen BM55 memiliki kandungan unsur O sebesar 13,92%. Untuk spesimen BM80 memiliki kandungan unsur O sebesar 8,96%.

4.5 Perbandingan Hasil Pengujian Base Metal dan Full Annealing

4.5.1 Perbandingan Hasil EHT Base Metal dan Full Annealing

Gambar 4.18 Perbandingan *Base Metal* dan *Full Annealing* (a) temperatur 27^oC (b) temperatur 55^oC (c) temperatur 80^oC

Gambar 4.18 Menunjukan perbandingan dari hasil electrochemical hydrogen uptake test antara spesimen base metal dengan full annealing. Gambar 4.18(a) menunjukkan grafik CV-after spesimen jenis base metal dan full annealing yang diuji pada temperatur 27°C dengan kode BM27 untuk base metal 27°C dan B27 untuk full annealing 27°C. Pada grafik CV-after spesimen BM27, puncak a.1 memiliki letak lebih tinggi dibandingkan puncak a.1 pada grafik CV-after spesimen B27. Puncak a.1 pada spesimen BM27 terletak pada 0,00530 A dan puncak a.1 pada spesimen B27 terletak pada 0,00515 A. Dengan melihat puncak a.1 dari kedua grafik dapat disimpulkan bahwa spesimen BM27 (base metal 27°C) menyerap hidrogen lebih banyak dan mengalami kerusakan hidrogen lebih besar.

Gambar 4.18(b) menunjukkan grafik *CV-after* spesimen jenis *base metal* dan *full annealing* yang diuji pada temperatur 55°C dengan kode BM55 untuk *base metal* 55°C dan B55 untuk *full annealing* 55°C. Pada grafik *CV-after* spesimen BM55, puncak a.1 memiliki letak lebih tinggi

dibandingkan puncak a.1 pada grafik *CV-after* spesimen B55. Puncak a.1 pada spesimen BM55 terletak pada 0,00555 A dan puncak a.1 pada spesimen B55 terletak pada 0,00536 A. Dengan melihat puncak a.1 dari kedua grafik dapat disimpulkan bahwa spesimen BM55 (*base metal* 55°C) menyerap hidrogen lebih banyak dan mengalami kerusakan hidrogen lebih besar.

Gambar 4.18(c) menunjukkan grafik *CV-after* spesimen jenis *base metal* dan *full annealing* yang diuji pada temperatur 80°C dengan kode BM80 untuk *base metal* 80°C dan B80 untuk *full annealing* 80°C. Pada grafik *CV-after* spesimen BM80, puncak a.1 memiliki letak lebih tinggi dibandingkan puncak a.1 pada grafik *CV-after* spesimen B80. Puncak a.1 pada spesimen BM80 terletak pada - 0,00037 A dan puncak a.1 pada spesimen B80 terletak pada 0,00093 A. Dengan melihat puncak a.1 dari kedua grafik dapat disimpulkan bahwa spesimen B80 (*full annealing* 80°C) menyerap hidrogen lebih banyak dan mengalami kerusakan hidrogen lebih besar.

Dari data yang didapatkan, spesimen yang paling banyak menyerap hidrogen adalah spesimen berjenis *base metal*.

4.5.2 Perbandingan Nilai Kekerasan

Pengujian kekerasan dilakukan pada permukaan spesimen awal sebelum dilakukan pengujian permeasi hidrogen dan permukaan spesimen setelah dilakukan pengujian permeasi hidrogen. Pengujian kekerasan dilakukan pada permukaan spesimen sebanyak 8 titik yang berbeda yang tersebar secara merata sepanjang permukaan spesimen. Pada pengujian ini digunakan mesin *vickers*

Base Metal							
Spesimen	Titik	Nilai Kekerasan (HV)	Rata-rata				
	1	204					
	2	205					
	3	201					
	4	207	206 975				
NO CHARGING	5	204	200,875				
	6	219					
	7	204					
	8	211	1				
	1	202					
	2	204					
	3	218					
DM27	4	221	211.5				
BIVI27	5	205	211,5				
	6	206					
	7	219					
	8	217					
	1	239					
	2	199					
	3	229	218,875				
DM55	4	214					
DIVISS	5	201					
	6	213					
	7	221					
	8	235					
	1	286					
	2	237					
	3	249					
DMQO	4	245	262.25				
DIVIOU	5	277	262,25				
	6	236					
	7 284						
	8	284					

Tabel 4.4 Nilai Kekerasan Base Metal

Full Annealing							
Spesimen	Titik	Nilai Kekerasan (HV)	Rata-rata				
	1	132	l				
	2	139	l				
	3	134					
NO	4	138	133 125				
CHARGING	5	130	155,125				
	6	125	l				
	7	137					
	8	130					
	1	135					
	2	140					
	3	140					
B27	4	138	130				
D27	5	138	137				
	6	136					
	7	135	l				
	8	150					
	1	142	l				
	2	157					
	3	171					
B55	4	149	162				
D 55	5	175	105				
	6	162					
	7	160					
	8	188					
	1	180					
	2	160	l				
	3	162					
B80	4	165	171 375				
Dou	5	185	1/1,5/5				
	6	168	l				
	7	181					
	8	170					

Tabel 4.5 Nilai Kekerasan Full Annealing

Pada tabel 4.4 dan 4.5 ditunjukkan nilai kekerasan dari seluruh spesimen yang digunakan dalam penelitian ini. Nilai kekerasan *base metal* sebelum dilakukan uji *EHT* memiliki rata-rata 206,875 HV. Nilai kekerasan *full annealing* sebelum dilakukan uji *EHT* memiliki rata-rata 133,125 HV. Spesimen BM27 (*base metal* 27°C) memiliki rata-rata 211,5 HV. Spesimen B27 (*full annealing* 27°C) memiliki rata-rata 139 HV. Spesimen BM55 (*base metal* 55°C) memiliki rata-rata 218,875 HV. Spesimen B55 (*full annealing* 55°C) memiliki rata-rata 163 HV. Spesimen BM80 (*base metal* 80°C) memiliki rata-rata 262,25 HV. Spesimen B80 (*full annealing* 80°C) memiliki rata-rata 171,375 HV.

proses pembuatan spesimen Pada tube dari memanfaatkan proses penempaan dingin sehingga terbentuk spesimen yang diinginkan. Proses penempaan tube memanfaatkan deformasi plastis pada material bahan awal tube untuk membentuk spesimen yang diinginkan. Deformasi plastis ini menyebabkan terjadinya perubahan pada sifat mekanik material tersebut. Proses penempaan dingin pada tube akan menghasilkan strain dan stress pada spesimen vang dihasilkan. Spesimen *base metal* merupakan spesimen hasil proses penempaan dingin yang tidak mengalami proses perlakuan panas untuk menghilangkan strain dan stress di spesimen. Sedangkan, untuk spesimen full annealing mengalami proses perlakuan panas untuk menghilangkan stress dan strain dari spesimen tersebut. Stress dan strain ini menyebabkan nilai kekerasan spesimen lebih tinggi dari nilai kekerasan standar ASME SA-210 BM27. Proses perlakuan panas full annealing memperbaiki kondisi spesimen dengan menghilangkan stress dan strain yang ada di spesimen. Dengan menghilangkan stress dan strain yang ada di spesimen, dapat menurunkan nilai kekerasan dari spesimen.

Peningkatan kekerasan (biasanya melalui perlakuan panas) akan menurunkan keuletan. Singkatnya, keuletan adalah kemampuan material untuk berubah bentuk di bawah tekanan sebelum retak atau pecah. Ketika atom hidrogen bergabung membentuk molekul yang melebihi batas kekuatan tarik dan kekerasan, baja akan retak atau pecah di bawah tekanan yang meningkat. Namun, jika kekuatan tarik dan tingkat kekerasan berada di bawah ambang kritis, keuletan yang lebih tinggi memungkinkan baja mengalami deformasi, menyerap dan mendistribusikan kembali tekanan yang meningkat, daripada retak. Oleh karena itu, setelah pengujian spesimen hidrogen mengalami semua peningkatan nilai kekerasan.

Nilai kekerasan spesimen setiap temperatur nya juga berbeda. Seiring dengan meningkatnya nilai temperatur charging hydrogen, meningkat pula nilai kekerasan spesimen. Menghilangkan permeasi hidrogen tidak dapat dicapai. Tetapi, laju difusi dapat dikurangi, sehingga memperpanjang Tingkat umur. permeasi hidrogen bergantung pada suhu, konsentrasi hidrogen dalam proses, dan jenis logam yang dipilih untuk diafragma. Percepatan permeasi hidrogen terjadi saat suhu isolasi tinggi. Mengurangi suhu akan memperlambat difusi ion hidrogen sehingga memperpanjang umur diafragma. Sulit untuk menentukan suhu tinggi. Sebagai aturan umum, semakin tinggi konsentrasi ion hidrogen, semakin rendah suhu yang dibutuhkan.

Nilai kekerasan pada semua variasi spesimen mengalami peningkatan nilai kekerasan. Hal ini dapat terjadi akibat absorpsi hidrogen yang merata pada seluruh permukaan spesimen. Nilai kekerasan pada permukaan ini juga dapat diindikasikan sebagai pengaruh absorpsi hidrogen yang terjadi pada semua variasi spesimen. (Halaman ini sengaja dikosongkan)

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian dan pembahasan yang telah dilakukan, dapat disimpulkan beberapa hal pada penelitian ini. Diantaranya adalah sebagai berikut:

- 1. Temperatur pengujian *H-charging* pada spesimen dapat mempengaruhi penyerapan hidrogen. Hal ini dibuktikan dengan adanya perbedaan puncak atau peak dari grafik CV *after H-absorption* antar variasi temperatur.
- 2. Semakin tinggi peak a.1 pada hasil CV *after H-absorption* menandakan semakin banyak konsentrasi hidrogen yang terabsorpsi pada spesimen.
- 3. Atom hidrogen yang berdifusi ke dalam spesimen menyebabkan kenaikan nilai kekerasan dikarenakan terjebak di dalam struktur mikro seperti batas butir.
- 4. Temperatur ruangan (27[°]C) dirasa memiliki efek paling minimal dibandingkan temperatur 55[°]C dan 80[°]C.

5.2 Saran

Saran yang dapat diberikan setelah melakukan pengujian ini adalah sebagai berikut:

- 1. Menggunakan peralatan lebih memadai supaya dapat menjalani pengujian dengan suhu 80°C dengan baik dikarenakan adanya larutan yang menguap.
- 2. Memperhatikan metode dan prosedur selama pengujian untuk menjaga kondisi larutan dan spesimen selama pengujian.
- 3. Memperhatikan waktu *delay* antara CV-*before*, *charging*, dan CV-*after*.
- 4. Memastikan seluruh spesimen yang akan diuji *electrochemical hydrogen uptake test* bersih.

(Halaman ini sengaja dikosongkan)

DAFTAR PUSTAKA

- [1] Yin, Changdong et al., (2020). "Hydrogen Concentration Distribution in 2.25Cr-1Mo-0.25V Steel under the Electrochemical Hydrogen Charging and Its Influence on the Mechanical Properties". MDPI Material
- [2] Callister, W. D. (2007). "Material Science and Engineering An Introduction". New York: John Wiley and Sons, Inc.
- [3] Vecchi, Lorenzo et al., (2017). "Modelling of hydrogen permeation experiments in iron alloys: Characterization of the accessible parameters - Part II - The exit side". International Society of Electrochemistry (ISE)
- [4] Zheng, Shuqi et al., (2013). "Effects of the Temperature on the Hydrogen Permeation Behaviours of L360NCS Pipeline Steel in 1MPa H₂S Environments". Int. J. Electrochem. Sci
- [5] Simonsen, Bendik. (2015). "An Application Prototype for Hydrogen Permeation Data Analysis". Norwegian University of Science and Technology
- [6] Devanathan, M.A.V.; Stachurski, Z. "The adsorption and diffusion of electrolytic hydrogen in palladium". Proc. R. Soc. Lond. Ser. A 1962, 270, 90–102.
- [7] Eeckhout, E. et al., (2018). "The Effect of Microstructural Characteristics on the Hydrogen Permeation Transient in Quenched and Tempered Martensitic Alloys". MDPI Material
- [8] Nugroho, Lanal. (2017). "Pengaruh Prosesannealing Terhadap Perubahan Kekerasan Dan Struktur Mikro Pada Pipa SA 179 Yang Telah Mengalami Pembengkokan". Surabaya: Institut Teknologi Sepuluh Nopember

- [9] (2002). "ASTM A 210/A 210 M Standard Specification for Seamless Medium-Carbon Steel Boiler and Super Heater Tubes". West Conshohocken : ASTM International.
- [10] (2011) "ASTM G148 97 Standard Practice for Evaluation of Hydrogen Uptake, Permeation, and Transport in Metals by an Electrochemical Technique". West Conshohocken : ASTM International.
- [11] A. Turnbull. (2012). "Hydrogen diffusion and trapping in metals". UK: National Physical Laboratory
- [12] Akiyama, Eiji dan Li, Songjie. (2015). "Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study". Tohoku University
- [13] Fontana, Mars. (1986). "Corrosion Engineering, Third Edition". McGraw-Hill Book Company, New York.
- [14] Revie, W. & Uhlig, H. (2008). "Corrosion and Corrosion Control, Fourth Edition". John Wiley & Sons, Inc., Hoboken New Jersey.
- [15] Jones, Denny A. (1992). "Principles and Prevention of Corrosion". Prentice Hall
- [16] Ozdirik, Berk. et al., (2018). "Comparison of Electrochemical and Thermal Evaluation of Hydrogen Uptake in Steel Alloys Having Different Microstructures". Int. J. Electrochem. Sci
- [17] Ozdirik, Berk. et al., (2017). "Development of an Electrochemical Procedure for Monitoring Hydrogen Sorption/Desorption in Steel" Int. J. Electrochem. Sci
- [18] Merdeka, Oxi. (2017). "Pengaruh Penambahan Graphene Terhadap Cycle Life Baterai Lead Acid" Surabaya: Institut Teknologi Sepuluh Nopember
- [19] Amaral, S. & Müller, I. (1999). "Electrochemical Behaviour of Iron in NaOH 0.01 mol/L Solutions Containing Variable Amounts of Silicate" Journal of the Brazilian Chemical Society
- [20] Zaafarany, I. (2009). "Cyclic voltammetric behavior of iron electrode in sodium hydroxide solutions". Saudi Arabia: Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University

(Halaman ini sengaja dikosongkan)

LAMPIRAN 1. Komposisi Kimia Material Uji (Baja Karbon SA 210 A1)

	Nemor , 1048 an 1970	
	10000 1000 MI 10/00	
	Number	P/2020
NGGAN / Customer		
Nama	MUHAMMAD FURQON NUGROHO I	PUTRO / NRP. 02111640000058
Alamat	Teknik Mesin - FTI ITS, Kampus ITS K	eputih Sukolilo - Surabaya
A UJL / Test Speciment		
Tanggal Diterima	04 November 2020	
Spesimen Un	Baia karbon SA210 A1 - Silinder Old4 v	3mm - as received
Identifikasi Material	inge metode of the other of the deal of the	AND
Identification of Material Proses Las /Posisi Las/Jum Las		
Weld Process Position/Welder		
Project	· ·	
UJIAN / Testing		
Date of Testing	: 04 November 2020	
Lokasi Pengujian Location of Testing	Lab. Uji Bahan PPNS, Kampus ITS Suke	olilo, Surabaya
Jenis Pengujian Type of Testing	Chemical Composition Test	
Kondisi Lingkungan	: Suhu 26°C	
Acuan	- ASTM A751-14n	
Refference		
Nama	Ontical Emission Spectroscope	-
Vame Tipe/Model	Enundry Martar Smart	
Type/Model Kapasitas		-
Capacity	Global	-
Manufacturer	Hitachi - Oxford Instrument / Germany	-
Nomor Seri Serial Number	57X0031	-
Nilai Ketidak pastian Number of uncertainty	£ •	
Ketertelusuran	*	
L PENGUJIAN /	(Terlampir)	
BUTTERA TANGGAL	(Anached)	
Tasue NE GE de	04 November 2020	
	Name Name Name Name Name Name Name Name	Nume MUHAMMAD FURQON NUGROHIO J Alamst Teknik Mesin - FTI ITS, Kampus ITS K Alamst Teknik Mesin - FTI ITS, Kampus ITS K Date of Processor Teknik Mesin - SA210 A1 - Silinder Ø44 x Date of Processor Baja Larbon SA210 A1 - Silinder Ø44 x Mathematical International Process Processor - Process La (Post La Azima Las Internation Vieture Processor - Tangal Discourse - - Development Experiment - - Date of Traing O4 November 2020 - Data of Traing O4 November 2020 - Data of Traing Chemical Composition Test Scale Basis Branziana - Reference - - Dyne of Traing Chemical Composition Test Scale Basis Branziana - Reference - ASTM A751-14a - Using Branziana - - - Nama Reference - - - Using Branziana - - - Struk Ary S1-14a

a series and a series of			Halamar
erbanyak sertifikat ini dengan tuji	ian opapun tanpa ijin resmi d	lari PPNS	2 dari 2
to copy this certificate for any put ini tidak untuk diumumkan dan hi port is not for public consumption	pose without permission from anya berlaku untuk material , it is only valid for tested ma	n FFNS yang diujikan dalam penguji terial above	an ini
	erbanyak sertifikat ini dengan tuji to copy this certificate for any pu i ni tidak unuk diumumkan dan h port is not for public comumption	erbanyak sertifikat ini dengan tujuan apapun tanga ijin resmi i ocogy ihu certificate for any purpose without permission for i mi talak umik dimumkan dan hanya beriaka umik meteral part i na ofor purpose. Ceramption: i ra only vahid for tested ma	r erbanyak sertifikat ini dengan tujuan ngagum tanga ijin reami dari PPAS to copy tha certificate for any purpase without permission from PPAS i ini tidak umuk dimunokan dan hanya berlaka unuk material yang dinykan dalam pengeji part i and for public communition. It cony subdif or testa durieral adawa

PERSONAL PROVIDENCE

POLITEKNIK PERKAPALAN NEGERI SURABAYA LABORATORIUM UJI BAHAN

Optical Emission Spectroscopy Result

No.3	SPK :	04-XI/PL19/BJ	P/2020		Penandaan :			
Pela	nggan :	Sdr. M. Furgon	Nugroho P. / ITI	5	Material :	Baja karbo	an SA210 A1	
Proy	ok :				Dimensi :	Silinder D	a. 44 x 3mm	
Кері	ala Lab. :	Hendri Budi K.,	SST., MT.		Heat No. :			
Prog	inam :	FE_T_100			Keterangan			
	Fe N	C %	51.96	Mn %	P %	5 %	Cr %	Mo 1
	386	0.227	0.197	0.830	< 0.0030	< 0.0020	0.0455	0.0045
3	98.6	0.228	0.189	0.814	< 0.0030	< 0.0020	0.0460	0.0065
3	98.5	0.226	0.188	0.830	< 0.0030	< 0.0020	0.0436	0.0050
Ave	98.6	0.227	0.190	0.825	< 0.0030	< 0.0020	0.0450	0.0053
	NI %	AI %	Co %	Cu %	Nb %	Ti %	V %	w s
1	0.0060	0.0047	< 0.0020	0.0195	< 0.0020	< 0.0010	< 0.0010	0.0549
2	0.0089	0.0049	< 0.0020	0.0196	0.0027	0.0014	< 0.0010	0.0549
3	0.0089	0.0047	< 0.0020	0.0194	< 0.0020	0.0014	0.0012	0.0488
Ave	0.0079	0.0048	< 0.0020	0.0195	< 0.0020	0.0011	< 0.0010	0.0529
	Pb %	Sn %	в %	Zr %	As %	Bi %		
1	0.0275	< 0.0020	< 0.0010	0.0063	0.0155	< 0.0100		
2	0.0270	0.0021	< 0.0010	0.0033	0.0231	< 0.0100		
3	0.0249	0.0023	< 0.0010	0.0036	0.0254	< 0.0100		
Ave	0.0265	0.0021	< 0.0010	0.0044	0.0213	< 0.0100		

zi, Teknik Kimia, Kampus ITS Sukolilo Surabaya (Indones Tel. : +62 31 5999444 Fax: +67 31 5999444 a. Spesimen BM27 (base metal 27°C)

1000x

2000x

5000x

115

EDAX APEX

Page 1

Page 2

	04032021
Author:	Teknik Mesin ITS
Creation:	03/04/2021 2:16:27 PM
Sample Name:	A1
Area 1	
South Fill	

EDAX APEX

Full Area 1

kV:20	Mag: 1000	Takeoff: 30	Live Time(s): 78.4	Amp Time(µs): 3.84	Resolution:(eV) 133.6

Smart Quant Results

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	Α	F
СК	1.51	5.05	85.00	10.64	0.0041	1.2663	0.2164	1.0000
ОК	12.63	31.76	2758.75	6.71	0.0685	1.2181	0.4454	1.0000
NaK	0.87	1.52	57.31	14.62	0.0013	1.1126	0.1326	1.0004
SiK	0.61	0.88	170.84	8.56	0.0030	1.1186	0.4394	1.0030
MnK	0.63	0.46	123.34	5.69	0.0067	0.9390	0.9996	1.1384
FeK	83.75	60.33	13030.11	1.49	0.8037	0.9549	1.0037	1.0012

b. Spesimen BM55 (base metal 55°C)

1000x

2000x

5000x

117

EDAX APEX

Author:	Teknik Mesin ITS
Creation:	03/04/2021 2:19:36 PM
Sample Name:	A 2

Area 1

EDAX APEX

Page 2

Full Area 1

	(V:20	Mag: 1000	Takeoff: 30	Live Time(s): 78.8	Amp Time(µs): 3.8	4 Resolution:(eV) 133.6
--	-------	-----------	-------------	--------------------	-------------------	-------------------------

04032021

Smart Quant Results

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	Α	F
СК	1.60	4.88	93.76	10.58	0.0043	1.2495	0.2136	1.0000
ОК	13.92	32.00	3255.86	6.63	0.0755	1.2017	0.4511	1.0000
NaK	7.58	12.12	575.14	10.21	0.0120	1.0972	0.1440	1.0004
SiK	0.54	0.71	160.72	8.85	0.0027	1.1028	0.4413	1.0029
MnK	0.49	0.33	101.29	5.81	0.0052	0.9246	1.0006	1.1376
FeK	75.87	49.95	12473.89	1.51	0.7180	0.9401	1.0045	1.0022

c. Spesimen BM80 (base metal 80°C)

1000x

2000x

5000x

EDAX APEX

Author:	Teknik Mesin ITS				
Creation:	03/04/2021 2:22:22 PM				
Sample Name	A3 1				

Area 1

Page 2

EDAX APEX Full Area 1

kV:20	Mag: 1000	Takeoff: 30	Live Time(s): 78.3	Amp Time(µs): 3.84	Resolution:(eV) 133.6

04032021

Smart Quant Results

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	А	F
СК	1.85	5.98	103.11	10.61	0.0048	1.2625	0.2049	1.0000
ОК	8.96	21.82	1864.95	7.17	0.0441	1.2143	0.4048	1.0000
NaK	10.32	17.48	790.80	10.00	0.0168	1.1090	0.1467	1.0004
SiK	0.44	0.61	127.71	9.90	0.0022	1.1148	0.4353	1.0030
MoL	2.06	0.83	355.92	5.27	0.0149	0.8548	0.8484	1.0014
MnK	0.51	0.36	102.83	6.38	0.0053	0.9353	0.9964	1.1254
FeK	75.87	52.91	12346.70	1.48	0.7244	0.9511	1.0013	1.0026

Page 1

- CV5 AFTER

-0,4 -0,3 -0,2

3. Grafik Cyclic Voltammetry BM 27

-1,3 -1,2

-1,5 -1,4 -1,1 -1,0

-0,9 -0,8 -0,7 Potential applied (V)

-0,6 -0,5

8. Grafik Cyclic Voltammetry B80

(Halaman ini sengaja dikosongkan)

BIODATA PENULIS

Muhammad Furqon Nugroho Putro, dilahirkan di kota Bandar Lampung, pada tanggal 10 Mei 1998. Penulis merupakan anak kedua dari empat bersaudara. Penulis berdomisili Perumahan Bukit Cimanggu City blok KD2 No. 38, Tanah Sareal, Bogor. Pendidikan formal yang telah ditempuh pemulis adalah pada tahun 2004 - 2008 bersekolah di SD Kartika Jaya II-5. Bandar Lampung. 2008 - 2010 bersekolah di SDN Sukadamai 3 Bogor, kemudian pada tahun 2010 -2013 melanjutkan ke SMPN 5 Bogor, dan pada tahun 2013- 2016 melanjutkan ke SMAN 3 Bogor. Pada tahun 2016 penulis

melanjutkan studinya di Institut Teknologi Sepuluh Nopember Surabaya, program studi S1 Teknik Mesin FTIRS-ITS dan mengambil bidang studi Metalurgi. Penulis menyelesaikan studinya selama 9 semester hingga tahun 2021. Selama menjalankan studi, penulis aktif di organisasi dan menjabat sebagai staff Mesin ITS Autosport periode 2017/2018. Kemudian menjadi Kepala Divisi HRD Mesin ITS Autosport periode 2018/2019. Banyak hal yang telah penulis dapatkan selama masa studi, keluarga serta karakter yang terbangun di Keluarga Mahasiswa Mesin merupakan bekal penulis dalam melanjutkan kontribusinya di masyarakat. Penulis bercita-cita untuk dapat menghilangkan kemiskinan di Indonesia, membawa Indonesia menjadi negara adidaya, dan role model bagi dunia, Menjadi berguna bagi agama, bangsa, dan negara merupakan kewajiban yang harus penulis penuhi selama hidup. Selama hidup penulis berpegang kepada prinsip "Pantang Menyerah". Karena hakikatnya manusia tidak boleh menyerah dari kondisi terburuk dalam hidupnya dan Allah SWT tidak menguji hamba-Nya melebihi kemampuan hamba-Nya. Kepada pembaca, penulis berharap buku Tugas Akhir ini dapat bermanfaat dan dipertanggung jawabkan.