

TUGAS AKHIR TF091381

ANALISIS PRODUKSI EMISI CO₂ PADA INDUSTRI GULA DI PT. PERKEBUNAN NUSANTARA X (PERSERO) Tbk. (STUDI KASUS DI PABRIK GULA LESTARI)

RENDA AVISTA NRP. 2410 100 049

Dosen Pembimbing Dr. Ridho Hantoro, S.T., M.T. Nur Laila Hamidah, S.T., M.Sc.

JURUSAN TEKNIK FISIKA Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2014

FINAL PROJECT TF091381

ANALYSIS CO₂ EMISSION OF SUGAR MILL IN PT. PERKEBUNAN NUSANTARA X (PESRSERO) Tbk. (CASE STUDY IN PABRIK GULA LESTARI)

RENDA AVISTA NRP. 2410 100 049

Supervisor Dr. Ridho Hantoro, S.T., M.T. Nur Laila Hamidah, S.T., M.Sc.

DEPARTMENT OF ENGINEERING PHYSICS Faculty of Industrial Technology Sepuluh Nopember Institute of Technology Surabaya 2014 This page is left blank

ANALISIS PRODUKSI EMISI CO₂ PADA INDUSTRI GULA DI PT. PERKEBUNAN NUSANTARA X (PERSERO) Tbk. (STUDI KASUS DI PABRIK GULA LESTARI)

Nama Mahasiswa : Renda Avista NRP : 2410 100 049

Jurusan : Teknik Fisika FTI-ITS

Dosen Pembimbing : Dr. Ridho Hantoro, S.T., M.T.

Nur Laila Hamidah, S.T., M.Sc.

Abstrak

Jejak karbon di Pabrik Gula Lestari merupakan jumlah total emisi CO2 yang dihasilkan dari kegiatan proses produksi gula, dimana emisi CO₂ tersebut akan berdampak pada pemanasan global. Tujuan dari penelitian ini adalah menganalisis jejak karbon yang dihasilkan oleh industri gula dengan data penelitian diperoleh dari obseravasi langsung dan wawancara. Data-data tersebut meliputi jumlah penggunaan transportasi pengangkut tebu dari perkebunan ke pabrik yang menggunakan bahan bakar, proses produksi yang melibatkan penggunaan konsumsi listrik, dan penggunaan bahan bahan bakar untuk pembakaran. Untuk mengetahui hasil emisi CO2 industri gula, maka dilakukan perhitungan emisi CO2 yang mengacu pada sumber IPCC. Dari hasil penelitian diperoleh total emisi CO₂ yang dihasilkan Pabrik Gula Lestari selama musim giling 2013 sebesar 493,983.76 tCO₂. Dengan emisi CO₂ yang dihasilkan dari transportasi sebesar 337,588.48 tCO₂, untuk proses produksi gula menghasilkan emisi CO₂ sebesar 15,320.79 tCO₂, sedangkan penggunaan bahan bakar utnuk pembakaran menghasilkan emisi CO₂ sebesar 141,074.49 tCO₂. Dengan melakukan reduksi emisi CO₂ dari setiap kegiatan diperoleh penurunan emisi CO₂ sebesar 24.7% dari penggunaan transportasi, 27.96% untuk proses produksi, dan penggunaan bahan bakar untuk pembakaran dapat direduksi sebesar 6.59%.

Kata kunci: Jejak karbon, emisi CO_2 , kegiatan proses produksi gula, transportasi, pembakaran

ANALYSIS CO₂ EMISSION OF SUGAR MILL IN PT. PERKEBUNAN NUSANTARA (PERSERO) Tbk. (CASE STUDY IN PABRIK GULA LESTARI)

Name : Renda Avista NRP : 2410 100 049

Department : Teknik Fisika FTI-ITS

Supervisor : Dr. Ridho Hantoro, S.T., M.T.

Nur Laila Hamidah, S.T., M.Sc.

Abstract

The carbon footprint of Pabrik Gula Lestari is the total amount of CO₂ emissions resulting from the activities of the sugar production process, which the emissions of CO₂ will have an impact on global warming. The purpose of this study is to analyze the carbon footprint generated by the sugar industry. The research data obtained from direct observation and interviews. These data include the fuel that used by the vehicle for transporting sugar cane to mill, the production process involves the use of electricity consumption, and the use of fuel for combustion. To find out the results of the sugar industry CO₂ emissions, the CO₂ emission calculation refers to the source of the IPCC. The results were obtained total CO₂ emissions produced by Lestari Surag Mill during the milling season in 2013 amounted to 493.983.76 tCO₂. With CO₂ emissions resulting from the transport of 337,588.48 tCO₂, for sugar production process produces CO₂ emission of 15,320.79 tCO₂, while the use of fuel combustion produces CO2 emissions for 141,074.49 tCO₂. By performing the reduction of CO₂ emissions from each activity is obtained by reduction of CO₂ emissions from the use of transportation 9.42%, 27.87% for production processes, and the use of fuel for combustion can be reduced by 9.42%

Keywords: carbon footprint, CO_2 emissions, the sugar production process, transport, combustion

This page is left blank

ANALISIS PRODUKSI EMISI CO2 PADA INDUSTRI GULA DI PT. PERKEBUNAN NUSANTARA X (PERSERO) Tbk. (STUDI KASUS DI PABRIK GULA LESTARI)

TUGAS AKHIR

Oleh:

Renda Avista NRP: 2410 100 049

Surabaya, 7 Juli 2014 Mengetahui/Menyetujui

Pembimbing I,

Pembimbing II,

Dr. Ridho Hantoro, S.T., M.T. NIPN. 19761223 200501 1 001 Nur Laila Hamidah, S.T., M.Sc.

Ketua Jurusan Teknik Fisika ETI-ITS

Dr. Ir. Totok Sochartanto, DEA NIPN, 19650309 199002 1 001

ANALISIS PRODUKSI EMISI CO2 PADA INDUSTRI GULA DI PT. PERKEBUNAN NUSANTARA X (PERSERO) Tbk. (STUDI KASUS DI PABRIK GULA LESTARI)

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik

pada

Bidang Studi Rekayasa Energi dan Pengkondisian Lingkungan Program Studi S-1 Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh: RENDA AVISTA NRP, 2410 100 049

Disetujui oleh Tim Penguji Tugas Akhir:

Pembimbing I) 1. Dr. Ridho Hantoro, S.T., M.T.

Nur Laila Hamidah, S.T., M.Sc. (Pembimbing II)

(Penguji I)

Ir. Sarwono, M.M.

Dr. Gunawan Nugroho, S.T., M.T. (Penguji II)

5. Dr. Ir. Purwadi Agus D., M.Sc. Penguji III)

Dr. Ir. Totok Soehartanto, DEA (Penguji III)

> **SURABAYA** JULI 2014

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT atas limpahan rahmat dan hidayah-Nya serta shalawat dan salam kepada Nabi Muhammad SAW sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul "Analisis Produksi Emisi CO₂ Pada Industri Gula Di PT. Perkebunan Nusantara X (Persero) Tbk. (Studi Kasus Di Pabrik Gula Lestari)". Penulis telah banyak mendapatkan bantuan dari berbagai pihak dalam menyelesaikan Tugas Akhir ini. Untuk itu penulis mengucapkan terima kasih kepada:

- 1. Bapak Dr. Ir. Totok Soehartanto, DEA, selaku Ketua Jurusan Teknik Fisika ITS.
- 2. Bapak Dr. Ridho Hantoro, S.T., M.T. dan Ibu Nur Laila Hamidah, S.T., M.Sc. selaku dosen pembimbing yang telah sabar dalam memberikan dukungan, bimbingan dan arahan dalam menyelesaikan Tugas Akhir ini.
- 3. Bapak Ir. Sarwono, M.M. selaku kepala Laboratorium Rekayasa Energi dan Pengkondisian Lingkungan yang telah memberikan dukungan untuk menyelesaikan Tugas Akhir ini.
- 4. Bapak dan Ibu dosen Teknik Fisika yang telah memberikan ilmu selama kuliah.
- 5. Alm. Bapak Hari Susianto yang menjadi motivasi penulis untuk menyelesaikan studi serta Ibu Sulistyowati dan adik Fani Nur Fajariya tercinta yang selalu memberi motivasi dan mendoakan penulis dimanapun berada.
- 6. PT. Perkebunan Nusantara dan Pabrik Gula Lestari yang telah memberikan izin untuk penulis mengambil data Tugas Akhir.
- 7. Bapak Rhesa Purnama Putra, S.T. serta karyawan Pabrik Gula Lestari lainnya yang sabar memberi penjelasan kepada penulis dan membantu penulis dalam mengumpulkan data Tugas Akhir.
- 8. Muhammad Ganjar Baihaqi yang telah sabar membantu dan memberi semangat penulis untuk menyelesaikan Tugas Akhir

- 9. Teman-teman seperjuangan dalam mengerjakan Tugas Akhir bidang Rekayasa Energi dan Pengkondisian Lingkungan, Rizky Nanda, Esti, Hari, Fahmi, Susilo, Gege, Azmi, Rois, dan Riyo.
- 10. Icha, Bibit, Nindy, Rista, Ulfa, Rindy, dan teman-teman 2010 lainnya yang tidak bisa penulis sebutkan satu per satu.

Penulis menyadari bahwa penulisan laporan Tugas Akhir ini tidaklah sempurna. Oleh karena itu sangat diharapkan kritik dan saran yang membangun dari semua pihak sehingga mencapai sesuatu yang lebih baik lagi. Penulis juga berharap semoga laporan ini dapat menambah wawasan yang bermanfaat bagi pembacanya.

Surabaya, 7 Juli 2014

Penulis

DAFTAR ISI

Haiaman
HALAMAN JUDULi
LEMBAR PENGESAHANv
ABSTRAKix
ABSTRACTxi
KATA PENGANTARxiii
DAFTAR ISIxv
DAFTAR GAMBARxvii
DAFTAR TABEL xix
BAB I PENDAHULUAN
1.1 Latar Belakang
1.2 Permasalahan
1.3 Tujuan Penelitian
1.4 Batasan Masalan 2 1.5 Manfaat Penelitian 3
BAB II TINJAUAN PUSTAKA
2.1 Sejarah Pabrik Gula Lestari
2.2 Proses Produksi Gula
2.2.1 Proses Penyediaan Bahan Baku
2.2.2 Proses Ekstrasi
2.2.3 Proses Pemurnian
2.2.4 Proses Penguapan
2.2.5 Proses Kristalisasi
2.2.6 Proses Pendinginan
2.2.7 Proses Pemisahan Gula
2.3 Pemanasan Global
2.4 Emisi Gas Rumah Kaca
2.5 Potensi Emisi Pada Industri
2.5.1 Emisi Dari Penggunaan Energi
2.5.2 Emisi Dari Proses produksi
2.5.3 Emisi Dari Limbah Industri
2.6 Perhitungan Emisi Karbon 20

BAB III METODOLOGI PENELITIAN	25
3.1 Pelaksanaan Penelitian	25
3.2 Kerangka Penelitian	25
3.2.1Studi Literatur	27
3.2.2 Pengumpulan Data	27
3.2.3 Perhitungan Emisi CO ₂	27
3.2.4 Peluang Reduksi Emisi CO ₂	41
BAB IV HASIL DAN PEMBAHASAN	43
4.1 Sumber Emisi Karbon Di Pabrik Gula Lestari	43
4.2 Emisi CO ₂ Dari Transportasi	44
4.3 Emisi CO ₂ Dari Produksi Gula	45
4.4 Emisi CO ₂ Dari Pembakaran	48
4.5 Total Emisi CO ₂ Pabrik Gula Lestari	50
4.6 Peluang Reduksi Emisi CO ₂ Pabrik Gula Lestari	53
4.6.1 Peluang Reduksi Emisi CO ₂ Pada Sektor	
Transportasi	53
4.6.2 Peluang Reduksi Emisi CO ₂ Pada Proses Produ	ksi
	54
4.6.3 Peluang Reduksi Emisi CO ₂ Pada Pembakaran .	58
BAB V PENUTUP	61
5.1 Kesimpulan	61
5.2 Saran	61
DAFTAR PUSTAKA	63
LAMPIRAN A	
LAMPIRAN B	

DAFTAR TABEL

		Hal
Tabel 2.1	Nilai Faktor Emisi	21
Tabel 2.2	Konsumsi Energi Spesifik Kendaraan	
	Bermotor	23
Tabel 2.3	Emisi Faktor Jenis Bahan Bakar Kendaraan	24
Tabel 3.1	Konsumsi penggunaan transportasi	
	pengangkut tebu	29
Tabel 3.2	Penggunaan listrik di stasiun penggilingan	32
Tabel 3.3	Penggunaan listrik di stasiun pemurnian	34
Tabel 3.4	Penggunaan listrik di stasiun penguapan	36
Tabel 3.5	Penggunaan listrik di stasiun kristalisasi	38
Tabel 3.6	Penggunaan listrik di stasiun putaran	39
Tabel 3.7	Penggunaan bahan bakar untuk ketel	41
Tabel 4.1	Konsumsi listrik Pabrik Gula Lestari di	
	setiap stasiun produksi gula 2013	46
Tabel 4.2	Konsumsi bahan bakar untuk ketel	48
Tabel 4.3	Total emisi CO ₂ Pabrik Gula Lestrari	52
Tabel 4.4	Penghematan Energi Listrik Pada	
	Penggunaan Motor-Motor Listrik Dengan	
	Efisiensi Lebih Dari 80%	56
Tabel 4.5	Penghematan Energi Listrik Pada	
	Penggunaan Motor-Motor Listrik	
	Dengan Effisiensi Dibawah 80%	
		57

DAFTAR GAMBAR

		Hal
Gambar 2.1	Profil Pabrik Gula Lestari	5
Gambar 2.2	Crane	6
Gambar 2.3	Cane feeding table dan Cane cutter	7
Gambar 2.4	Diagram blok proses ekstrasi	8
Gambar 2.5	Alat pemurnian: (a) Rotary vacuum filter,	
	(b) Clear Juice tank, dan (c) Juice heater	9
Gambar 2.6	Diagram blok proses pemurnian	11
Gambar 2.7	Stasiun penguapan Pabrik Gula Lestari	11
Gambar 2.8	Diagram blok proses penguapan	12
Gambar 2.9	Stasiun kristalisasi Pabrik Gula Lestari	13
Gambar 2.10	Diagram blok proses kristalisai dan putaran	14
Gambar 2.11	High Grade Fugal (HGF)	15
Gambar 2.12	Efek rumah kaca	16
Gambar 2.13	Klasifikasi Emisi	17
Gambar 3.1	Flowchart Pelaksanaan Tugas Akhir	26
Gambar 3.2	Produksi emisi karbon dari transportasi	28
Gambar 3.3	Sistem kerja pada stasiun gilingan	31
Gambar 3.4	Sistem kerja pada stasiun pemurnian	33
Gambar 3.5	Sistem kerja pada stasiun penguapan	35
Gambar 3.6	Sistem kerja pada stasiun kristalisasi dan	
	putaran	37
Gambar 3.7	Sistem penghasil CO ₂ pada proses	
	pembakaran	40
Gambar 4.1	Grafik emisi CO ₂ dari transportasi	44
Gambar 4.2	Grafik produksi emisi CO ₂ dari proses	
	produksi	47
Gambar 4.3	Grafik produksi emisi CO ₂ dari pembakaran	49
Gambar 4.4	Prosentase produksi emisi CO ₂	51
Gambar 4.6	Kondisi ducting untuk distribusi uap dari	
	ketel	59

BAB I PENDAHULUAN

1.1 Latar Belakang

Gula merupakan kebutuhan pokok masyarakat sebagai bahan pangan sumber kalori yang menempati urutan keempat setelah padi-padian,pangan hewani serta minyak dan lemak dengan pangsa sebesar 6.7% (Catur, 2007). Sebagai kebutuhan pokok, permintaan gula akan meningkat dari tahun ke tahun seiring dengan meningkatnya jumlah penduduk. Sebagai negara dengan penduduk besar maka Indonesia akan menjadi salah satu konsumen gula terbesar, dengan perkiraan tingkat konsumsi sebesar 2.9 juta ton pada tahun 2013 dan akan meningkat pada tahun 2014 (Musrenbangtan, 2012). Untuk itu industri gula akan terus meningkatkan hasil produksi tiap tahunnya. Proses produksi pada industri gula meliputi pengolahan tebu melalui beberapa tahap yaitu pemerahan cairan tebu (ekstrasi nira), pembersihan kotoran dari dalam nira, penguapan, dan pengkristalan gula. Sebelum tahap pengolahan, terdapat tahap penyediaan bahan yang terdiri dari memanen tebu serta pengangkutan tebu dari perkebunan tebu ke tempat penggilingan (Mubyarto, 1984). Semua proses produksi gula tersebut membutuhkan energi yang besar untuk menghasilkan produk gula pasir.

Penggunaan energi dalam skala besar pada industri gula akan meningkatkan produksi gas-gas rumah kaca yang berpengaruh terhadap isu mengenai pemanasan global (global warming). Gas rumah kaca pada industri gula berasal dari proses produksi, pembakaran, pemanfaatan energi listrik, serta limbah hasil produksi (Rida, 2012). Gas yang dihasilkan ini akan terlepas dan diserap oleh atmosfer sehingga akan berdampak pada meningkatnya suhu rata-rata permukaan bumi sebesar 0.18 – 0.74° C selama seratus tahun terakhir (IPCC, 2006).

Untuk menghambat meningkatnya pemanasan global maka diperlukan penelitian mengenai analisis produksi emisi pada Pabrik Gula Lestari yang merupakan salah satu industri gula untuk menentukan peluang penurunan emisi gas rumah kaca selanjutnya. Dalam penelitian ini hasil emisi gas rumah kaca di Pabrik Gula Lestari diperoleh dari sumber-sumber yang menghasilkan emisi dari proses penyiapan bahan baku sampai proses produksi yang biasanya disebut dengan jejak karbon (Carbon Footprint) (Thomas, 2011). Jejak karbon industri gula diperoleh dari perhitungan matematis dari data faktor emisi, konsumsi listrik dan bahan bakar yang digunakan di industri gula.

1.2 Permasalahan

Dari latar belakang masalah diatas dapat dirumuskan beberapa permasalahan dalam penelitian Tugas Akhir ini, sebagai berikut.

- a. Bagaimana menghitung konsumsi energi pada tiap proses produksi gula yang menghasilkan emisi CO₂?
- b. Bagaimana menghitung jejak karbon emisi CO₂ pada industri gula?
- c. Bagaimana cara mereduksi emisi CO₂ yang dihasilkan oleh industri gula?

1.3 Tujuan Penelitian

Tujuan dari penelitian mengenai emisi ${\rm CO}_2$ pada pabrik gula ini adalah :

- a. Analisis jejak CO₂ yang dihasilkan oleh industri gula untuk memproduksi gula kristal.
- b. Mengetahui emisi CO₂ yang dihasilkan dari industri gula.
- c. Menentukan peluang reduksi emisi CO₂ dari kegiatan penyediaan bahan baku sampai proses produksi gula.

1.4 Batasan Masalah

Adapun batasan masalah dalam penenitian Tugas Akhir ini antara lain.

- a. Penelitian dilakukan di Pabrik Gula Lestari untuk menghitung emisi yang diperoleh dari distribusi tebu dari perkebunan sampai menjadi gula kristal.
- b. Emisi CO₂ dihitung dari proses transportasi bahan baku (tebu), pembakaran, dan penggunaan energi listrik.

- c. Parameter emisi gas rumah kaca yang akan dihitung hanya emisi CO₂ (karbon diokasida).
- d. Audit energi dilakukan pada konsumsi energi yang menghasilkan emisi CO₂.
- e. Efisiensi motor diasumsikan dapat meningkat sampai 88%.
- f. Armada truk yang digunakan untuk mengangkut tebu diasumsikan masih dalam kondisi baik tidak boros bahan bakar.

1.5 Manfaat Penelitian

Penelitian mengenai analisis emisi CO₂ pada industri gula ini mempunyai beberapa manfaat untuk industri yang bersangkutan kedepannya, antara lain:

- a. Memperoleh informasi mengenai jumlah emisi CO₂ yang dihasilkan Pabrik Gula Lestari tiap musim gilingnya.
- b. Memberikan peluang hemat energi untuk mengurangi emisi CO₂ yang dihasilkan.
- c. Meminimalisir terjadinya pemanasan global akibat kegiatan industri gula.

BAB II TINJAUAN PUSTAKA

2.1 Sejarah Pabrik Gula Lestari

Pabrik Gula Lestari terletak di Desa Ngrombot, Kecamatan Patianrowo, Kabupaten Nganjuk. Pabrik ini pertama kali didirikan pada zaman kolonial Belanda pada tahun 1909 sebagai perusahaan swasta Belanda dengan nama CV. *Cultural Maatchaapy* (CV. CM) Panji Tanjung Sari. Namun pabrik ini diambil alih oleh pemerintah Indonesia tepat pada saat Indonesia merdeka yaitu pada tanggal 17 A gustus 1945. B erdasarkan peraturan pemerintah Pabrik Gula Lestari bergabung menjadi salah satu dari 11 unit usaha strategis dibawah manajemen Perkebunan Nusantara X (Persero) pada tanggal 11 Maret 1996.

Gambar 2.1. Profil Pabrik Gula Lestari

2.2 Proses Produksi Gula

Pada industri gula terdapat beberapa proses produksi untuk menghasilkan gula pasir , antara lain adalah.

2.2.1 Proses Penyediaan Bahan Baku

Proses produksi gula dimulai dari penyiapan bahan baku berupa tebu (*Saccharum officinarum*). Pada proses ini dimulai dari penebangan tebu sampai distribusi tebu masuk ke dalam tempat penampungan tebu sementara (emplasemen) dan berakhir ditempat penggilingan. Tebu yang digunakan oleh Pabrik Gula

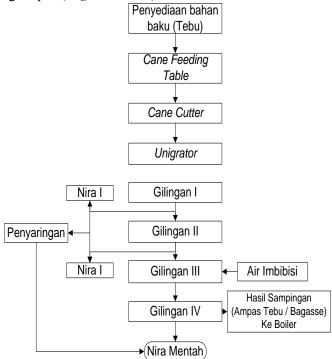
Lestari dipasok dari beberapa wilayah, yang terdiri dari Nganjuk, Kediri, Madiun, Malang, dan sekitarnya dengan dikoordinir oleh Pabrik Gula Lestari. Tebu yang digunakan oleh Pabrik Gula Lestari memiliki persyaratan manis, bersih, dan segar (MBS). Tebu hasil panen dari perkebunan diangkut menggunakan *truck* dan dioper ke lori pabrik untuk proses penimbangan tebu. Proses penimbangan tebu pada Pabrik Gula Lestari menggunakan *crane* yang dilakukan untuk mengetahui berat tebu yang akan digiling. Muatan tebu yang telah ditimbang dibawa ke *cane feeding table* (meja tebu) dengan sistem FIFO (*First In First Out*) dimana tebu yang pertama kali ditebang akan digiling diawal. Untuk proses pengangkutan tebu ini menggunakan *crane lori winch* (lori penarik tebu), selanjutnya tebu diangkat ke meja tebu dengan *cane unloading crane* (derek pembongkar tebu).

Gambar 2.2. Crane

2.2.2 Proses Ekstrasi

Setelah proses penyiapan bahan baku, tebu yang telah sampai di meja tebu akan diumpankan secara merata oleh *cane carrier* menuju ke tempat pencacahan dengan menggunakan alat *cane cutter*. S etelah dicacah tebu masuk ke dalam *unigrator* untuk menghasilkan cacahan yang lebih halus untuk memudahkan pemerahan nira. Tebu yang telah menjadi bentuk serabut akan diperah dengan rol-rol gilingan. Di PG. Lestari terdapat empat gilingan, dimana serabut tebu akan digiling sebanyak dua kali disetiap mesin giling untuk proses pemerahan, sehingga serabut

tebu yang akan diperah akan mengalami delapan kali pengilingan. Dimana pada gilingan A (pertama) akan menghasilkan nira gilingan 1 dan ampas 1, yang selanjutnya ampas 1 akan digiling lagi di mesin giling B untuk menghasilkan nira gilingan 2 dan ampas 2 begitu seterusnya sampai pada gilingan D (gilingan terakhir).



Gambar 2.3. (a) Cane Feeding Table dan (b) Cane Cutter

Pada saat proses penggilingan serabut tebu ditambahkan air imbibisi sebanyak 34-35% yang digunakan untuk meningkatkan proses ekstrasi. Sistem penambahan air imbibisi yang diterapkan oleh PG. Lestari adalah secara majemuk yang artinya selain menggunakan air kondensat juga menggunakan nira yang telah diencerkan. Ampas 3 y ang dihasilkan oleh gilingan C akan diencerkan oleh air imbibisi yang selanjutnya digiling kembali pad gilingan D untuk menghasilkan nira 4 dan ampas 4. Nira 3 yang dihasilkan oleh gilingan C akan digunakan sebagai campuran imbibisi pada ampas 1.

Nira-nira yang dihasilkan disetiap gilingan akan dikumpulkan menjadi satu sebagai nira mentah. Nira mentah yang dihasilkan dari gilingan ini masih mengandung serabut ampas tebu sehingga harus dipisahkan dengan menggunakan *DSM screen*. Hasil nira yang keluar dari DSM screen akan diproses lagi di stasiun selanjutnya, sedangkan ampas yang tersaring akan

dibawa oleh *bagasse elevator* menuju tempat pembakaran yang digunakan untuk bahan bakar ketel, dan sebagian disimpan di gudang ampas (*bagasse house*).

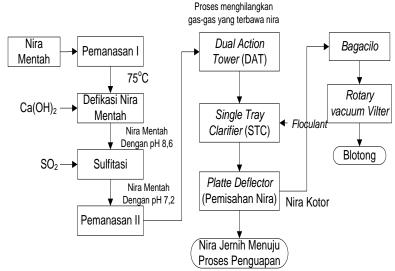
Gambar 2.4. Diagram blok proses ekstrasi

2.2.3 Proses Pemurnian

Hasil nira dari proses ekstrasi selanjutnya masuk dalam proses pemurnian, sebelum masuk dalam proses pemurnian nira yang telah disaring pada stasiun gilingan akan disaring lagi dengan saringan *mesh* 23 x 23 untuk memperoleh nira yang jernih. Dimana pada saringan *mesh* 23x23 dalam 1 inchi²nya terdapat 23x23 lubang saringan. Setelah disaring nira mentah akan dibawa menuju timbangan *Boulogne* untuk mengetahui berat nira. Proses penimbangan ini bertujuan untuk data perhitungan dan pengawasan pengolahan produksi gula. Setelah ditimbang

nira dajadikan satu dalam bak penampung nira yang selanjutnya dipompa menuju Pemanas Pendahuluan I untuk dipanaskan dengan suhu ±75°C. Nira yang telah dipanaskan akan ditambah dengan susu kapur (Ca(OH)₂) untuk menaikkan pH nira. Dalam *defakator I* nira yang telah dicampur dengan susu kapur didiamkan selama 3 menit untuk menghasilkan pH sebesar 7,2 – 7,4. Nira terkapur I (*first liming*) dinaikkan lagi pHnya pada *defakator II* sampai menjadi ±8,5 selama 15 menit. Nira mentah terkapur II (*secondary liming*) dari *defakator II* akan diturunkan kembali pHnya sampai menjadi 7,2 dan ditambahkan SO₂ dalam *sulfitator* selama ±6 menit.

tator selama ±6 menit.


(a)

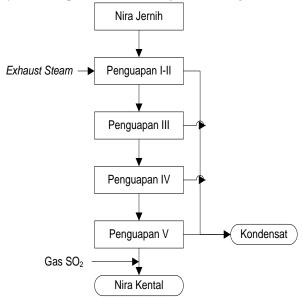
(b)

Gambar 2.5. Alat Pemurnian : (a) *Rotary Vacuum Filter*, (b) *Clear Juice Tank*, (c) *Juice Heater*

(c)

Setelah ditambah SO₂ nira mentah tersulfitir dipanaskan dalam Pemanas Pendahuluan II sampai suhu ±105°C, setelah dipanasakan dibawa menuju DAT (Dual Action Tower) yang bertujuan untuk menghilangkan gas-gas yang terbawa oleh nira seperti SO₂, CO₂, dan NH₃ agar tidak menggangu proses pengendapan nira. Dari DAT nira dibawa menuju STC (Single Tray Clarifier) melalui pipa berbentuk U yang berguna untuk mengurangi turbulensi atau menjadikan aliran turbulen menjadi laminer. Di dalam flash chamber nira bergerak memutar menuju flocculation chamber. Tepat diantara flash chamber flocculation chamber nira dimbahkan larutan flokulan (zat penggumpal). Setelah berekasi secara sempurna nira disebarkan di ruang pengendapan melalui *platte deflector* untuk dipisahkan antara nira kotor dan nira jernih. Nira kotor yang dihasilkan selanjutnya akan dipompa menuju bagacillo mixer (pencampur ampas halus) dan didistribusikan ke rotary vacuum filter (saringan hampa berputar) untuk diasaring menjadi blotong dan nira tapis. Dimana blotong merupakan limbah padat yang dihasilkan oleh PG Lestari dan nira tapis yang dihasilkan akan dimasukkan kedalam bak penampung nira yang telah tertimbang untuk diperlakukan seperti nira mentah. Sedangkan nira jernih yang diperoleh akan diproses lanjut dalam stasiun penguapan.

Gambar 2.6. Diagram blok proses pemurnian


2.2.4 Proses Penguapan

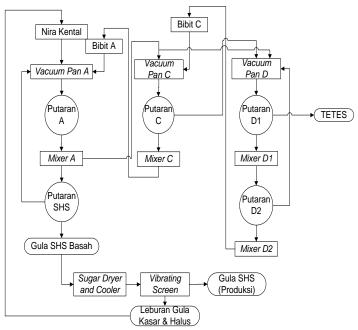
Nira jernih yang berasal dari proses pemurnian akan ditampung dalam *clear juice tank* (tangki nira jernih), dengan prosentase Brix nya sebesar ± 12 dan suhu ± 95 °C. Tujuan dari proses penguapan adalah memekatkan nira jernih sampai menjadi nira kenta dengan % Brix 60–65 dengan suhu ± 55 °C.

Gambar 2.7. Stasiun Penguapan Pabrik Gula Lestari

Pada PG Lestari terdapat 7 badan penguapan (evaporator) dengan pembagian 6 badan yang beroperasi dan 1 badan disekrap (dibersihkan dari kerak). P roses penguapan di PG Lestari menggunakan sistem quadruple effect dimana evaporator yang digunakan sebanyak 6 u nit, dengan 2 unit evaporator depan diparalel dan 4 unit diseri. Nira jernih yang berada di clear juice tank akan dipompa ke badan penguapan I (2 unit evaporator yang diparalel) dengan suhu 110°C dan mengalir ke badan II sampai IV (masing-masing seri) akibat perbedaan tekanan. Pada badan penguapan dari I sampai IV memiliki tekanan yang berbeda dari tinggi ke rendah dan akhirnya vacum pada badan penguapan terakhir. Proses penguapan ini menggunakan uap bekas (exhaust steam) dari stasiun penggilingan. Nira yang keluar dari badan IV sudah pekat dengan %Brix sebesar 60-65 dan memiliki warna yang hitam kelam yang biasanya disebut dengan stroop. Untuk penurunkan intensitas warna kelam dari nira ini maka diperlukan tambahan gas SO₂ (bleaching effect). Nira pekat hasil penguapan selanjutnya akan diproses untuk menjadi kristal gula.

Gambar 2.8. Diagram blok proses penguapan

2.2.5 Proses Kristalisasi


Proses kristalisasi dimulai dengan membuat semua *pan* masakan menjadi vakum dengan cara menutup semua afsluiter yang berhubungan dengan *pan*. Kemudian afsluiter yang terhubung dengan kondensor (alat pembuat hampa) dibuka sehingga *pan* akan menjadi hampa. Perubahan keadaan hampa pada *pan* dapat dilihat dari vacum meter air raksa, setelah kehampaan *pan* maksimal sekitar 65cmHg. Proses ini bertujuan untuk membentuk semaksimal mungkin kristal gula dengan ketentuan tertentu yaitu mempunyai bentuk yang seragam agar memudahkan untuk proses pemisahan kristal. Setelah mencapai kehampaan yang maksimal *pan* kembali dipanaskan untuk proses kristalisasi.

Gambar 2.9. Stasiun Kristalisasi Pabrik Gula Lestari

Pada PG Lestari proses kristalisasi dilakukan secara bertahap yaitu menggunakan masakan A untuk bahan utama produk yang akan diputar dan masakan C dan D yang digunakan sebagai bibit untuk proses kristalisasi masakan utama. Pembuatan bibit ini dilakukan dengan pemberian inti penuh dengan babonan dan fondan untuk menghasilkan kristal dengan ukuran ±0,9 mm. Pada proses pengristalan ini akan menghasilkan tiga bagian yaitu magma, *klare*, dan *stroop*. Magma merupakan gula yang sudah terbentuk yang dapat diproses ke pan selanjutnya. *Klare* adalah cairran nira yang belum dikristalkan, sedangkan *stroop* hampir sama dengan *klare* namun *stroop* masih diproses lebih lanjut untuk menjadi magma. Setelah semua menjadi kristal maka akan masuk kedalam proses pedinginan.

Gambar 2.10. Diagram blok proses kristalisasi dan putaran

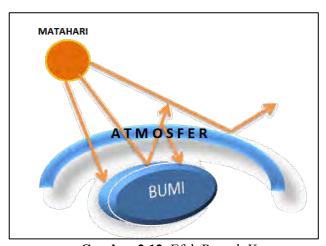
2.2.6 Proses Pendinginan

Pada proses pendinginan gula yang keluar dari proses krisalisasi memiliki suhu ±70°C. Masakan A, C, dan D yang dihasilkan dari proses kristalisasi selanjutnya dibawa ke palung pendingin untuk proses pendinginan. Palung pendingin ini selain berfungsi sebagi pendinginan gula juga berfungsi sebagai penampung masakan sebelum diproses lebih lanjut. Pada proses pendingin masakan akhir, kristal yang tebentuk terus menerus dimasak agar proses kristalisasi menjadi lebih sempurna dan mencegah kristal menggumapal kembali.

2.2.7 Proses Pemisahan Gula

Proses pemisahan gula berada pada stasiun pemutaran yang bertujuan untuk memisahkan kristal gula dari larutan hasil pendinginan (*stroop*) dengan cara menyaring. Penyaringan

dilakukan dengan menggunakan putaran kontinyu (Continue Centrifugal) dan putaran terputus (Batch Centrifugal). Putaran kontinyu digunakan untuk masakan C dan D karena memiliki ukuran yang lebih kecil. Masakan C dan D yang telah ditampung di palung pendingin selanjutnya di pompa menuju Rapid Cool Cristallizer untuk proses pendinginan secara cepat, kemudian dipanaskan ulang untuk proses putaran. Masakan yang keluar dari rapid cool crystallizer ditampung pada campuran masakan D (feed mixer D) dan diputar dalam putaran kontinyu yang disebut low grade fugal D1. Putaran pada LGF D1 ini menghasilkan gula D1 dan tetes. Tetes ini merupakan hasil samping dari PG Lestari. Untuk maskan A (masakan utama) yang memiliki ukuran kristal lebih besar dibanding dengan C dan D selanjutnya dipompa pada campuran masakan A (feed mixer A) dan diputar didalam high grade fugal (HGF) A yang kemudian menghasilkan gula A dan stroop A. Stroop A vang dihasilkan selanjutnya digunkan untuk bahan masakan C, sedangkan masakan A yang dihasilkan dibawa ke mingler A untuk proses pembersihan dari stroop A yang menempel. Proses selanjutnya adalah pemompaan gula A yang ditambah dengan air (magma A) menuju feed mixer magma A dan diputar dalam HGF sehingga menghasilkan gula kristal putih atau SHS (Superior Hoft Suiker) dan klare SHS yang dipakai untuk bahan masakan dan bibitan A.

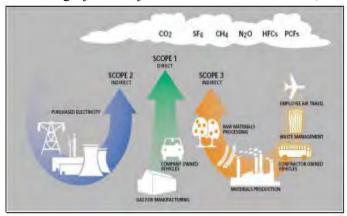


Gambar 2.11. High Grade Fugal (HGF)

2.3 Pemanasan Global (Global warming)

Pemanasan global (*global warming*) adalah peningkatan suhu bumi secara terus menerus yang terjadi karena efek rumah kaca, Peningkatan ini disebabkan oleh meningkatnya emisi gasgas yang diserap di atmosfer (Muhi, 2011). Gas-gas utama yang dikatakan sebagai gas rumah kaca yang menyebabkan pemanasan global diantaranya adalah karbon diokasida (CO₂), metana (CH₄), dinitrogen oksida (N₂O), chloro-fluoro-carbon (CFC), hidro-fluoro-carbon (HFCs), dan sulfur heksafluorida (SF₆) (IPCC, 2006). Gas-gas ini diproduksi oleh aktivitas manusia salah satunya adalah pembakaran bahan bakar fosil yang terus meningkat sehingga melampaui kemampuan tumbuh-tumbuhan dan laut untuk menyerap gas rumah kaca.

Sifat dari gas rumah kaca adalah menaikkan suhu bumi dengan menangkap radiasi gelombang pendek dari matahari dan memantulkannya ke bumi sehingga bumi seoalah-olah memperoleh pemanasan dua kali (Trismidianto, dkk., 2008). Panas yang masuk ke bumi 25% nya akan dipantulkan kembali oleh awan atau partikel lain di atmosfer, 25% diserap oleh awan, 45% diserap oleh permukaan bumi, dan sisanya 5% dipantulkan kembali oleh permukaan bumi (Suarsan, dkk., 2011).



Gambar 2.12. Efek Rumah Kaca

Pemanasan global ini akan berdampak pada lingkungan misalnya perubahan iklim, mencairnya es di kutub utara yang mengakibatkan volume air meningkat, keadaan tanah yang mengering, dll. Secara garis besar dampak yang dirasakan oleh masyarakat akibat pemanasan global adalah perubahan suhu bumi yang meningkat dari tahun ke tahun sehingga bumi terasa semakin panas.

2.4 Emisi Gas Rumah Kaca

Emisi gas rumah kaca merupakan gas-gas yang dapat menimbulkan pemanasan global seperti yang sebelumnya dijelaskan. Gas ini berasal dari aktivitas manusia, salah satu sumber penghasil gas rumah kaca dalam kehidupan sehari-hari adalah penggunaan alat-alat elektronik, pembangkit listrik, penggunaan kendaraan, kegiatan industri, serta pembakaran dengan menggunakan bahan bakar fosil, minyak bumi, batu bara, dll. (Badan Pengkajian Kebijakan Iklim dan Mutu Industri, 2012).

Gambar 2.13.Klasifikasi Emisi (Draft Petunjuk Perhitungan Emisi Gas Rumah Kaca, 2012)

Emisi gas rumah kaca terdiri dari beberapa jenis sesuai dengan gas yang dihasilkan, emisi yang paling mendominasi di atmosfer adalah emisi karbondiokasida (CO₂) dengan presentase sebesar 84.4% dari total keseluruhan gas rumah kaca (Putt del

Pino, 2012). Emisi CO_2 merupakan gas rumah kaca yang berasal dari proses pembakaran dengan memanfaatkan bahan bakar fosil, minyak, gas, dll. Pada tahun 2000, total emisi CO_2 dari kebutuhan energi Indonesia adalah sebesar 62 juta tCO_2 . Dimana 42% berasal dari energi industri (termasuk penggunaan pembangkit listrik), 25% dari sektor industri, 24% dari sektor transportasi, dan 9% berasal dari kegiatan rumah tangga (SME-ROI dalam Susandi, 2011).

Dengan presentasi yang besar dalam proses industri maka pemerintah mengeluarkan Peraturan Presiden Republik Indonesia Nomor 61 t ahun 2011 mengenai Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca. Peraturan ini sebelumnya didahului oleh Protokol Kyoto yang mengikut sertakan Indonesia untuk melakukan penurunan emisi gas rumah kaca dengan mekanisme *Clean Development Mechanism* (CDM). Oleh karena itu untuk mengetahui emisi karbon yang dihasilkan dari proses industri perlu pengetahuan mengenai *Carbon Footprint* (jejak karbon) yang merupakan jumlah emisi gas rumah kaca yang diproduksi oleh suatu kegiatan tertentu. Jejak karbon sendiri terbagi menjadi dua macam, yaitu carbon footprint primer dan carbon footprint sekunder (Walser dalam Atma, 2010).

- 1. Carbon footprint primer merupakan tolak ukur untuk emisi langsung CO₂ yang berasal dari proses pembakaran dengan menggunakan bahan bakar, termasuk konsumsi energi domestik, dan transportasi.
- 2. *Carbon footprint* sekunder merupakan tolak ukur emisi tidak langsung yang berasal dari *lifecycle* produk yang digunakan, dari proses pembuatan sampai ke penguraian

2.5 Potensi Emisi Pada Industri

Produksi emisi gas rumah kaca pada sektor industri terdapat pada setiap kegiatan industri dalam membuat suatu produk. Salah satu sumber yang menghasilkan emisi gas rumah kaca pada sektor industri adalah sebagai berikut.

2.5.1 Emisi Dari Penggunaan Energi

Energi di industri merupakan salah satu sumber daya yang harus dipenuhi dalam proses produksi. Di Indonesia, sektor industri merupakan pengguna energi terbesar sekitar 49,4% dari kondumsi energi nasional (SEE, 2013). Terdapat beberapa jenis energi yang digunakan dalam sektor industri diantaranya adalah energi fosil, energi non fosil, serta energi terbarukan (renewable energy). Renewable energy merupakan energi yang sedang dikembangkan untuk mengganti energi yang tidak dapat diperbaharui. Salah satunya adalah pemanfaatan biomassa untuk mengganti bahan bakar batu bara dan minyak.

Energi dalam sektor industri digunakan sebagai bahan bakar pada boiler untuk pembangkit listrik. Sistem pembakaran ini nantinya akan menghasilkan gas buang berupa emisi karbon. Dalam hal ini pembakaran bahan bakar dalam industri masuk dalam emisi gas rumah kaca dari pemanfaatan energi bukan proses produksi. Selain pemanfaatan energi bahan bakar untuk sistem pembakaran pembangkit listrik, energi juga digunakan dalam sektor trasnportasi. Transportasi digunakan industri untuk distribusi bahan baku atau pendistribusian produk jadi. Semua kegiatan transportasi akan menghasilkan gas buang berupa emisi karbon.

2.5.2 Emisi Dari Proses Produksi

Emisi gas rumah kaca pada proses produksi di industri berasal dari reaksi kimia yang menghasilkan suatu zat sisa berupa gas CO₂, CH₄, dll. Zat sisa inilah yang merupakan emisi yang dihasilkan dari proses produksi, contoh dari emisi gas rumah kaca dari proses produksi adalah bahan baku yang digunakan sebagai produk mengandung karbonat seperti industri gula (Anonim, 2012). Peralatan yang berkaitan dengan emisi gas rumah kaca dari proses produksi antara lain pompa, motor listrik, *cane cutter* pada industri gula, dll karena peralatan tersebut membutuhkan listrik untuk melakukan proses produksi.

2.5.3Emisi Dari Limbah Industri

Emisi gas rumah kaca yang berasal dari limbah produksi akan menghasilkan gas emisi CH_4 yang mempengaruhi pemanasan global. Misalnya pada industri gula limbah berupa limbah cair dan limbah padat yang berupa blotong dan bagas. Blotong merupakan limbah padat yang dihasilkan dari sisa ekstrasi yang dapat menghasilkan emisi CH_4 sedangkan bagas merupakan limbah dari sisa tebu yang biasanya digunakan sebagai bahan bakar dalam furnace sehingga akan menghasilkan gas CO_2 .

2.6 Perhitungan Emisi Karbon

Perhitungan emisi gas rumah kaca khususnya emisi karbon menggunakan metodologi yang distandarisasi oleh IPCC. Sebelum melakukan perhitungan terdapat langka-langkah utama yaitu mengidentifikasi sumber emisi, menyeleksi pendekatanan perhitungan emisi, memilih faktor emisi sesuai dengan energi yang digunakan, pengumpulan data mengenai konsumsi energi, dan memulai perhitungan emisi gas rumah kaca.

Rumus yang digunakan untuk perhitungan emisi karbon pada pemakaian bahan bakar fosil adalah sebagai berikut

$$Emisi CO_2 = \sum m \times EF \tag{2.1}$$

Dengan:

Emisi CO_2 = Jumlah emisi CO_2 (tCO_2)

Σm =Jumlah bahan bakar fosil yang digunakan (MWh)

EF = Emisi Faktor (ton CO_2/MWh)

Untuk perhitungan nilai faktor emisi gas rumah kaca yang didasarkan atas pemakaian bahan bakar fosil untuk pembakaran dalam pembangkit listrik maka rumus perhitungannya adalah sebagai berikut.

$$EF = \frac{\sum Fuel \times COEF}{\sum Gen}$$
 (2.2)

Dengan:

ΣFuel =Konsumsi bahan bakar pada pembangkit listrik

dalam menghasilkan listrik (satuan massa)

ΣGen =Energi listrik yang dihasilkan dari pembangkit

listrik

Dimana untuk $\frac{\sum Fuel}{\sum Gen}$ adalah SFC (Specific Fuel Cunsumtion) atau berapa liter bahan bakar yang digunakan untuk menghasilkan listrik dengan satuan massa/MWh. Tiap bahan bakar yang digunakan pembangkit listrik akan menghasilkan SFC yang berbeda tergantung dari bahan bakar yang digunakan. Sedangkan untuk COEF sendiri dapat ditulis dengan persamaan berikut.

$$COEF = NCV \times CEF \times Oxid \times \frac{44}{12}$$
 (2.3)

Dengan:

COEF = Koefisien emisi CO₂ dari penggunaan bahan

bakar

NCV =Nilai Net Calorific Volume (energy content) per

unit massa atau volume bahan bakar (TJ/ton fuel)

CEF = Carbon Emission Factor (tCO_2/TJ)

Oxid =Oxidation Factor

=Merupakan Molekular Weight Ratio (MWR) dari

 CO_2/C

Seingga persamaan (2.2) diatas dapat ditulis sebagai berikut.

Emisi
$$CO_2 = \sum m \times SFC \times NCV \times CEF \times Oxid \times \frac{44}{12}$$
 (2.4)

Tabel 2.1. Nilai Faktor Emisi (IPCC, 2006)

Bahan Bakar	Faktor Emisi	Satuan
Batubara	94600	Kg/TJ
Crude Oil	73300	Kg/TJ
Gas/Diesel Oil	74100	Kg/TJ
Natural Gas	56100	Kg/TJ
Kayu/Limbah Kayu	112000	Kg/TJ

Untuk perhitungan emisi gas rumah kaca dengan data konsumsi listrik yang digunakan oleh industri adalah sebagai berikut.

$$Emisi CO_2 = EF \times Konsumsi Listrik \tag{2.5}$$

Dengan:

Konsumsi Listrik =Listrik yang dikonsumsi (kWh)

EF =Emisi Faktor CO₂ konsumsi listrik

(kg/kWh)

Emisi CO_2 = Jumlah emisi CO_2 (tCO_2)

Emisi faktor untuk konsumsi energi listrik diperoleh dari perhitungan PLN pada tahun 2013 sebesar 0.778 kgCO₂/kWh (RUPTL, 2013).

Selanjunya untuk emisi karbon yang dihasilkan dari sektor transportasi yang digunakan sebagai alat distribusi bahan baku maka dihitung dengan jumlah truk yang digunakan untuk mengangkut bahan baku tiap jamnya dari daerah yang berbedabeda. Selanjutnya dihitung emisi karbon rata-rata yang dihasilkan dari tiap daerah pemasok bahan baku. Untuk rata-rata emisi karbon yang dihasilkan dari tiap daerah dapat dihitung mengguanakan persamaan sebagai berikut.

$$\overline{Emisi\ CO_2} = \sum m \times Konsumsi\ Bahan\ Bakar \times EF \qquad (2.6)$$

Dengan:

Emisi CO₂=Rata-rata emisi CO₂ (gr/jam.km)∑m=Jumlah kendaraan (kendaraan/jam)Konsumsi bahan bakar=Konsumsi spesifik bahan bakar

yang digunakan (L/100km)

EF = Emisi faktor (gr/L)

Tabel 2.2. Konsumsi Energi Spesifik Kendaraan Bermotor (BPPT dalam Kusuma, 2011)

No	Jenis Kendaraan	Konsumsi Energi Spesifik (Ltr/100 km)
	Mobil Penumpang	
1	a) Bensin	11.79
	b) Diesel/Solar	11.36
	Bus Besar	
2	a) Bensin	23.15
	b) Diesel/Solar	16.89
3	Bus Sedang	13.04
	Bus Kecil	
4	a) Bensin	11.35
	b) Diesel/Solar	11.83
5	Bemo, Bajaj	10.99
6	Taksi	
	a) Bensin	10.88
	b) Diesel/Solar	6.25
7	Truk Besar	15.82
8	Truk Sedang	15.15
9	Truk Kecil	
	a) Bensin	8.11
	b) Diesel/Solar	10.64
10	Sepeda Motor	2.66

Tabel 2.3.Emisi Faktor Jenis Bahan Bakar Kendaraan (IPCC dalam Jinca dkk, 2009)

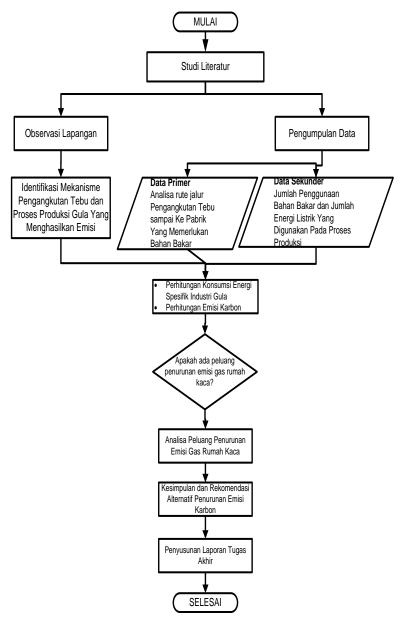
Tipe	Jiii Jiiica	Faktor Emisi (gram/Liter)				
Kendaraan/ Bahan Bakar	Nox	CH ₄	NMV OC	со	N2O	CO2
Bensin:						
Kendaraan Penumpang	21.35	0.71	53.38	462.63	0.04	2597.86
Kendaraan Niaga Kecil	24.91	0.71	49.82	295.37	0.04	2597.86
Kendaraan Niaga Besar	32.03	0.71	28.47	281.14	0.04	2597.86
Sepeda Motor	7.12	3.56	85.41	427.05	0.04	2597.86
Diesel:						
Kendaraan Penumpang	11.86	0.08	2.77	11.86	0.16	2924.9
Kendaraan Niaga Kecil	15.81	0.04	3.95	15.81	0.16	2924.9
Kendaraan Niaga Besar	39.53	0.24	7.91	35.57	0.12	2924.9
Lokomotif	71.15	0.24	5.14	24.11	0.08	2964.43

Setelah rata-rata emisi karbon yang dihasilkan dari tiap daerah diketahui maka dihitung emisi karbon sebenarnya dengan mengalikan nilai rata-rata emisi karbon dengan jarak tempuh tiap daerah pemasok tebu.

$$Emisi\ CO_2 = \overline{Emisi\ CO_2} \times Jarak\ Tempuh \tag{2.7}$$

Dengan:

Emisi CO_2 =Jumlah emisi CO_2 (satuan massa) $Emisi CO_2$ =Rata-rata emisi CO_2 (gr/jam.km)Jarak tempuh=Jarak tempuh kendaraan (km)


BAB III METODOLOGI PENELITIAN

3.1 Pelaksanaan Penelitian

Penelitian Tugas Akhir ini dilaksanakan di Pabrik Gula Lestari, Desa Ngrombot, Kecamatan Patianrowo, Nganjuk, Jawa Timur. Pabrik Gula Lestari merupakan industri yang bergerak di bidang agroindustri dibawah naungan PT. Perkebunan Nusantara X dengan bahan baku utamanya adalah tebu. Penelitian dilaksanakan selama dua bulan dimulai dari bulan April – Mei 2014.

3.2 Kerangka Penelitian dan Langkah Kerja

Penelitian Tugas Akhir ini menggunakan sumber yang didapat dari wawancara di Pabrik Gula Lestari, buku, laporan tugas akhir yang terdahulu, jurnal, dan informasi pendukung yang didapat dari internet. Penelitian dimulai dari observasi lapangan langsung, pengumpulan data, perhitungan emisi CO₂, dan analisa peluang reduksi emisi CO₂.

Gambar 3.1. Flowchart Pelaksanaan Tugas Akhir

3.2.1Studi Literatur

Studi literatur yang diperlukan dalam penelitian tugas akhir ini adalah mencari referensi teori yang relefan mengenai profil serta proses produksi di Pabrik Gula, audit energi, emisi gas rumah kaca yang dihasilkan oleh industri, faktor emisi gas rumah kaca, dan perhitungan emisi gas rumah kaca yang mengacu pada sumber IPCC 2006. R eferensi yang dibutuhkan diperoleh dari buku, jurnal, artikel, laporan penelitian, serta situs-situs di internet yang membahas tentang emisi karbon yang dihasilkan oleh industri gula.

3.2.2 Pengumulan Data

Data yang digunakan dalam penelitian tugas akhir ini berupa data primer dan data sekunder. Data primer diperoleh dari observasi lapangan langsung untuk mengetahui bagaimana proses produksi yang menghasilkan emisi CO₂ serta mengidentifikasi mengenai proses pengangkutan barang mentah (tebu) dari perkebunan ke pabrik untuk dianalisa penggunaan bahan bakar pada kendaraan bermotor. Sedangkan data sekunder diperoleh dari Pabrik Gula Lestari mengenai konsumsi bahan bakar yang digunakan, serta konsumsi energi listrik.

3.2.3Perhitungan Emisi CO₂.

Perhitungan emisi CO₂ diperoleh dari data sekunder dan data primer yang telah diperoleh dari aktivitas produksi gula selama musim giling tahun 2013. Emisi CO₂ yang dihasilkan dari Pabrik Gula Lestari diperoleh dari penggunaan bahan bakar solar yang digunakan untuk transportasi, proses produksi gula dari stasiun giling sampai stasiun kristalisasi dan pemisahan gula, penggunaan energi listrik, serta penggunaan bahan bakar *bagasse* untuk pembangkit listrik yang terjadi di stasiun ketel. Untuk mengitung produksi emisi CO₂ ini akan menggunakan pedoman IPCC 2006 mengenai penggunaan bahan bakar dan pemanfaatan energi listrik.

Sub bab berikut merupakan pemodelan matematis yang digunakan untuk menentukan nilai emisi karbon yang terjadi pada

proses produksi gula dimulai dari pengangkutan tebu ke pabrik sampai menjadi gula kristal yang siap di kemas.

A. Emisi Yang Dihasilkan Dari Proses Penyediaan Bahan Baku

Proses penyediaan bahan baku yang berupa tebu di Pabrik Gula Lestari telah diperoleh dari beberapa daerah yang nantinya dijadikan satu untuk proses produksi gula. Dalam proses ini emisi karbon telah diproduksi dari kendaraan bermotor berupa truk yang digunakan untuk mengangkut tebu ke tempat penyimpanan sementara (emplasemen) Pabrik Gula Lestari.

Emisi CO₂ yang berasal dari penggunaan bahan

Gambar 3.2. Produksi emisi karbon dari transportasi

Truk yang digunkan untuk mengangkut tebu terdiri dari 3 jenis truk dengan kapasitas muat yang berbeda, dimana kapasitas masing-masing truk adalah 6 t on, 7 t on, dan 8 t on tebu. Dari penggunaan truk inilah emisi karbon dihasilkan. Emisi karbon dapat dihitung dari rata-rata emisi CO₂ yang dihasilkan dari tiap daerah pemasok tebu dengan mengkonversi jumlah kendaraan selama musim giling ke satuan kendaraa/jamnya. Kemudian hasil rata-rata CO₂ dikalikan dengan jarak tempuh daerah ke tempat penampungan sementara untuk mengetahui hasil emisi karbon sesungguhnya. Dalam hal ini penggunaan transportasi paling banyak dari daerah Malang, karena Pabrik Gula Lestari memasok tebu dengan jumlah besar dari daerah Malang. Berikut merupakan data penggunaan jumlah truk dari tiap daerah pemasok tebu di Pabrik Gula Lestari selama musim giling 2013.

Tabel 3.1. Ko	gangkut tebi		
Tempat	Jumlah Truk (Seluruhnya)	Jumlah Truk (kendaraan/jam)	Jarak Tempuh (km)
Malang	19,362	4.95	134
Nganjuk	16,727	4.30	25
Lamongan	10,207	2.62	110
Madiun	9,109	2.34	80
Kediri	8,382	2.16	45
Tuban	7,552	1.94	125
Blitar	6,785	1.75	85
Sidoarjo	5,008	1.29	105

Dari data penggunaan transportasi diatas dapat dihitung emisi karbon yang dihasilkan dengan menggunakan persamaan berikut ini. Dengan konsumsi bahan bakar spesifik yang dapat dilihat pada tabel 2.2. dari kendaraan truk yang menggunakan bahan bakar solar sebesar 15.82 Liter/100km (BPPT dalam Kusuma, 2011), sedangan untuk emisi faktor yang dapat dilihat pada tabel 2.3 un tuk kendaraan truk dengan bahan bakar solar sebesar 2,924.9 gr/Liter (IPCC dalam Jinca dkk., 2009).

$$\overline{Emisi\ CO_2} = \underline{\sum}m \times Konsumsi\ Bahan\ Bakar \times EF_{truk}\ (3.1)$$

$$Emisi\ CO_2 = \overline{Emisi\ CO_2} \times Jarak\ Tempuh_{truk} \tag{3.2}$$

Dengan:				
Emisi CO ₂	=Jumlah emisi CO ₂ (satuan massa)			
$\overline{EmisiCO_2}$	=Rata-rata emisi CO ₂ (gr/jam.km)			
Σm	=Jumlah kendaraan (kendaraa/jam)			
Konsumsi Bahan Bakar	=Konsumsi bahan bakar spesifik			
EF	(Liter/100 km)			
	=Emisi faktor kendaraan dengan			
	bahan bakar yang digunakan			
	(gr/Liter)			
Jarak tempuh	=Jarak tempuh truk dari tempat			
_	pemasok ke pabrik (km)			

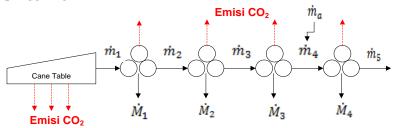
Berikut merupakan perhitungan untuk hasil emisi karbon yang berasal dari pemasok tebu daerah Malang dengan menggunakan persamaan (3.1) dan (3.2) adalah sebagai berikut.

Selanjutnya hasil dari rata-rata emisi CO₂ dikalikan dengan jarak tempuh antara tempat penebangan ke Pabrik Gula Lestari untuk mengetahui hasil emisi CO₂ sebenarnya.

```
Emisi CO_2 = \overline{Emisi CO_2} \times Jarak tempuh_{truk}
Emisi CO_2 = 230.42 kg CO_2/jam.km x 134 km
Emisi CO_2 = 30877.79 kg CO_2/jam = 30.88 t CO_2/jam
```

Karena Pabrik Gula Lestari beroperasi selama 155 hari maka hasil emisi yang diperoleh dikalikan dengan 3720 jam selama musim giling 2013, s ehingga hasil emisi yang diproduksi dari daerah malang sebesar 120,052.86 tCO₂. Untuk menghitung emisi dari daerah lainnya maka menggunakan perhitungan yang sama dengan perhitungan untuk emisi karbon dari daerah Malang.

Selain transportasi yang digunakan untuk distribusi tebu dari perkebunan ke tempat penyimpanan sementara (emplasemen), transportasi lain berupa lori juga digunakan untuk mengangkut tebu dari emplasemen ke tempat penggilingan. Untuk lori yang digunakan oleh Pabrik Gula Lestari selama musim giling 2013 telah mengkonsumsi bahan bakar solar sebanyak 25,243 Liter. Sehingga emisi CO₂ yang dihasilkan dari penggunaan solar untuk lori adalah sebagai berikut.


```
Emisi CO_2 = Jumlah Bahan Bakar x EF

Emisi CO_2 = 25,243 Liter x 2,924.9 gram/Liter

Emisi CO_2 = 73.83 tCO_2
```

B. Emisi Yang Dihasilkan Dari Proses Produksi Gula di Stasiun Penggilingan

Emisi karbon yang dihasilkan dari proses produksi di stasiun penggilingan dapat dilihat dari diagram blok sistem kerja penggilingan tebu di bawah ini.

Gambar 3.3. Sistem kerja pada stasiun gilingan

Dengan:

 $\dot{m}_{1,2,3,4,5}$ = laju aliran massa tebu yang digiling (ton/jam)

 \dot{m}_a = laju aliran massa air imbibisi (ton/jam)

 $\dot{M}_{1,2,3,4}$ = laju aliran massa nira mentah (ton/jam)

Emisi CO_2 = emisi yang dihasilkan (tCO_2)

Pada proses produksi gula di stasiun penggilingan tidak diperoleh emisi karbon karena tidak terjadi reaksi kimia yang menghasilkan emisi karbon, akan tetapi emisi karbon dihasilkan dari penggunaan energi listrik untuk menggerakkan *cane crane*, *cane table*, *cane carrier*, *cane cutter*, *unigrator*, yang berada sebelum *cane table* serta gilingan I – gilingan IV. Energi listrik yang digunakan dapat diketahui dari data pabrik mengenai spesifikasi mesin. Perhitungan emisi CO₂ untuk penggunaan energi listrik dapat ditulis sebagai berikut.

$$Emisi\ CO_2 = EF \times Konsumsi\ Listrik\ tiap\ stasiun\ (3.3)$$

Pada stasiun penggilingan alat-alat yang digunakan dalam proses produksi menggunakan energi listrik, berikut merupakan penggunaan energi listrik yang digunakan pada stasiun penggilingan di Pabrik Gula Lestari.

Tabel 3.2. Penggunaan Listrik Di Stasiun Penggilingan

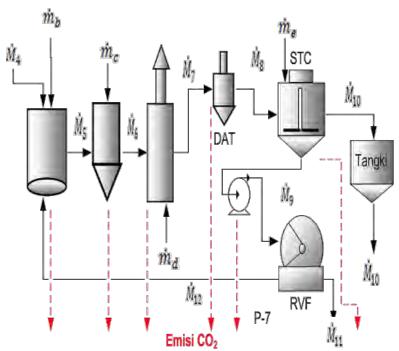
No.	Nama Alat	Jumlah (Unit)	Daya Yang Digunakan (kWh)	Jumlah Daya (kWh)	
1	Cane Crane	2	37	74	
2	Cane Table	2	7.5	15	
3	Cane Carrier	2	37	74	
4	Cane Cutter	1	450	450	
5	Unigrator	1	895	895	
6	Gilingan 1	1	485	485	
7	Gilingan 2	1	485	485	
8	Gilingan 3	1	485	485	
9	Gilingan 4	1	485	485	
10	Pompa Nira Mentah	2	37	74	
11	Pompa Imbibisi	2	30	60	
	TOTAL				

Berdasarkan data pemakaian listrik di stasiun penggilingan Pabrik Gula Lestari diperoleh hasil emisi CO₂ dengan menggunakan persamaan (3.3) adalah sebagai berikut.

Emisi CO₂

= EF x Konsumsi Listrik = 0.8968 kgCO₂/kWh x 3582 kWh Emisi CO₂

Emisi CO_2 = 3212.3376 kg CO_2


Karena Pabrik Gula Lestari beroperasi selama 3441.08 jam dalam 155 hari maka listrik yang digunakan dikalikan dengan jam efektif operasi. Sehingga emisi yang dihasilkan dari stasiun penggilingan sebesar 11,053,910.67 kg CO₂ atau sama dengan 11,053.91 tCO₂.

C. Emisi Yang Dihasilkan Dari Proses Produksi Gula di Stasiun Pemurnian

Pada stasiun gilingan diperoleh emisi CO_2 dari reaksi kimia yang dihasilkan pada penambahan susu kapur $(Ca(OH)_2)$. Sebelumnya susu kapur merupakan kalsium karbonat $(CaCO_3)$ yang telah ditambahkan air (H_2O) , sehingga reaksi kimianya sebagai berikut.

$$CaCO_3 + H_2O \rightarrow Ca(OH)_2 + CO_2$$

Dimana $Ca(OH)_2$ digunakan sebagai proses pemurnian gula sedangkan gas CO_2 digunakan untuk proses karbonatasi yang merupakan penambahan CO_2 untuk mengendapkan kelebihan kapur. Dari proses karbonatasi ini gas CO_2 diidentifikasi sebagai gas emisi CO_2 , namun gas ini tidak dihitung dalam produksi emisi CO_2 karena gas CO_2 digunakan kembali untuk proses.

Gambar 3.4. Sistem kerja pada stasiun pemurnian

Dengan:

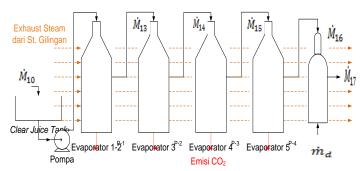
= laju aliran massa P_2O_5 (ton/jam) \dot{m}_h = laju aliran massa Ca(OH)₂ (ton/jam) \dot{m}_c = laju aliran massa SO_2 (ton/jam) \dot{m}_d = laju aliran massa *floculant* (ton/jam) 'n, $\dot{M}_{4.5.6.7.8}$ = laju aliran massa nira mentah (ton/jam) = laju aliran massa nira kotor (ton/jam) Йa \dot{M}_{10} = laju aliran massa nira encer (ton/jam) \dot{M}_{11} = laju aliran massa blotong (ton/jam) = laju aliran massa nira tapis (ton/jam) \dot{M}_{12}

Emisi CO₂ yang dihasilkan dari proses produksi gula di stasiun pemurnian hanya diperoleh dari penggunaan listrik dari mesin yang digunakan untuk proses produksi seperti halnya proses produksi gula di stasiun gilingan, karena meskipun terdapat reaksi kimia yang menghasilkan gas CO₂, gas tersebut digunakan kembali sebagai proses penetralan susu kapur yang terdapat pada nira. Berikut merupakan kegunaan listrik pada stasiun gilingan yang menghasilkan emisi CO₂.

Tabel 3.3. Penggunaan Listrik Di Stasiun Pemurnian

No.	Nama Alat	Jumlah (Unit)	Daya Yang Digunakan (kWh)	Total Daya (kWh)
1	Pompa Kondensor Juice Heater	8	5.5	44
2	Defekator	2	11	22
3	Pompa Nira Mentah Sulfitir	2	55	110
4	Pompa Nira Kental Sulfitir	2	30	60
5	Mixer Tangki Floculant	1	2	2
6	Pemadam Kapur	1	3.7	3.7
TOTAL				241.7

Berdasarkan data pemakaian listrik di stasiun penggilingan Pabrik Gula Lestari diperoleh hasil emisi CO₂ dengan menggunakan persamaan (3.3) adalah sebagai berikut.


Emisi CO_2 = EF x Konsumsi Listrik tiap stasiun Emisi CO_2 = 0.8968 kg CO_2 /kWh x 241.7 kWh

Emisi CO_2 = 216.75656 kg CO_2

Karena Pabrik Gula Lestari beroperasi selama 3441.08 jam maka listrik yang digunakan dikalikan dengan jam efektif operasi. Sehingga emisi yang dihasilkan dari stasiun penggilingan sebesar 745,876.6634 kg CO₂ atau sama dengan 745.88 tCO₂.

D. Emisi Yang Dihasilkan Dari Proses Produksi Gula di Stasiun Penguapan

Produksi emisi CO_2 yang dihasilkan dari proses produksi gula di stasiun penguapan diperoleh dari pemanfaatan listrik yang digunakan untuk alat-alat yang digunakan dalam proses penguapan nira untuk menjadi gula kristal putih.

Gambar 3.5. Sistem kerja pada stasiun penguapan

Dengan:

 $\dot{M}_{13.14.15.16}$ = laju aliran nira kental (ton/jam)

 \dot{M}_{17} = laju aliran nira kental tersulfitasi (ton/jam)

 \dot{m}_d = laju aliran massa SO₂ (ton/jam)

Dalam proses penguapan nira ini tidak terjadi reaksi kimia yang menghasilkan emisi CO_2 , sehingga produksi emisi CO_2 murni diperoleh dari pengguanan energi listrik. Berikut merupakan alat-alat yang membutuhkan tenaga listrik di stasiun penguapan yang menghasilkan emisi CO_2 .

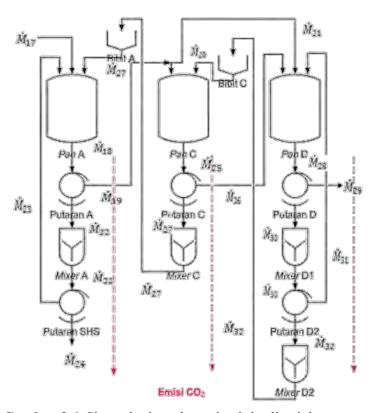
Tabel 3.4. Penggunaan Listrik Di Stasiun Penguapan

No.	Nama Alat	Jumlah (Unit)	Daya Yang Digunakan (kWh)	Total Daya (kWh)
1	Pompa Nira Jernih	2	45	90
2	Pompa Nira Kental	2	30	60
3	Pompa Injeksi	2	137	274
4	Pompa Condensat Badan Pemanas I	2	11	22
5	Pompa Condensat Badan Pemanas II	2	11	22
6	Pompa Condensat Badan Pemanas III	2	11	22
7	Pompa Condensat Badan Pemanas IV	2	11	22
8	Pompa Condensat Badan Pemanas V	2	11	22
	534			

Berdasarkan data pemakaian listrik di stasiun penguapan Pabrik Gula Lestari diperoleh hasil emisi CO₂ dengan menggunakan persamaan (3.3) adalah sebagai berikut.

Emisi CO_2 = EF x Konsumsi Listrik

Emisi CO_2 = 0.8968 kg CO_2 /kWh x 534 kWh


Emisi CO_2 = 578.8912 kg CO_2

Karena Pabrik Gula Lestari beroperasi selama 3441.08 jam maka listrik yang digunakan dikalikan dengan jam efektif operasi.

Sehingga emisi yang dihasilkan dari stasiun penggilingan sebesar 1,647,902.93 kg CO₂ atau sama dengan 1,647.90 tCO₂.

E. Emisi Yang Dihasilkan Dari Proses Produksi Gula di Stasiun Kristalisasi dan Putaran

Emisi CO_2 yang dihasilkan dari stasiun kristalisasi dan putaran hanya dihasilkan dari pemanfaatan energi listrik untuk menggerakkan putaran dan mesin-mesin lainnya. Seperti proses lainnya pada proses kristalisasi dan putaran tidak terdapat reaksi kimia yang menghasilkan CO_2 yang mengakibatkan produksi emisi CO_2 .

Gambar 3.6. Sistem kerja pada stasiun kristalisasi dan putaran

Dengan:

 \dot{M}_{18} = laju aliran massa masakan A (ton/jam)

 \dot{M}_{19} = laju aliran massa stroop A (ton/jam)

 \dot{M}_{20} = laju aliran massa stroop untuk masakan C (ton/jam)

 \dot{M}_{21} = laju aliran massa stroop untuk masakan D (ton/jam)

 \dot{M}_{22} = laju aliran massa gula A (ton/jam)

 \dot{M}_{23} = laju aliran massa klare gula kristal (ton/jam)

 \dot{M}_{24} = laju aliran massa gula kristal (ton/jam)

 \dot{M}_{25} = laju aliran massa masakan C (ton/jam)

 \dot{M}_{26} = laju aliran massa stroop C (ton/jam)

 \dot{M}_{27} = laju aliran massa gula C (ton/jam)

 \dot{M}_{28} = laju aliran massa masakan D (ton/jam)

 \dot{M}_{29} = laju aliran massa tetes (ton/jam)

 \dot{M}_{30} = laju aliran massa gula D1 (ton/jam)

 \dot{M}_{31} = laju aliran massa kalre D (ton/jam)

 \dot{M}_{32} = laju aliran massa gula D2 (ton/jam)

Emisi CO₂ yang dihasilkan dari stasiun kristalisasi dan stasiun putaran berasal dari penggunaan mesin-mesin yang membutuhkan listrik. Berikut merupakan penggunaan listrik dari mesin-mesin di stasiun kristalisasi.

Tabel 3.5. Penggunaan Listrik Di Stasiun Kristalisasi

No.	Nama Alat	Jumlah (Unit)	Daya Yang Digunaka n (kWh)	Total Daya (kWh)	
1	Pompa Vacuum Pan 5	1	45	45	
2	Pompa Vacuum Pan 6	1	75	75	
3	Pompa Vacuum Pan 7	1	45	45	
4	Pompa Vacuum Pan 8	1	45	45	
5	Pompa Vacuum Start	1	45	45	
	TOTAL				

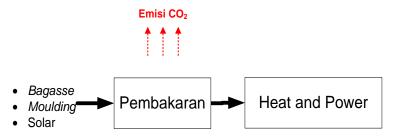
Sedangkan untuk mesin-mesin yang menggunakan listrik yang mampu menghasilkan emisi CO₂ pada stasiun putaran adalah sebagai berikut.

Tabel 3.6. Penggunaan Listrik Di Stasiun Putaran

No.	Nama Alat	Jumlah (Unit)	Daya Yang Digunakan (KW)	Total Daya (kWh)	
1	Sugar Mixer	4	3.7	14.8	
2	Pompa Stroop	4	15	60	
3	Low Grade Fugal (LGF) BMA	3	45	135	
4	High Grade Fugal (HGF Salzgitter)	3	15	45	
	TOTAL				

Berdasarkan data pemakaian listrik di stasiun kristalisasi dan putaran Pabrik Gula Lestari diperoleh hasil emisi CO_2 dengan menggunakan persamaan (3.3) adalah sebagai berikut.

Emisi CO_2 = EF x Konsumsi Listrik


Emisi CO_2 = 0.8968 kg CO_2 /kWh x 509.8 kWh

Emisi CO_2 = 457.189 kg CO_2

Karena Pabrik Gula Lestari beroperasi selama 3441.08 jam maka listrik yang digunakan dikalikan dengan jam efektif operasi. Sehingga emisi yang dihasilkan dari stasiun penggilingan sebesar $1,573,222.69~\mathrm{kg}~\mathrm{CO}_2$ atau sama dengan $1,573.222~\mathrm{tCO}_2$.

F. Emisi Yang Dihasilkan Dari Proses Pembakaran Pada Stasiun Ketel

Pembakaran yang dilakukan oleh Pabrik Gula Lestari bertujuan untuk menghasilkan uap panas pada boiler yang digunakan untuk pembangkit listrik tenaga uap. Pada Pabrik Gula Lestari bahan bakar yang digunakan untuk pembakaran adalah bagasse yang merupakan hasil samping dari proses produksi gula pada stasiun gilingan. Pada proses pembakaran bahan bakar akan terjadi pelepasan gas CO₂ ke udara, gas inilah yang diidentifikasi sebagai salah satu emisi gas rumah kaca yang dominan di atmosfer. Berikut merupakan blok diagram proses pembakaran yang menghasilkan emisi CO₂ untuk pembangkit listrik pabrik Gula Lestari.

Gambar 3.7. Sistem penghasil gas CO₂ pada proses pembakaran

Pabrik Gula Lestari menggunakan *bagasse* beserta *moulding* sebagai bahan bakar yang digunakan untuk pembakaran pada ketel. Selain itu untuk memenuhi kekurangan bahan yang digunakan maka Pabrik Gula Lestari menggunakan bahan bakar berupa solar dan kayu bakar untuk tambahannya. Dari penggunaan pembakaran menggunakan bahan bakar inilah emisi CO₂ diproduksi. Untuk mengetahui jumlah emisi CO₂ yang dihasilkan oleh Pabrik Gula Lestari dari pembakaran maka menggunakan persamaan berikut.

$$Emisi CO_2 = \Sigma n \times EF_{bahan \, bakar} \tag{3.4}$$

Dengan:

Emisi CO_2 = emisi yang dihasilkan (tCO_2)

 Σ n = jumlah bahan bakar yang digunakan (MWh) EF = emisi faktor bahan bakar (tCO₂/MWh) Berikut merupakan konsumsi bahan bakar yang digunakan oleh Pabrik Gula Lestari untuk pembakaran ketel selama musim giling 2013.

Tabel 3.7. Penggunaan Bahan Bakar Untuk Ketel

Jenis Bahan Bakar	Total Penggunaan	Satuan
Bagasse	168,577.2	ton
Moulding	863.8	ton
Solar	12,500.0	liter

3.2.4 Peluang Reduksi Emisi CO₂

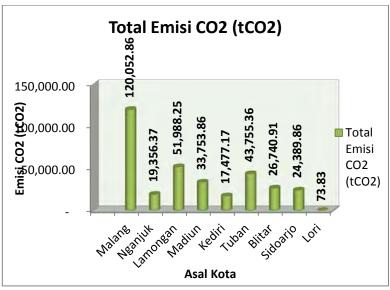
Peluang reduksi emisi CO₂ dapat dilakukan dengan cara audit energi yang menghasilkan emisi CO₂. Audit energi sendiri adalah kegiatan teknis yang sistematis yang bertujuan untuk mencari peluang penghematan energi pada fasilitas yang menggunakan energi, seperti mesin atau peralatan yang terdapat pada suatu *plant* (Kementrian Perindustrian, 2011). Hasil audit energi nantinya dapat digunakan sebagai salah satu cara mereduksi emisi CO₂ yang dihasilkan oleh Pabrik Gula Lestari. Audit energi dilakukan pada kegiatan industri gula yang menghasilkan emisi CO₂, contohnya adalah audit ketel Pabrik Gula Lestari yang berhubungan dengan bahan bakar yang digunakan, audit energi konsumsi listrik yang digunakan pada proses produksi, dll.

Halaman ini memang dikosongkan

BAB IV HASIL DAN PEMBAHASAN

Pada bab ini akan dibahas mengenai hasil dari produksi emisi CO₂ yang dihasilkan dari tiap aktivitas Pabrik Gula Lestari serta pembahasan untuk mereduksi emisi CO₂ yang dihasilkan.

4.1 Sumber Emisi Karbon Di Pabrik Gula Lestari


Proses produksi gula di Pabrik Gula Lestari terdiri dari penyediaan bahan baku, penggilingan (ekstrasi), pemurnian, penguapan, kristalisasi, pendinginan, dan pemisahan gula. Dimana semua kegiatan produksi gula membutuhkan energi untuk menghasilkan produk gula kristal putih. Pabrik gula merupakan salah satu bidang industri yang menggunakan energi cukup besar (Kemenperin, 2011). Salah satu energi yang digunakan dalam produksi gula dihasilkan dari pembangkit listrik yang dimiliki oleh Pabrik Gula Lestari sendiri dengan daya yang dihasilkan sebesar 5.1 MW dari dua turbin. Untuk bahan bakar yang digunakan dalam proses pembakaran di ketel menggunakan (bagasse) yang diperoleh dari proses sisa ampas tebu penggilingan. Selain bagasse bahan bakar lain yang digunkan untuk mencukupi kebutuhan pembakaran adalah moulding, dan solar.

Selepas dari kegiatan produksi di Pabrik Gula Lestari, pabrik ini telah meyumbang emisi CO₂ yang mampu meningkatkan pemanasan global dari setiap aktivitas produksinya, karena penggunaan energi yang cukup besar. Sumber emisi CO₂ yang dihasilkan oleh Pabrik Gula Lestari berasal dari penggunaan bahan bakar untuk pembakaran di stasiun ketel, pemanfaatan energi listrik yang digunakan untuk proses produksi serta penggunaan bahan bakar dalam transportasi yang digunakan untuk mengangkut tebu.

Semua emisi yang dihasilkan dari aktivitas Pabrik Gula Lestari akan dihitung dan dijumlah untuk mengetahui berapa tCO₂ yang diproduksi oleh pabrik gula dan selanjutnya data yang diperoleh akan digunakan untuk melakukan reduksi emisi CO₂ yang berlebihan.

4.2 Emisi CO₂ Dari Transportasi

Pabrik Gula Lestari memasok bahan baku utama (tebu) dari berbagai kota, diantaranya adalah Nganjuk, Kediri, Madiun, Blitar, Sidoarjo, Malang, Lamongan, dan Tuban. Pada daerahdaerah ini terdapat banyak lahan pertanian yang digunakan untuk menanam tebu, sehingga mampu memasok tebu dalam jumlah banyak untuk keperluan produksi gula di pabrik gula sekitarnya. Untuk sistem distribusi tebu dari perkebunan sampai ketempat penyimpanan sementara, Pabrik Gula Lestari menggunakan truk sebagai armadanya karena mampu memuat tebu dalam kapasitas besar. Dari proses pendistribusian tebu mulai tempat penebangan sampai ke pabrik dengan menggunakan kendaraan inilah emisi CO₂ dilepas ke atmosfer. Untuk hasil produksi emisi CO₂ yang dihasilkan dari penggunaan transportasi di Pabrik Gula Lestari selama musim giling 2013 dapat dilihat pada grafik dibawah ini.

Gambar 4.1. Grafik Emisi CO₂ dari Transportasi

Pabrik Gula Lestari menggunakan armada truk dengan 3 jenis truk yang berbeda kapasitas sebanyak 83,132 unit selama musim giling 2013, dengan jumlah truk dari setiap daerah dapat dilihat pada lampiran B-4.

Dari grafik diatas produksi emisi CO₂ yang dihasilkan oleh Pabrik Gula Lestari menurut penggunaan truk dan daerah pemasok tebu yang paling banyak menghasilkan emisi CO₂ adalah dari daerah Malang. Hal ini disebabkan oleh bahan baku tebu yang dipasok dari daerah Malang untuk produksi lebih banyak dibanding dengan daerah lainnya, sehingga untuk mendistribusikan tebu ke Pabrik Gula Lestari tersebut juga membutuhkan armada truk yang lebih banyak dibanding daerah lainnya. Pabrik Gula Lestari memasok tebu paling banyak dari daerah Malang dikarenakan daerah-daerah di sekitar Pabrik Gula Lestari sudah terlalu banyak dipesan dari Pabrik Gula lain yang lebih dekat dengan tempat distribusi, selain itu kebun tanaman tebu di daerah Malang juga lebih luas sehingga mampu mencukupi kebutuhan tebu untuk Pabrik Gula disekitar Malang dan wilayah lainnya.

Selama musim giling 2013 Pabrik Gula Lestari telah memproduksi emisi CO₂ yang dihasilkan dari sektor transportasi pengangkut tebu di tiap-tiap daerah sebesar 337,588.48 tCO₂.

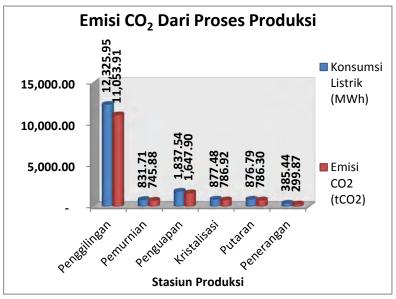
4.3 Emisi CO₂ Dari Proses Produksi Gula

Emisi CO₂ yang dihasilkan proses produksi gula di Pabrik Gula Lestari diperoleh dari penggunaan listrik oleh mesin-mesin produksi. Terdapat enam tahapan proses produksi menghasilkan gula yaitu, tahap penggilingan (ekstrasi), tahap pemurnian. tahap penguapan, tahap kristalisasi. tahap pendinginan, dan terakhir tahap pemisahan gula. Dari setiap tahap proses produksi gula akan mengkonsumsi listrik dengan jumlah yang berbeda-beda sesuai kebutuhannya, listrik yang digunakan oleh Pabrik Gula Lestari sendiri disuplay dari PLN dan pembangkit listrik milik sendiri. Berikut merupakan profil konsumsi listrik yang digunakan pada setiap proses produksi di Pabrik Gula Lestari.

produksi gula 2013				
Stasiun	Konsumsi Listrik	Satuan		
Penggilingan	12,325,948.56	kWh		
Pemurnian	831,709.04	kWh		
Penguapan	1,837,536.72	kWh		
Kristalisasi	877,475.40	kWh		
Putaran	876,787.18	kWh		
Penerangan	385,442.00	kWh		
TOTAL	17.134.898.90	kWh		

Tabel 4.1. Konsumsi Listrik Pabrik Gula Lestari di setiap stasiun produksi gula 2013

Konsumsi listrik Pabrik Gula Lestari selama musim giling 2013 sebesar 17,134,898.9 kWh, dimana 385,442 kWh konsumsi listrik berasal dari PLN yang digunakan untuk penerangan. Pabrik Gula Lestari pada tahun 2013 telah memproduksi gula sebanyak 41,460.1 ton gula kistal putih dengan waktu operasi 3,441.08 jam selama 155 hari. Dari hasil konsumsi listrik yang digunakan oleh setiap stasiun proses produksi di Pabrik Gula Lestari dapat dihitung produksi emisi CO₂ yang dihasilkan.


Untuk mengetahui produksi emisi CO₂ maka dapat dihitung dengan mengalikan hasil dari konsumsi listrik pada proses produksi dengan faktor emisi dari listrik yang digunakan. Faktor emisi yang digunakan untuk konsumsi listrik dari PLN di Indonesia tahun 2013 diketahui sebesar 0.778 kg CO₂/kWh (RUPTL, 2013) sedangkan faktor emisi untuk konsumsi listrik dari pembangkit listrik milik sendiri yang menggunakan bahan bakar utama berupa *bagasse* dapat dihitung menggunakan persamaan (2.4)

$$EF = SFC \times NCV \times CEF \times Oxid \times \frac{44}{12}$$

 $EF = 0.00014 \ ton/kWh \ x \ 15.6 \ TJ/1000ton \ x \ 112000 \ kgCO_2/TJ \ x \ 1 \ x \ 44/12$

 $EF = 0.8968 \ kgCO_2/kWh$

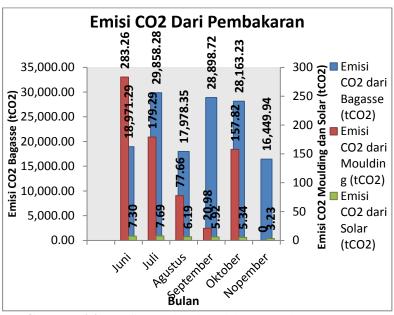
Sehingga diperoleh emisi faktor sebesar 0.8968 kg CO₂/kWh. Sehingga emisi CO₂ yang dihasilkan dari konsumsi listrik dapat digrafikkan sebagai berikut.

Gambar 4.2. Grafik produksi emisi CO₂ dari proses produksi

Dari grafik diatas dapat diketahui bagaimana grafik antara konsumsi listrik yang digunakan di setiap stasiun produksi dengan emisi CO₂ yang dihasilkan. Produksi emisi CO₂ yang dihasilkan dari proses produksi gula paling banyak terjadi pada stasiun penggilingan sebesar 11,053.91 tCO₂. Hal ini disebabkan oleh konsumsi listrik yang digunkan untuk menggerakkan mesinmesin penggilingan memiliki daya yang besar, selain itu pada stasiun penggilingan terdapat banyak unit mesin untuk proses produksi gula. Selain stasiun penggilingan produksi emisi CO₂ paling banyak selanjutnya adalah stasiun penguapan. Pada stasiun penguapan penggunaan pompa-pompa yang digunakan untuk menyalurkan nira yang akan diuapkan juga memiliki daya yang besar hal inilah yang mempengaruhi terjadinya produksi emisi

CO₂ yang besar. Dari grafik diatas diperoleh produksi emisi CO₂ yang dihasilkan dari proses produksi gula dan penggunaan listrik untuk penerangan adalah sebesar 15,320.79 tCO₂ selama musim giling 2013.

4.4 Emisi CO₂ Dari Proses Pembakaran


Pabrik Gula Lestari melakukan pembakaran bahan bakar pada stasiun ketel untuk keperluan pembangkit listrik. Bahan bakar yang digunakan untuk pembakaran pada boiler menggunakan solar dan ampas tebu (bagasse) yang merupakan hasil sisa dari proses penggilingan. Konsumsi bahan bakar bagasse dan solar yang digunakan untuk pembakaran ketel dapat dilihat dari grafik dibawah ini.

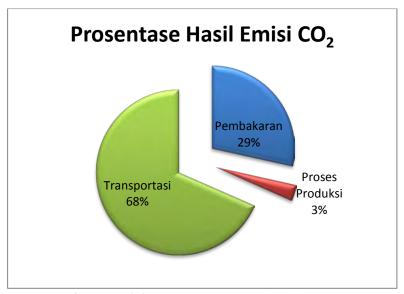
Tabel 4.2. Konsumsi Bahan Bakar Untuk Ketel

Tahun	Bulan	Konsumsi Bagasse (Ton)	Konsumsi Moulding (Ton)	Konsumsi Solar (Liter)
2013	Juni	22,791.70	340.3	2,696
	Juli	35,871.10	215.4	2,557
	Agustus	21,598.80	93.3	2,169
	September	34,718.30	25.2	2,073
	Oktober	33,834.70	189.6	1,873
	Nopember	19,762.60	-	1,132
TOTAL		168,762.60	863.8	12,500

Dari penggunaan bahan bakar untuk ketel diperoleh produksi emisi CO₂ yang dilepaskan ke udara. Untuk mengetahui nilai emisi CO₂ yang diperoleh dari pembakaran maka hasil konsumsi bahan bakar untuk ketel dikonversi ke satuan MWh untuk mempermudah perhitungan dan dikalikan dengan nilai faktor emisi dari setiap bahan bakar yang digunakan. Untuk faktor emisi dari *bagasse* dan *moulding* yang merupakan ampas berupa kayu diperoleh sebesar 0.4032 tCO₂/MWh sedangkan untuk bahan bakar solar diperoleh nilai faktor emisi sebesarnya

0.2667 tCO₂/MWh (hasil konversi IPCC, 2006). Hasil perhitungan emisi CO₂ dari pembakaran untuk ketel Pabrik Gula Lestari selama musim giling 2013 dapat dilihat pada lampiran B-1, dan berikut merupakan hasil akumulasi dari total emisi CO₂ yang diproduksi dari pembakaran untuk ketel.

Gambar 4.3. Grafik Produksi Emisi CO₂ dari Pembakaran


Dari grafik produksi emisi CO₂ yang dihasilkan dari pembakaran untuk ketel dapat diketahui bahwa penggunaan bahan bakar *bagasse* (ampas tebu) merupakan penghasil emisi terbesar yang mencapai puluhan ribu tCO₂, hal ini disebabkan oleh pembakaran pada ketel di Pabrik Gula Lestari mengkonsumsi bahan bakar *bagasse* sebagai bahan bakar utama dalam pembakaran. Selain itu bahan bakar *moulding* dan solar pada Pabrik Gula Lestari hanya digunakan untuk menambahi kekurangan dari bahan bakar utamanya. Dapat dilihat dari grafik diatas bahwa pada awal penggilingan bulan Juli penggunaan

bagasse terlihat lebih sedikit dibanding dengan penggunaan moulding dan penggunaan solar lebih banyak dibanding bulanbulan selanjutnya, hal ini disebabkan oleh hasil bagaase pda awal produksi gula tidak mencukupi untuk konsumsi bahan bakar pada ketel sehingga penggunaan bahan bakar tambahan seperti solar dan moulding cenderung lebih tinggi dibanding bulan-bulan selanjutnya.

Selain itu produksi emisi CO₂ tiap bulan berbeda-beda dapat dilihat dari grafik yang bergerak secara fluktuatif. Perbedaan produksi emisi CO₂ ini disebabkan oleh jam kerja efektif yang berbeda tiap bulannya, berhentinya waktu giling mempengaruhi produksi emisi CO₂ nya. Selain dari jam efektif giling faktor yang mempengaruhi fluktuatifnya produksi emisi CO₂ dipengaruhi oleh persediaan tebu yang tiap harinya terus berdatangan sehingga harus digiling untuk mengurangi terjadinya pengurangan kualitas dari tebu itu sendiri. Total produksi emisi CO₂ yang dihasilkan dari pembakaran di Pabrik Gula Lestari adalah 141,074.49 tCO₂, dimana 140,319.81 tCO₂ dari pembakaran menggunakan bahan bakar *bagasse*, 719.01 tCO₂ dari pembakaran dengan bahan bakar moulding, dan sisanya 35.67 tCO₂ dari pembakaran dengan bahan bakar solar.

4.5 Total Emisi CO₂ Pabrik Gula Lestari

Pabrik Gula Lestari dalam pelaksanaan produksi gula selama musim giling 2013 telah memproduksi 41,460.1 ton gula kristal putih. Untuk menghasilkan produks gula sebanyak itu dibutuhkan energi listrik sebesar 17,134,898.90 kWh. selain memproduksi gula Pabrik Gula Lestari juga memproduksi emisi CO2 yang berasal dari proses produksi, pembakaran untuk ketel, dan transportasi kendaraan untuk pengangkutan tebu. Total emisi CO2 yang dihasilkan selama musim giling 2013 sebesar 493,983.76 tCO2. Dengan prosentase produksi emisi CO2 dari berbagai aktivitas Pabrik Gula Lestari adalah sebagai berikut.

Gambar 4.4. Prosentase produksi emisi CO₂

Dari data diatas diketahui bahwa produksi emisi CO₂ paling besar terdapat pada penggunaan transportasi, hal ini disebabkan oleh penggunaan bahan bakar solar untuk kendaraan truk pengangkut tebu. Konsumsi solar yang digunakan untuk transportasi truk pengangkut tebu selama musim giling 2013 di Pabrik Gula Lestari sebesar 514,802.1 liter dengan jumlah armada truk sebanyak 83,132 unit. Sedangkan urutan kedua untuk produksi emisi CO₂ terbanyak adalah penggunaan bahan bakar yang digunkan untuk pembakaran ketel, dalam hal menghasilkan emisi pembakaran terbanyak vang penggunaan bahan bakar bagasse, hal ini disebabkan oleh konsumsi bagasse yang tinggi dibanding dengan bahan bakar lainnya karena *bagasse* merupakan bahan bakar utama untuk ketel. Penggunaan bahan bakar bagasse di Pabrik Gula Lestari berguna untuk mengurangi biaya operasional karena bagasse merupakan limbah dari pabrik gula. Untuk proses produksi hasil emisi CO₂ yang dihasilkan tidak terlalu banyak.

Dari total emisi CO_2 sebesar 493,983.76 tCO_2 yang diproduksi oleh Pabrik Gula Lestari diperoleh produk gula kristal putih sebesar 41,460.1 ton, sehingga perbandingan antara emisi CO_2 dengan produksi gula sebesar 11.91 tCO_2 /ton gula dengan kata lain setiap memproduksi satu ton gula kristal putih maka menghasilkan emisi CO_2 sebesar 11.91 ton CO_2 . Berikut merupakan rincian dari emisi CO_2 dan produksi gula.

Tabel 4.3. Total Emisi CO₂ Pabrik Gula Lestari

Ionia Cumban	Jumlah Emisi
Jenis Sumber	CO_2 (tCO_2)
Bahan Bakar Untuk Boiler	141,074.49
Penggunaan Listrik	15,320.79
Bahan Bakar Untuk Transportasi	337,588.48
Total Emisi CO ₂	493,983.76
Total Gula Kristal Putih (ton)	41,460.10
Total Tebu Digiling (ton)	578,243.90
Emisi CO ₂ /produk gula (tCO ₂ /ton gula)	11.91
Emisi CO ₂ /tebu digiling (tCO ₂ /ton	0.85
tebu)	

Emisi CO₂ yang dihasilkan disetiap ton gula kristal putih ini sangat jauh berbeda apabila dibandingakan dengan penelitian sebelumnya yang dilakukan oleh Rida mengenai emisi gas rumah kaca pada industri gula di PT. PG Rajawali II Unit PG Subang. Pada penelitian ini emisi yang dihasilkan dari Pabrik Gula Rajawali sebesar 4.54 tCO₂eq/ton gula. Pada penelitian sebelumnya emisi yang dihasilkan oleh industri gula dihitung semua dari emisi CO₂,N₂O, serta CH₄ yang berada dalam lingkup PG Rajawali, tetapi untuk emisi yang dihasilkan dari penggunaan transportasi tidak dihitung. Hal ini yang membedakan hasil emisi yang dihasilkan dari PG Rajawali dengan Pabrik Gula Lestari. Apabila emisi CO₂ yang dihasilkan oleh Pabrik Gula Lestari hanya dalam lingkup pabrik maka emisi yang dihasilkan per satuan ton gula adalah sebesar 3.77 tCO₂/ton gula. Hal ini membuktikan bahwa emisi yang dihasilkan oleh Pabrik Gula

Lestari lebih rendah dibanding dengan emisi di Pabrik Gula Rajawali dalam catatan emisi yang dihasilkan oleh Pabrik Gula Lestari hanya sebatas emisi CO₂.

Dari hasil emisi CO₂ yang diperoleh dari Pabrik Gula Lestari tahun 2013 ini dapat dilakukan reduksi emisi dengan menganalisa hasil emisi CO₂ yang berlebihan dari setiap aktivitas produksi penghasil emisi CO₂. Salah satu upaya untuk mereduksi emisi CO₂ dapat dilakukan dengan mengetahui efisiensi dari penggunaan ketel. Dengan mengetahui efisiensi ketel maka dapat dianalisa mengenai konsumsi bahan bakar dari ketel. Selain itu menganalisa penggunaan mesin-mesin pada proses produksi yang menggunakan listrik berlebihan, serta mengefisiensikan antara transportasi dengan daerah pemasok tebu agar tidak menghasilkan emisi yang berlebihan.

4.6 Peluang Reduksi Emisi CO₂ Pabrik Gula Lestari

Reduksi emisi CO₂ dilakukan untuk mengurangi emisi CO₂ yang dihasilkan oleh Pabrik gula Lestari, selain itu dari reduksi emisi CO₂ juga dapat digunakan untuk mengurangi penggunaan energi yang berlebihan. Reduksi emisi dilakukan di setiap aktivitas proses produksi di Pabrik Gula Lestari.

4.6.1Peluang Reduksi Emisi CO₂ Pada Sektor Transportasi

Peluang reduksi emisi CO₂ dari sektor transportasi dapat dilakukan dengan memperpendek jarak tempuh transportasi yang diguanakan. Dari persamaan (2.7) diketahui bahwa nilai emisi CO₂ dipengaruhi oleh jarak tempuh suatu kendaraan. Dari hasil perhitungan setiap satu kendaraan truk per jamnya akan menghasilkan emisi sebesar 462.72 gramCO₂ / jam.km, jika hal ini dikalikan dengan jarak yang ditempuh sepanjang 134 km untuk daerah Malang maka akan dihasilkan emisi CO2 sebesar gramCO₂/jamnya atau setara dengan kgCO₂/jamnya. Jika dalam satu musim giling Pabrik Gula memasok gula selama 155 hari maka diperoleh tiap satu kendaraan yang digunakan menghasilkan emisi CO2 sebesar 230.65 tCO₂. Berbeda dengan jika jarak tempuh untuk truknya

sepanjang 110 km maka emisi CO_2 yang dihasilkan sebesar 50.90 kg CO_2 /jam, jika kendaraan yang digunakan mengangkut tebu selama 155 hari diperoleh emisi CO_2 sebesar 189.35 t CO_2 . Jadi dapat disimpulkan bahwa dengan mengurangi jarak tempuh suatu kendaraan akan mereduksi emisi CO_2 yang dihasilkan oleh Pabrik Gula Lestari.

Selain itu, hal lain yang mempengaruhi emisi CO₂ yang dihasilkan adalah jumlah kendaraan yang digunakan untuk memasok tebu tiap jamnya. Semakin banyak kendaraan yang digunakan untuk mengangkut tebu tiap jamnya maka emisi CO₂ yang dihasilkan juga semakin banyak, salah satu cara untuk mereduksi emisi CO₂ dari masalah ini adalah menggunakan kendaraaan truk dengan kapasitas angkut tebu yang lebih besar. Dimisalkan kendaraan yang digunakan untuk mengangkut tebu berkapasitas 8 ton semua, yang sebelumnya terdiri dari tiga jenis truk dengan kapasitas berbeda maka dapat diperoleh penurunan emisi CO₂ sebesar 96,672.45 tCO₂ atau sebesar 24.7% dari total emisi yang dihasilkan sebelumnya sebesar 391,602.52 tCO₂.

Hal ini disebabkan oleh semakin banyak jumlah tebu yang dimuat dalam satu truk maka truk yang digunakan akan semakin berkurang. Sehingga truk yang digunakan setiap jamnya akan berkurang pula, hal ini merupakan salah satu faktor penghasil emisi CO_2 . Jadi jika truk yang diguanakan oleh Pabrik Gula Lestari bermuatan 8 ton semua maka emisi CO_2 dari sektor trasnportasi dapat direduksi.

4.6.2Peluang Reduksi Emisi CO₂ Pada Proses Produksi Gula

Pada proses produksi gula terdapat penggunaan energi listrik yang begitu besar di setiap stasiun proses produksi gula. Untuk mereduksi emisi dari proses produksi gula maka perlu dilakukan perhitungan mengenai efisiensi dari penggunaan mesin-mesin produksi yang berpengaruh besar dalam penggunaan daya listrik. Mesin-mesin produksi yang akan dianalisis pada Pabrik Gula Lestari adalah motor listrik yang berperan penting dalam proses produksi gula.

Motor listrik sendiri merupakan alat konversi yang mengubah energi listrik menjadi energi mekanik. Motor listrik dalam industri merupakan pengguna energi listrik sekitar 70% dari total energi listrik yang dikonsumsi oleh industri tersebut (UNEP, 2006). Oleh karena itu untuk mereduksi emisi CO₂ yang dihasilkan dari proses produksi gula maka salah satu cara yang dilakukan adalah mengaudit energi untuk penggunaan motor listrik Pabrik Gula Lestari. Audit ini dilakukan dengan menganalisa pembeban dan efisiensi pada motor listrik yang digunakan.

Pabrik Gula Lestari kebanyak menggunakan motor listrik 3 phasa dimana motor ini memiliki kemampuan daya yang tinggi serta putarannya yang cepat sehingga lebih effisien untuk digunakan oleh industri. Pada penelitian mengenai audit energi pada motor listrik diambil 22 sampel motor listrik dari tiap-tiap stasiun produksi yang akan dihitung pembebanan serta efisiensinya. Motor listrik yang digunakan oleh Pabrik Gula Lestari diketahui sebanyak 188 motor listrik, dimana pada stasiun gilingan terdapat sebanyak 14 motor, stasiun penguapan sebanyak 57 motor, stasiun pemurnian sebanyak 25 motor, stasiun masakan 65 motor, serta stasiun ketel sebanyak 27 motor.

Dari hasil penelitian diperoleh pembebanan yang dihasilkan dari 22 motor listrik berkisar antara 50% - 80% serta effisiensi yang tidak lebih dari 88%. Dengan efisiensi dari motor yang berkisar antara 72% - 88% motor mengkonsumsi listrik sebesar 3,045,854.97 kWh dengan emisi CO₂ yang dihasilkan sebesar 2,731.52 tCO₂ selama musim giling 2013. Untuk mengurangi penggunaan daya oleh motor listrik maka dapat dilakukan dengan meningkatkan efisiensi kerja dari motor listrik tersebut atau mengganti motor listrik yang efisiensinya rendah. Untuk nilai efisiensi paling tinggi motor listrik adalah sebesar 91% dan paling rendah pada efisiensi 72 % (UNEP, 2006).

Dimisalkan dengan meningkatkan efisiensi motor listrik menjadi 88%, yang merupakan nilai effisiensi paling besar untuk motor listrik yang digunakan di Pabrik Gula Lestari, maka diperoleh penghematan energi sebesar 205,322.24 kWh dari 22

motor listrik (perhitungan lengkap ada di lampiran B-18). Dengan begitu emisi CO₂ yang dihasilkan dari penggunaaan listrik oleh motor-motor listrik dapat direduksi sebesar 184.13 tCO2 dari hasil emisi sebelumnya. Jika 188 motor dilakukan peningkatan efisiensi sebesar 88%, dan diketahui motor listrik yang memiliki efisiensi 88% sebanyak 58 unit maka mampu menghemat 27.87% atau sebesar 4,776,181.72 kWh dari penggunaan listrik sebelumnya yang sebesar 17,134,898.9 kWh selama musim giling 2013.

Berikut merupakan hasil pehitungan penghematan energi dari 22 sampel motor-motor listrik dengan effisiensi 80% keatas. Dengan menggunakan persamaan untuk peluang hemat energi sebagai berikut.

Energy Saving =
$$P_{\text{Nameplate}} \times L \times N \times \left(\frac{100}{E_a} - \frac{100}{E_b}\right)$$
 (5.1)

Dengan:

P_{Nameplate} =Daya pada nameplate motor

N =Waktu operasi

L =Prosentase beban yang dibagi 100

Ea =Efisiensi motor

Eb =Efisiensi motor yang diinginkan

Tabel 4.4. Penghematan Energi Listrik Pada Penggunaan Motormotor listrik dengan effisiensi lebih dari 80%

No.	Nama Motor	P (kW)	η (%)	Save Energi (kWh)
1	Motor penggerak cane carrier	37	0.88	0.00
2	Motor penggerak cane Cutter	450	0.8	25.95
3	Motor penggerak pompa imbibisi	37	0.8	2.77
4	Mixer nira Kotor	4	0.84	0.12

No.	Nama Motor	P (kW)	η (%)	Save Energi (kWh)
5	Motor penggerak nira Tapis	11	0.84	0.47
6	Motor pompa Vacuum Condensor	30	0.84	1.05
7	Motor Pengerak Floculant	2	0.86	0.03
8	Motor pompa nira Kotor	15	0.85	0.39
9	Motor pompa Injeksi	260	0.88	0.00
10	Motor pompa Vacuum VP V	45	0.82	2.58
11	Motor pompa Vacuum VP VI	45	0.88	0.00
12	Motor pompa Vacuum VP VII	45	0.86	1.72
13	Motor LGF	45	0.8	3.29
14	Motor pompa Gula	37	0.88	0.00
15	Motor pompa stroop	15	0.82	0.69
	TOTAL			39.07

Sedangkan untuk motor listrik dengan effisiensi dibawah 80% jika effisiensinya ditingkatkan menjadi 88% maka energi listrik yang dapat dihemat adaah sebagai berikut.

Tabel 4.5. Penghematan Energi Listrik Pada Penggunaan Motormotor listrik dengan effisiensi dibawah 80%

No.	Nama Motor	P (kW)	η (%)	Save Energi (kWh)
1	Motor penggerak pompa nira mentah	37	0.78	4.04

No.	Nama Motor	P (kW)	η (%)	Save Energi (kWh)
2	Motor Condensor Juice Heater	7.5	0.76	0.76
3	Motor pompa Injeksi RVF	18.5	0.76	1.93
4	Motor pompa Condensor badan pemanas	11	0.75	1.00
5	Motor pompa Vacuum VP VIII	45	0.79	3.68
6	Motor Vacuum central	90	0.74	6.87
7	Motor HGF	15	0.72	2.31
	TOTAL			20.60

Dengan meningkatkan semua efisiensi dari motor listrik yang digunakan jika diasumsikan efisiensi dari motor listrik tidak jauh berbeda dengan sampel 22 motor diatas maka pabrik gula hanya mengkonsumsi listrik sebesar 12,358,712.18 kWh selama musim giling, dengan begitu emisi CO_2 yang dapat direduksi sebesar 4,283.28 tCO_2 atau sekitar 27.96 % dari 15,320.79 tCO_2 total emisi CO_2 yang dihasilkan sebelumnya.

4.6.3 Peluang Reduksi Emisi CO₂ Pada Pembakaran

Proses pembakaran di ketel pada Pabrik Gula Lestari dilakukan untuk menghasilkan *steam* yang digunakan untuk pemutar turbin dan proses produksi pada unit gilingan dan unit *unigrator*. Dalam hal ini untuk meruduksi emisi CO_2 dari proses pembakaran pada ketel maka diperlukan analisa mengenai kinerja ketel yang digunakan oleh Pabrik Gula Lestari, dengan mengetahui kinerja dari ketel tersebut maka dapat dihitung effisiensi serta peluang penghematan energi yang berpotensi untuk mengurangi produksi emisi CO_2 .

Pabrik Gula Lestari menggunakan dua buah unit ketel, ketel Takuma dengan kapasitas uap terpasang sebesar 75 ton/jam dan ketel Yoshimine dengan kapasitas uap terpasang sebesar 60 ton/jam. Dari penggunaan bahan bakar untuk menghasilkan uap pada ketel-ketel ini diperoleh nilai Konsumsi Energi Spesifik (KES) dari penggunaan uap untuk produksi gula sebesar 0.59 ton uap/ton tebu yang digiling. Dari nilai KES yang diperoleh Pabrik Gula Lestari bila dibandingkan dengan nilai KES Pabrik Gula baru yang memiliki energi spesifik ± 0.49 ton uap/ton tebu (Rosyid, dkk., 2006) maka dapat disimpulkan bahwa ketel yang digunakan sudah tidak efisien lagi. Hal-hal yang menyebabkan tidak efisiennya ketel yang digunakan oleh pabrik Gula Lestari adalah ketel yang digunakan usianya sudah cukup tua, banyak pipa-pipa yang digunakan untuk menyalurkan steam ke turbin yang isolasinya terlepas sehingga panas yang dihasilkan dari ketel banyak yang hilang.

Gambar 4.5. Kondisi ducting untuk distribusi uap dari ketel

Dari data pengukuran langsung, ketel yang digunakan Pabrik Gula Lestari tidak dapat memproduksi uap sesuai dengan kapasitas terpasang, sehingga didapatkan nilai effisiensi dari ketel Pabrik Gula Lestari sebesar 67% untuk ketel Takuma dan 66% untuk ketel Yoshimine (lampiran B-11). Untuk meningkatkan effisiensi pada ketel maka dapat dilakukan dengan meningkatkan temperature *feedwater* yang digunakan, dan memperbaiki isolasi

pipa agar kehilang panas pada saat pendistribusian uap dapat diminimalisir. Dengan meningkatkan effisiensi ketel maka bahan bakar yang digunakan akan semakin berkurang sehingga emisi ${\rm CO_2}$ yang dihasilkan oleh Pabrik Gula Lestari dari proses pembakaran juga berkurang.

Untuk mengurangi emisi CO_2 yang dihasilkan dari penggunaan bahan bakar untuk pembakaran ketel maka hal yang dapat dilakukan adalah dengan meningkatkan efisiensi dari tiap ketel yang digunakan. Untuk ketel Yoshimine yang telah beroperasi selama 28 tahun sudah tidak dapat ditingkatkan efisiensinya, karena usia operasi yang sudah cukup lama. Sesuai dengan peraturan pemerintah ketel yang berusia 30 tahun akan diganti dengan yang baru, pergantian ketel ini akan mampu mengurangi emisi CO_2 yang dihasilkan saat ini. Sedangkan untuk ketel Takuma masih dapat ditingkatkan efisiensinya sebesar 70%, hal ini dikarenakan menurut SEAI boiler yang berusia \pm 15 tahun masih mampu menghasilkan efisiensi sebesar 70%.

Jika Pabrik Gula Lestari mengganti boiler Yoshimine, maka efisiensi untuk boiler baru mampu mencapai 89% menurut Industrial Boiler Efficiency (Climate Leader, 2008). Apabila hal ini dilakukan dengan mengganti boiler Yoshimine dan meningkat efisiensi maka ketel Takuma menjadi 70% maka dapat menghemat bahan bakar sebesar 15,969.1 ton *bagasse*, dengan pengurangan bahan bakar maka emisi CO₂ dapat direduksi sebesar 9,296.44 tCO₂ atau sama dengan 6.59% dari hasil emisi CO₂ sebelumnya.

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian dan analisa yang telah dilakukan, maka dapat diambil kesimpulansebagai berikut,

- a) Jumlah emisi CO₂ yang dihasilkan untuk memproduksi gula di Pabrik Gula Lestari selama musim giling 2013 sebesar 493,983.76 tCO₂, dengan jumlah emisi yang dihasilkan dari sektor transportasi sebesar 337,588.48 tCO₂, untuk proses produksi menghasilkan emisi sebesar 15,320.79 tCO₂, sedangkan untuk proses pembakaran menghasilkan emisi CO₂ sebesar 141,074.49
- b) Peluang reduksi dapat dilakukan dengan meningkatkan efisiensi dari mesin-mesin Pabrik Gula Lestari serta mengurangi jarak tempuh kendaraan atau mengangkut tebu lebih banyak dalam satu truk.
- c) Dari peluang reduksi emisi CO₂ diperoleh peluang reduksi dari sektor transportasi sebesar 96,672.45 tCO₂, untuk proses produksi gula sebesar 4,283.28 tCO₂, dan dari proses pembakaran sebesar 9,296.44 tCO₂.

5.2 Saran

Berikut merupakan saran untuk analisis emisi CO₂ pada industri gula pada masa mendatang, yaitu:

- a) Penelitian ini tidak meneliti semua emisi gas rumah kaca yang dihasilkan oleh industri gula, sebaiknya pada penelitian berikutnya dilakukan penelitian mengenai emisi menyeluruh yang dihasilkan oleh industri gula.
- b) Untuk penurunan emisi CO₂ dilakukan audit energi yang menghasilkan emisi CO₂ secara menyeluruh

Halaman ini memang dikosongkan

DAFTAR PUSTAKA

- Anonim. *Pengertian Efek Rumah Kaca dan Gas Rumah Kaca*. http://id.shvoong.com/society-and-news/environment/2214150-pengertian-efek-rumah-kaca-dan/. 09 Februari 2014 (19.39)
- Atma, Riska Puri. 2011. **Kajian Emisi CO₂ Berdasarkan Tapak Karbon Sekunder Dari Kegiatan Non Akademik Di ITS Surabaya**. Surabaya : Teknik Lingkungan ITS
- CLIMATE LEADERS GREENHOUSE GAS INVENTORY
 PROTOCOL OFFSET PROJECT METHODOLOGY for
 Project Type: Industrial Boiler Efficiency (Industrial
 Process Applications). 2008. Climate Protection
 Partnerships Division/Climate Change Division Office of
 Atmospheric Programs: U.S. Environmental Protection
 Agency
- Direktoral Jendral Industri Agro Dan Kimia. 2009. "Road Map Industri Gula". Jakarta
- Draft Petunjuk Teknis Perhitungan Emisi Gas Rumah Kaca (GRK) Di Sektror Industri. 2012.
- Hanapiah, Ali Muhi. 2011.**Pemanasan Global**. Institut Pemerintahan Dalam Negeri (IPDN). Jawa Barat
- Hugot. E., 1986. **Handbook of Cane Sugar Engineering**. New York: Elsevier
- IPCC. 2006. **Guidelines for National Greenhouse Gas Inventories Vol.2: Energy, Chapter 2**: Stasionary Combustion. Washington D.C, USA.
- Klenk, Ingo, Birgit Landquist, Oscar Ruiz de Imaña. 2012. The Product Carbon Footprint of EU Beet Sugar. Sugar Industry Journal, Volume 62, Issue 137
- Mubyarto. 1984. "Masalah Industri Gula di Indonesia". Fakultas Ekonomi. Universitas Gajah Mada : Yogyakarta
- Musyawarah Perencanaan Pembangunan (Musrenbangtan). 2012. Kegiatan 2013 Untuk Terwujunya Swasembada Gula Tahun 2014 : Jakarta

- Kementrian Perindustrian. 2011. "Pedoman Teknis Audit Energi Dalam Implementasi Konservasi Energi Dan Pengurangan Emisi CO₂ Di Sektor Industri (Fase 1)".
- Peraturan Menteri Negara Lingkungan Hidup Republik Indonesia Nomor 12 Tahun 2012. Pedoman Penghitungan Beban Emisi Kegiatan Industri Minyak Dan Gas Bumi. 3 Agustus 2012. Lembaran Negara Republi Indonesia Tahun 2012 Nomor 790. Jakarta
- Perdana, Wima Kusuma, Rahmat Boedisantoso, Susi Agustina Wilujeng. 2011. "Studi Kontribusi Kegiatan Transportasi Terhadap Emisi Karbon Di Surabaya Bagian Barat". Surabaya: Teknik Lingkungan ITS
- Putt del Pino S. dan Bhatia P. 2002. Working 9 to 5 on Climate Change: An Office Guide. Washington D.C: World Resource Institute
- Washington D.C: World Resourse Institute.
- Rein, Peter W. 2012. **Suistanable Sugar Production**. Paper Presented to BSST Meeting. London
- Rencana Usaha Penyediaan Tenaga Listrik PT. PLN (Persero) 2013-2022.

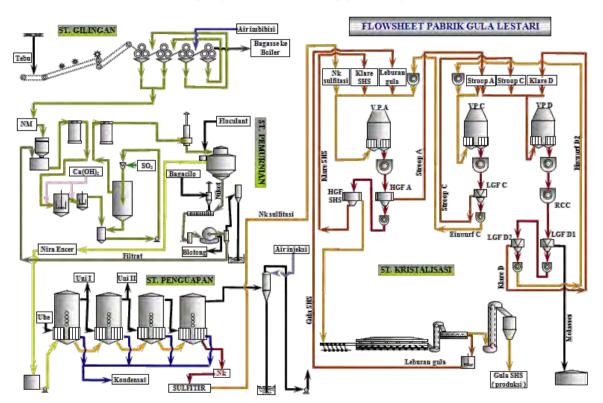
Replacing Your Boiler,

- http://www.seai.ie/Power_of_One/Heat_Your_Home_For_Less/Replacing_Your_Boiler/>
- Rida, Siti Anugrah BR S. 2012. "Potensi Penurunan Emisi Gas Rumah Kaca Pada Industri Gula (Studi Kasus PT PG RAJAWALI II Unit PG SUBANG)". Bogor : Teknologi Industri Pertanian IPB
- Suarsana, Made., Putu Sri Wahyuni. 2011. Global Warming: Ancaman Nyata Sektor Pertanian Dan Upaya Mengatasi Kadar CO₂ Atmosfer. **Jurnal Sains dan Teknologi, Volume 11, No.1.** Universitas Panji Sakti Singaraja
- Sugiyanto, Catur. 2007. Permintaan Gula Di Indonesia. **Jurnal Pembangunan No.2, Vol. 8**, hal.113-127
- Susandi, Armi. 2011. "Emisi Karbon Dan Potensi CDM Dari Sektor Energi Dan Kehutanan Indonesia". Bandung : Metrologi ITB

- Trismidianto, et al. 2008. "Studi Penentuan Konsentrasi CO₂ Dan Gas Rumah Kaca (GRK) Lainnya Di Wilayah Indonesia".
- Tzilivakis, J., D.J Warner, M. May, K.A. Lewis, K. Jaggard. 2005. "An Assessment of The Energy Inputs and Greenhouse Gas Emissions in Sugar Beet (Beta Vulgaris) Production In The UK". **Journal Agricultural Systems. Volume 85, Issue 2,** hal. 101-119
- United Nation Environment Programme. 2006. Pedoman Efisiensi Energi Untuk Industri di Asia. www.energyefficiencyasia.org. 15 Mei 2014 (12.45)
- United Nations Industrial Development Organization. 2010. "Global Industry Energy Efficiency Benchmarking".
- Wiedmann, Thomas. dan John Barrett. 2011. "A greenhouse gas footprint analysis of UK Central Government". Article Environmental Science & Policy, Volume 14, Issue 8, hal. 1041-1051
- Yuttitham, M., S. Gheewala, A. Chidthaisong. 2011. "Carboon Footprint of Sugar Produced From Sugarcane in Eastern Thailand". **Journal of Cleaner Production, Volume 19, Issue 17-18**, hal. 2119-2127
- Zhou, G., W. Chung, X. Zhang. 2013. "A Study of Carbon Dioxide Emissions Performance of China's Transport Sector". **Journal Energy**, Volume 50, hal. 302-314

Halaman ini memang dikosongkan

BIODATA PENULIS



Penulis mempunyai nama lengkap Renda Avista, lahir di Kabupaten Nganjuk pada tanggal 4 Juni 1992 dan merupakan anak pertama dari dua bersaudara. Penulis melewati dibeberapa masa kecil tempat di yakni Mojoagung dan Kertosono dengan menempuh pendidikan di SDN Mancilan I, SMPN 1 Mojoagung, dan SMAN 1 Patianrowo. Penulis kemudian menempuh studi ke ITS Jurusan Teknik Fisika pada tahun 2010

melalui jalur Bidik Misi dengan NRP 2410 100 049. Hingga pada tahun 2014 penulis akhirnya melaksanakan Tugas Akhir sebagai syarat untuk menyelesaikan studi S1 di Jurusan Teknik Fisika dengan judul "ANALISIS PRODUKSI EMISI CO2 PADA INDUSTRI GULA DI PT. PERKEBUNAN NUSANTARA X (PERSERO) Tbk. (STUDI KASUS DI PABRIK GULA LESTARI)". Bagi pembaca yang memiliki saran, kritik, atau ingin berdiskusi lebih lanjut tentang Tugas Akhir ini, maka dapat menghubungi penulis melalui e-mail renda.avista04@gmail.com.

LAMPIRAN A

FLOWSHEET PABRIK GULA LESTARI

Halaman ini memang dikosongkan

PERHITUNGAN EMISI CO2 DARI BAHAN BAKAR UNTUK PEMBAKARAN

Penggunaan Bahan Bakar Solar Untuk Ketel

		Konsur	nsi Solar	Faktor	Konversi			
Tahun	Bulan	Liter	MWh	Emisi (kg CO2/TJ)	Faktor Emisi (ton CO2/MWh)	Emisi CO2 (tCO2)		
	Juni	2696	27.3599	74100	0.2667	7.30		
	Juli	2557	28.8472	74100	0.2667	7.69		
2013	Agustus	2169	23.2083	74100	0.2667	6.19		
2013	September	2073	22.1811	74100	0.2667	5.92		
	Oktober	1873	20.0411	74100	0.2667	5.34		
	Nopember	1132	12.1124	74100	0.2667	3.23		
	TOTAL							

Emisi $CO_2 = \Sigma$ Bahan bakar × Emisi Faktor_{Solar}

₩-1

Penggunaan Bahan Bakar Bagasse Untuk Ketel

		Konsumsi Bagasse		Faktor	Faktor Emisi			
Tahun	Bulan	Ton	MWh	Emisi Moulding (kgCO2/TJ)	Bagasse (tCO2/MWh)	Emisi CO2 (tCO2)		
	Juni	22,791.70	47,051.81	112000	0.4032	18,971.29		
	Juli	35,871.10	74,053.28	112000	0.4032	29,858.28		
2013	Agustus	21,598.80	44,589.15	112000	0.4032	17,978.35		
2013	September	34,718.30	71,673.41	112000	0.4032	28,898.72		
	Oktober	33,834.70	69,849.28	112000	0.4032	28,163.23		
	Nopember	19,762.60	40,798.45	112000	0.4032	16,449.94		
	TOTAL							

Emisi $CO_2 = \Sigma$ Bahan bakar \times Emisi Faktor_{Bagasse}

Penggunaan Bahan Bakar Moulding Untuk Ketel

			i Moulding	Faktor	Konversi	
Tahun	Bulan	Ton	MWh	Emisi Moulding (kgCO2/TJ)	Faktor Emisi <i>Moulding</i> (tCO2/MWh)	Emisi CO2 (tCO2)
	Juni	340.3	702.52	112000	0.4032	283.26
	Juli	215.4	444.68	112000	0.4032	179.29
2013	Agustus	93.3	192.61	112000	0.4032	77.66
2013	September	25.2	52.02	112000	0.4032	20.98
	Oktober	189.6	391.42	112000	0.4032	157.82
	Nopember	0.0	0.00	112000	0.4032	0.00
			TOTAL			719.01

Emisi $CO_2 = \Sigma$ Bahan bakar × Emisi Faktor_{Moulding}

PERHITUNGAN EMISI CO₂ DARI TRANSPORTASI

Jumlah Truk Yang Digunakan Dari Tiap Daerah

Daerah	Jumlah % tebu dari jumlah keseluruhan	Jenis Truck*	Jumlah Truck	Jarak Tempuh (km)	Jumlah Solar Yang Digunakan (L)	Total Solar Yang Digunakan (L)	Kapasitas Tebu (Ton)
		A	5086			107,817.10	30517.036
Malang	24%	В	5948	134	21.2	126,090.46	41636.200
		C	8328			176,543.61	66625.300
		A	5782			22,867.81	34694.000
Nganjuk	20%	В	6608	25	4	26,134.64	46258.500
		C	4337			17,152.84	34696.280
		A	4049			70,460.70	24286.123
Lamongan	12%	В	4163	110	17.4	72,444.53	29143.034
		C	1995			34,716.99	15960.111
Madiun	11%	A	3180	80	5.3	40,246.08	19082.125
iviauiuii	1170	В	2908	80	5.5	36,803.65	20356.304

Daerah	Jumlah % tebu dari	Jenis Truck*	Jumlah Truck	Jarak Tempuh	Jumlah Solar Yang	Total Solar Yang	Kapasitas Tebu (Ton)
		С	3021			38,233.78	24168.400
		A	3374			24,019.51	20238.120
Kediri	10%	В	2478	45	7.1	17,640.88	17346.030
		С	2530			18,011.07	20240.240
		A	2776			54,895.40	16656.416
Tuban	9%	В	2825	125	19.8	55,864.38	19774.714
		C	1951			38,581.03	15610.818
		A	2698			36,280.01	16189.200
Blitar	8%	В	2641	85	13.4	35,513.53	18502.210
		C	1446			19,444.36	11568.102
		A	1900			31,560.90	11400.213
Sidoarjo	6%	В	1338	105	16.6	22,225.52	9134.121
		С	1770			29,401.05	14160.303
		TOTA	AL			1,152,950.21	578243.900

^{*}Jenis Truk A = Truk dengan kapasitas menampung tebu sebesar 6 Ton B = Truk dengan kapasitas menampung tebu sebesar 7 Ton

C = Truk dengan kapasitas menampung tebu sebesar 8 Ton

Perhitungan Emisi CO₂ Rata-Rata Dari TiapDaerah Pemasok Tebu

Daerah	Jumlah Tebu (ton)	Jumlah Truk (Seluruh nya)	Jumlah Truk (kendaraan /jam)	Konsumsi Bahan Bakar (L/100km)	Faktor Emisi (g/L)	Emisi CO2 rata-rata (g/jam.km)	Emisi CO2 rata-rata (kg/jam.km)
Malang	138,778.54	19,362	5.20	15.82	2,924.90	240,837.87	240.84
Nganjuk	115,648.78	16,727	4.50	15.82	2,925.90	208,133.06	208.13
Lamongan	69,389.27	10,207	2.74	15.82	2,926.90	127,048.50	127.05
Madiun	63,606.83	9,109	2.45	15.82	2,927.90	113,420.22	113.42
Kediri	57,824.39	8,382	2.25	15.82	2,928.90	104,403.66	104.40
Tuban	52,041.95	7,552	2.03	15.82	2,929.90	94,097.55	94.10
Blitar	46,259.51	6,785	1.82	15.82	2,930.90	84,569.62	84.57
Sidoarjo	34,694.64	5,008	1.35	15.82	2,931.90	62,442.03	62.44
			TOTAL				1,034.95

 $\overline{\text{Emisi CO}_2} = \sum m \times \text{Konsumsi Bahan Bakar} \times \text{EF}$

Hasil Emisi CO₂ Dari Penggunaan Transportasi Di Tiap Daerah

Daerah	Emisi CO2 rata- rata (kg/jam.km)	Panjang Jalan (km)	Emisi CO2 (kg/jam)	Emisi CO2 (ton/jam)	Total Emisi CO2 (tCO2)		
Malang	240.84	134.00	32,272.27	32.27	120,052.86		
Nganjuk	208.13	25.00	5,203.33	5.20	19,356.37		
Lamongan	127.05	110.00	13,975.33	13.98	51,988.25		
Madiun	113.42	80.00	9,073.62	9.07	33,753.86		
Kediri	104.40	45.00	4,698.16	4.70	17,477.17		
Tuban	94.10	125.00	11,762.19	11.76	43,755.36		
Blitar	84.57	85.00	7,188.42	7.19	26,740.91		
Sidoarjo	62.44	105.00	6,556.41	6.56	24,389.86		
	TOTAL						

Emisi $CO_2 = \overline{Emisi CO_2} \times Jarak Tempuh$

PERHITUNGAN EMISI CO2 DARI PROSES PRODUKSI

A. Penggunaan Listrik Musim Giling Dari Listrik Pribadi 2013

Tahun	Bulan	Konsumsi Listrik (kWh)	Emisi Karbon (kgCO2)	Emisi Karbon (tCO2)
	Juni	2,628,839.40	2,357,543.17	2,357.54
	Juli	3,480,262.50	3,121,099.41	3,121.10
2013	Agustus	2,570,040.00	2,304,811.87	2,304.81
2013	September	3,387,780.00	3,038,161.10	3,038.16
	Oktober	3,387,780.00	3,038,161.10	3,038.16
	Nopember	1,294,755.00	1,161,136.28	1,161.14
TOTAL		16,749,456.90	15,020,912.95	15,020.91

Emisi CO_2 = Konsumsi Listrik × EF

Emisi faktor yang digunakan untuk menghtiung emisi ${\rm CO_2}$ yang dihasilkan dari penggunaan listrik miliki sendiri adalah sebesar $0.8968~{\rm kgCO_2/kWh}$, diperoleh dari persamaan berikut.

$$EF = SFC \times NCV \times CEF \times Oxid \times \frac{44}{12}$$

 $EF = 0.00014 \text{ ton/kWh x } 15.6 \text{ TJ/}1000 \text{ton x } 112000 \text{ kgCO}_2/\text{TJ x}$ 1 x 44/12

 $EF = 0.8968 \text{ kgCO}_2/\text{kWh}$

B. Penggunaan Listrik Musim Giling Dari Listrik PLN 2013

Tahun	Bulan	Konsumsi Listrik (kWh)	Emisi Karbon (kgCO2)	Emisi Karbon (tCO2)
	Juni	147,192.00	114,515.38	114.52
2013	Juli	14,400.00	11,203.20	11.20
	Agustus	119,266.00	92,788.95	92.79

Tahun	Bulan	Konsumsi Listrik (kWh)	Emisi Karbon (kgCO2)	Emisi Karbon (tCO2)
	September	70,328.00	54,715.18	54.72
	Oktober	16,520.00	12,852.56	12.85
	Nopember	17,736.00	13,798.61	13.80
T	OTAL	385,442.00	286,075.27	286.08

Sedangkan untuk emisi faktor yang digunakan untuk menghitung emisi CO_2 dari penggunaan listrik PLN adalah sebesar $0.778\ kgCO_2/kWh$ dari RUPTL.

Emisi Yang Dihasilkan Di Tiap Proses Produksi Gula

Stasiun Konsumsi Listrik (MW)		Emisi Faktor (kgCO2/kWh) Emisi CO2 (kgCO2)		Emisi CO2 (tCO2)
Penggilingan	12,325,948.56	0.8968	11,053,910.67	11,053.91
Pemurnian	831,709.04	0.8968	745,876.67	745.88
Penguapan	1,837,536.72	0.8968	1,647,902.93	1,647.90
Kristalisasi	877,475.40	0.8968	786,919.94	786.92
Putaran	876,787.18	0.8968	786,302.74	786.30
Penerangan	385,442.00	0.778	299,873.88	299.87
	T	OTAL		15,320.79

 $Emisi~CO_2 = Konsumsi~Listrik_{\it tiap~stasiun} \times EF$

PERHITUNGAN EFFISIENSI BOILER

Bolier Takuma (Beroperasi sejak tahun 1996)

$$\begin{split} \textit{Effisiensi Boiler} &= \frac{Q \times (h_g - h_f)}{q \times \text{GHV}} \times 100\% \\ &= \frac{71750 \times (735.25 - 105.1)}{38020 \times 1776} \times 100\% \\ &= \frac{38020 \times 1776}{100\%} \times 100\% \\ &= \frac{1000}{100} \times 100\% \\ &= \frac{1000}{100}$$

Boiler Yoshimine (Beroperasi sejak tahun 1986)

$$\begin{split} & \text{Effisiensi Boiler} = \frac{Q \times (h_g - h_f)}{q \times \text{GHV}} \times 100\% \\ & \text{Effisiensi Boiler} = \frac{55417 \times (735.25 - 105.1)}{29792 \times 1776} \times 100\% \\ & \text{Effisiensi Boiler} = 0.66 \times 100\% \\ & \text{Effisiensi Boiler} = 66\% \end{split}$$

Dengan:

Q =Jumlah laju uap air yang dihasilkan (kg/jam)

Q =Jumlah laju alir bahan bakar yang digunakan, (kg/jam)

GHV = Nilai panas atas bahan bakar (kcal/kg)

hg = Enthalpi uap pada tekanan kerja (kcal/kg uap)

hf = Enthalpi air umpan ketel (kcal/kg uap)

Penggunaan bahan bakar untuk ketel Takuma

Bahan bakar untuk Ketel Takuma = 98,570.22 ton Bahan bakar untuk Ketel Yoshimine = 70,889.28 ton

Jumlah total bahan bakar yang digunakan selama musim giling 2013 adalah 169,459.5 ton.

PELUANG REDUKSI EMISI CO2 DARI TRANSPORTASI

Perhitungan Reduksi Emisi CO₂ Dengan Merubah Prosentase Pemasokan Tebu

Tempat	Jumlah % tebu dari jumlah keseluruhan	Jenis Truck*	Jumlah Truck	Jarak Tempuh (km)	Jumlah Solar Yang Digunakan (L)	Total Solar Yang Digunakan (L)	Kapasitas Tebu (Ton)
Malang	24%	С	17,347.32			30517.036 41636.200 66625.300	
Nganjuk	20%	С	14,456.10	25	1.6	23129.8	34694.000 46258.500 34696.280
Lamongan	12%	С	8,673.66	110	7.3	63317.7	24286.123 29143.034 15960.111
Madiun	11%	С	7,950.85	80	5.3	42139.5	19082.125 20356.304 24168.400

Tempat	Jumlah % tebu dari	Jenis Truck*	Jumlah Truck	Jarak Jumlah Tempuh Solar Yang		Total Solar Yang	Kapasitas Tebu (Ton)
			7,228.05				20238.120
Kediri	10%	C		45	3.5	25298.2	17346.030
					20240.240		
	9%		6,505.24			53993.5	16656.416
Tuban		C		125	8.3		19774.714
							15610.818
		С	5,782.44	85	5.7	32959.9	16189.200
Blitar	8%						18502.210
							11568.102
							11400.213
Sidoarjo	6%	C	4,336.83	105	7	30357.8	9134.121
							14160.303
		TC)TAL			427322.2416	578243.900

^{*}Jenis Truk C = Truk dengan kapasitas menampung tebu sebesar 8 Ton

Tempat	Jumlah Tebu (ton)	Jumlah Truck (Seluruhnya)	Jumlah Truck (kendaraan/ jam)	Konsumsi Bahan Bakar (L/100km)	Faktor Emisi (g/L)	Emisi CO2 rata-rata (g/jam.km)	Emisi CO2 rata-rata (kg/jam.km)				
Malang	138,778.54	17,347.32	4.66	15.82	2,924.90	215,777.86	215.78				
Nganjuk	115,648.78	14,456.10	3.89	15.82	2,925.90	179,876.36	179.88				
Lamongan	69,389.27	8,673.66	2.33	15.82	2,926.90	107,962.70	107.96				
Madiun	63,606.83	7,950.85	2.14	15.82	2,927.90	98,999.62	99.00				
Kediri	57,824.39	7,228.05	1.94	15.82	2,928.90	90,030.40	90.03				
Tuban	52,041.95	6,505.24	1.75	15.82	2,929.90	81,055.02	81.06				
B litar	46,259.51	5,782.44	1.55	15.82	2,930.90	72,073.50	72.07				
T idoarjo	34,694.64	4,336.83	1.17	15.82	2,931.90	54,073.57	54.07				
	TOTAL										

Tempat	Emisi CO2 rata-rata (kg/jam.km)	Panjang Jalan (km)	Emisi CO2 (kg/jam)	Emisi CO2 (ton/jam)	Total Emisi CO2 (tCO2)
Malang	215.78	134.00	28,914.23	28.91	107,560.95
Nganjuk	179.88	25.00	4,496.91	4.50	16,728.50
Lamongan	107.96	110.00	11,875.90	11.88	44,178.34
Madiun	99.00	80.00	7,919.97	7.92	29,462.29
Kediri	90.03	45.00	4,051.37	4.05	15,071.09
Tuban	81.06	125.00	10,131.88	10.13	37,690.58
Blitar	72.07	85.00	6,126.25	6.13	22,789.64
Sidoarjo	54.07	105.00	5,677.72	5.68	21,121.14
		TOTAL			294,602.52

PELUANG REDUKSI EMISI CO2 DARI PROSES PRODUKSI

Reduksi Dari Penggunaan Motor Listrik

Data Namplate Motor

	No.	Stasiun	Nama Motor	P (kW)	V (v)	I(A)	CosФ
	1		Motor penggerak cane carrier	37	380	58	0.67
	2	Penggilingan	Motor penggerak cane Cutter	450	380	345	0.93
	3	i chiggiinigan	Motor penggerak pompa nira mentah	37	380	70	0.87
	4		Motor penggerak pompa imbibisi	37	380	49	0.86
₿-	5		Motor Condensor Juice Heater	7.5	380	14.88	0.88
. 16	6		Motor pompa Injeksi RVF	18.5	380	36.5	0.86
	7		Mixer nira Kotor Pemurnian Motor penggerak nira Tapis		220	9	0.83
	8	Pemurnian			380	22.3	0.83
	9		Motor pompa Vacuum Condensor	30	380	62.1	0.81
	10		Motor Pengerak Floculant	2	380	3.7	0.82
	11		Motor pompa nira Kotor	15	380	31	0.83
	12	Penguapan	Motor pompa Injeksi	260	380	536	0.8
	13	i ciiguapaii	Motor pompa Condensor badan pemanas	11	380	25	0.8
	14	Kristalisasi	Motor pompa Vacuum VP V	45	380	88.5	0.83

No.	Stasiun	Nama Motor	P (kW)	V (v)	I(A)	CosФ
15		Motor pompa Vacuum VP VI	45	380	88.5	0.87
16		Motor pompa Vacuum VP VII	45	380	90	0.84
17		Motor pompa Vacuum VP VIII	45	380	84	0.8
18		Motor Vacuum central	90	380	66.7	0.76
19		Motor HGF	15	380	30	0.86
20	Dutoron	MotorLGF	45	380	90	0.88
21	Putaran	Motor pompa Gula	37	380	49	0.87
22		Motor pompa stroop	15	380	31	0.83

Hasil Pengukuran Pembebanan dan Efisiensi Motor Listrik Pabrik Gula Lestari

#Stasiun Penggilingan#

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
	Motor	R	372	50							
1 penggerak cane carrier	penggerak	S	370	54	0.67	0.88	23.11	42.05	54.95	20.33	0.00
	cane carrier	T	371	57							
2 pengg	Motor	R	520	340							
	penggerak cane Cutter	S	521	341	0.93	0.8	285.49	562.50	50.75	228.39	25.95
		T	521.6	341							
	Motor	R	387	60	0.87		35.57	47.44	74.99	27.75	4.04
3	penggerak	S	386	61		0.78					
	pompa nira mentah	Т	388	62							
	Motor	R	379	44							
4	penggerak	S	380	45	0.86	0.8	24.89	46.25	53.82	19.91	2.77
	pompa imbibisi	Т	380.3	43							
	·	<u>-</u>	·	T	OTAL	·	·		·		32.76

#Stasiun Pemurnian#

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
1	Motor	R	387	9	0.88	0.76	5.61	9.87	56.82	4.26	0.76
	Condensor Juice Heater	S	386	9.6							
		T	386	10							
2	Motor pompa	R	389	34	0.86	0.76	14.16	24.34	58.17	10.76	1.93
	Injeksi RVF	S	388	35							
B		T	38.7	36							
5 3	Mixer nira	R	235	7	0.83	0.84	2.64	4.76	55.51	2.22	0.12
	Kotor	S	234	8							
		T	233	8.6	-						
4	Motor	R	386	18	0.83	0.84	10.37	13.10	79.19	8.71	0.47
	penggerak nira	S	385.5	20							
	Tapis	T	385	18.2							
5	Motor pompa	R	388	42	0.81	0.84	23.12	35.71	64.72	19.42	1.05
	Vacuum	S	388.2	43							
	Condensor	Т	389.1	42.4	1						

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
6	Motor	R	385	3	0.86	0.86	1.53	2.33	65.58	1.31	0.03
	Pengerak	S	386.3	2.8							
	Floculant	T	382	2.2							
7	Motor pompa	R	382	20	0.83	0.85	11.48	17.65	65.07	9.76	0.39
	nira Kotor	S	384	21							
		T	383.7	21.6							
	•	•	•	T	OTAL		•	•	•	•	4.76

#Stasiun Penguapan#

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
	N.C.	R	380	320							
1	Motor pompa Injeksi	S	381	321	0.8	0.88	168.74	188.52	89.51	232.72	0.00
	Injeksi	T	382	319							
	Motor pompa	R	383	8							
2	Condensor	S	384	8.3	0.8	0.75	4.30	9.36	45.97	5.06	1.00
W	badan pemanas	T	384.2	8							
		•		7	OTAL	•			•		1.00

#Stasiun Kritalisasi#

No.	Nama Motor	Fasa	V (v)	I (A)	CosФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
	Motor pompa	R	388	68							
1	Vacuum VP	S	389	69	0.83	0.82	37.88	54.88	69.03	31.07	2.58
	V	T	387	67							
	Motor pompa	R	387.3	67							
2	Vacuum VP	S	388	63	0.87	0.88	37.37	51.14	73.07	32.88	0.00
	VI	Т	388.4	62							
В-	Motor pompa	R	386	62.4							
3	Vacuum VP	S	386	67.3	0.84	0.86	37.00	52.33	70.71	31.82	1.72
	VII	Т	387	68							
	Motor pompa	R	388	65							
4	Vacuum VP	S	388.6	68	0.8	0.79	35.99	56.96	63.19	28.43	3.68
	VIII	Т	389	67.8							
	Motor	R	390	80							
5	Vacuum	S	392	83	0.76	0.74	43.20	121.62	35.52	31.97	6.87
	central	T	391.4	89							
TOTAL 14.86										14.86	

#Stasiun Putaran#

No.	Nama Motor	Fasa	V (v)	I (A)	CosФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
		R	388	21							
1	Motor HGF	S	387	22	0.86	0.72	12.71	20.83	61.00	9.15	2.31
		Т	386.2	23.2							
		R	385	61							
2	MotorLGF	S	384.2	62.3	0.88	0.8	36.15	56.25	64.26	28.92	3.29
		Т	384	62							
Β.	24	R	383	40							
23 3	Motor pompa Gula	S	384	41	0.87	0.88	23.70	42.05	56.37	20.86	0.00
	Guia	Т	385.3	42							
	3.6	R	388	17							
4	Motor pompa stroop	S	389	18.6	0.83	0.82	10.16	18.29	55.52	8.33	0.69
	stroop	T	388.8	19							
					TOTAL				-	_	6.29

PENGELOMPOKAN MOTOR LISTRIK SESUAI EFISIENSI

Motor Listrik dengan Efisiensi Lebih Dari 80%

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Save Energi (kW)
	Motor	R	372	50							
1	penggerak cane	S	370	54	0.67	0.88	23.11	42.05	54.95	20.33	0.00
	carrier	T	371	57							
	Motor	R	520	340							
2	penggerak cane	S	521	341	0.93	0.8	285.49	562.50	50.75	228.39	25.95
₿.	Cutter	T	521.6	341							
. 24	Motor	R	379	44							
3	penggerak	S	380	45	0.86	0.8	24.89	46.25	53.82	19.91	2.77
	pompa imbibisi	T	380.3	43							
	3.4:	R	235	7							
4	Mixer nira Kotor	S	234	8	0.83	0.84	2.64	4.76	55.51	2.22	0.12
	Kotoi	T	233	8.6							
	Motor	R	386	18							
5	penggerak nira	S	385.5	20	0.83	0.84	10.37	13.10	79.19	8.71	0.47
	Tapis	T	385	18.2							

No.	Nama Motor	Fasa	V (v)	I (A)	CosФ	η	Pi	Pr	(%)	P (kW)	Energi (kW)
	Motor pompa	R	388	42							
6	Vacuum	S	388.2	43	0.81	0.84	23.12	35.71	64.72	19.42	1.05
	Condensor	T	389.1	42.4							
	M (D 1	R	385	3							
7	Motor Pengerak Floculant	S	386.3	2.8	0.86	0.86	1.53	2.33	65.58	1.31	0.03
	Tioculant	T	382	2.2							
	3.6.4	R	382	20							
B - 8	Motor pompa nira Kotor	S	384	21	0.83	0.85	11.48	17.65	65.07	9.76	0.39
25	ilita Kotoi	T	383.7	21.6							
	3.6.4	R	380	320							
9	Motor pompa Injeksi	S	381	321	0.8	0.88	168.74	188.52	89.51	232.72	0.00
	Injeksi	T	382	319							
	3.6	R	388	68							
10	Motor pompa Vacuum VP V	S	389	69	0.83	0.82	37.88	54.88	69.03	31.07	2.58
	vacuum vr v	T	387	67							

Save

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Save Energi (kW)
	Matarnama	R	387.3	67							
11	Motor pompa Vacuum VP VI	S	388	63	0.87	0.88	37.37	51.14	73.07	32.88	0.00
	vacuum vi vi	T	388.4	62							
	Matanana	R	386	62.4							
12	Motor pompa Vacuum VP VII	S	386	67.3	0.84	0.86	37.00	52.33	70.71	31.82	1.72
	vacaum vi vii	Т	387	68							
		R	385	61							
₩ ₁ 13	MotorLGF	S	384.2	62.3	0.88	0.8	36.15	56.25	64.26	28.92	3.29
26		T	384	62							
	26.4	R	383	40							
14	Motor pompa Gula	S	384	41	0.87	0.88	23.70	42.05	56.37	20.86	0.00
	Guia	T	385.3	42							
	M	R	388	17							
15	Motor pompa stroop	S	389	18.6	0.83	0.82	10.16	18.29	55.52	8.33	0.69
	siroop	T	388.8	19							
	TOTAL 39										

Motor Listrik dengan Efisiensi Kurang Dari 80%

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Save Energi (kW)
	Motor	R	387	60							
1	penggerak	S	386	61	0.87	0.78	35.57	47.44	74.99	27.75	4.04
	pompa nira mentah	T	388	62							
	Motor	R	387	9							
2	Condensor Juice	S	386	9.6	0.88	0.76	5.61	9.87	56.82	4.26	0.76
В-	Heater	T	386	10							
27	N	R	389	34							
3	Motor pompa Injeksi RVF	S	388	35	0.86	0.76	14.16	24.34	58.17	10.76	1.93
	injeksi K v i	T	38.7	36							
	Motor pompa	R	383	8							
4	Condensor	S	384	8.3	0.8	0.75	4.30	9.36	45.97	5.06	1.00
	badan pemanas	T	384.2	8							
	Motor pompa	R	388	65							
5	Vacuum VP	S	388.6	68	0.8	0.79	35.99	56.96	63.19	28.43	3.68
	VIII	T	389	67.8							

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Save Energi (kW)
	Makan Mananan	R	390	80							
6	Motor Vacuum central	S	392	83	0.76	0.74	43.20	121.62	35.52	31.97	6.87
	Centrar	T	391.4	89							
		R	388	21							
7	Motor HGF	S	387	22	0.86	0.72	12.71	20.83	61.00	9.15	2.31
		T	386.2	23.2							
TOTAL										20.60	

Persamaan yang digunakan:

$$\begin{aligned} &P_i = \frac{V \times I \times PF \times \sqrt{3}}{1000} \\ &P_r = HP \times \frac{0.746}{\eta_r} \\ &\text{Load(\%)} = \frac{P_i}{P_r} \times 100\% \\ &P = P_{Nameplate} \times \text{Load} \end{aligned}$$

Energy Saving =
$$P_{\text{Nameplate}} \times L \times N \times \left(\frac{100}{E_a} - \frac{100}{E_b}\right)$$

Dengan:

Pi =Daya tiga fase (kW)

V =Tegangan (v) I =Arus (A)

 $Cos\Phi$ = Faktor daya

Pr =Daya masuk pada beban penuh (kW)

HP =Horse Power pada nameplate η_r =Effisiensi pada beban penuh

N =Waktu operasi

L =Prosentase beban yang dibagi 100

Ea =Efisiensi motor

Eb =Efisiensi motor yang diinginkan

PERHITUNGAN PENURUNAN EMISI CO₂ DARI PROSES PRODUKSI GULA

Dari pengukuran langsung diperoleh 22 m otor memiliki daya sebesar 885.15 kW dengan operasi motor selama 3441.08 jam maka diperoleh konsumsi listrik sebesar 3,045,854.97 kWh, jika efisiensi ditingkatkan ke 88% maka diperoleh potensi penurunan listrik sebesar 205,322.44 kWh atau sekitar 6.74%. Konsumsi listrik yang digunakan untuk motor-motor listrik sebanyak 188 unit di Pabrik Gula Lestari sebesar 11,994,429.23 kWh, sehingga jika semua motor listrik dilakukan perbaikan untuk meningkatkan efisiensi menjadi 88% maka diperoleh penurunan konsumsi listrik sebesar 4,776,181.72 kWh.

Penggunaa n Listrik	Nyata	Peluang Penurunan	Hasil Rekomendasi
Penggunaan Listrik Seluruhnya (kWh)	17,134,898.90	-	-
Penggunaan Listrik Oleh Motor (kWh)	11,994,429.23	4,776,181.72	7,218,247.51
Emisi CO ₂ (Kg tCO ₂)	10,756,604.13	4,283,279.77	6,473,324.37
Emisi CO ₂ (tCO ₂)	10,756.60	4,283.28	6,473.32

PERHITUNGAN PENURUNAN EMISI CO₂ DARI PENGGUNAAN BAHAN BAKAR KETEL

$$Kebutuhan Bahan Bakar = \frac{Q \times (h_g - h_f)}{n \times GHV}$$

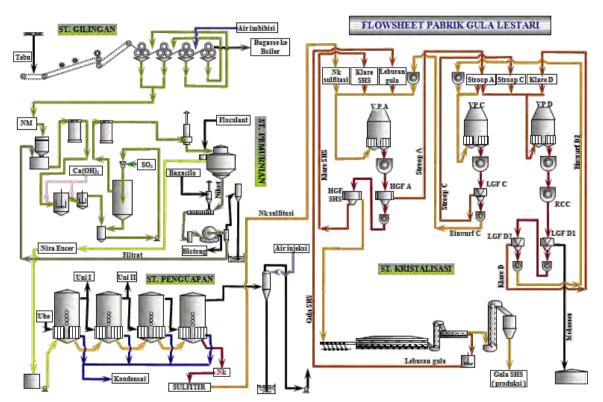
Dengan Persamaan diatas jika effisiensi dari ketel Takuma di tingkatkan menjadi 70% maka dapat dihitung kebutuhan bahan bakar yang digunakan, dengan persamaan diatas dihasilkan kebutuhan bahan bakar untuk ketel Takuma adalah sebaga berikut.

Kebutuhan Bahan Bakar =
$$\frac{\frac{Q\times(h_g-h_f)}{\eta\times GHV}}{Kebutuhan Bahan Bakar} = \frac{71750\times(735.25-105.1)}{0.7\times1776}$$
 Kebutuhan Bahan Bakar = 36,195.31 kg

Untuk bahan bakar yang digunakan jika boiler Yoshimine diganti maka diperoleh effisiensi untukboiler Yoshimine sebesar 89%, dengan begitu bahan bakar yang digunakan dapat dihitung menggunakan persamaan diatas sebgai berikut.

Kebutuhan Bahan Bakar =
$$\frac{Q \times (h_g - h_f)}{\eta \times GHV} \times 100\%$$
Kebutuhan Bahan Bakar =
$$\frac{60000 \times (735.25 - 105.1)}{0.89 \times 1776}$$
Kebutuhan Bahan Bakar = 23,806.18 kg

Jadi jika ketel yang digunakan ditingkatkan maka bahan bakar yang digunakan ketel selama musim giling adalah sebagai berikut.


Penggunaan bahan bakar untuk ketel Takuma

Bahan bakar untuk Ketel Takuma = 95,555.6 ton Bahan bakar untuk Ketel Yoshimine = 62.848.3 ton

Jumlah total bahan bakar yang digunakan selama musim giling 2013 adalah 158,403.9 ton, sehingga emisi yang dapat direduksi sebesar 9,296.44 tCO₂ atau sekitar 6.59% dari total emisi CO₂ sebelumnya yang sebesar 141,074.49 tCO₂.

LAMPIRAN A

FLOWSHEET PABRIK GULA LESTARI

Halaman ini memang dikosongkan

PERHITUNGAN EMISI CO2 DARI BAHAN BAKAR UNTUK PEMBAKARAN

Penggunaan Bahan Bakar Solar Untuk Ketel

		Konsur	nsi Solar	Faktor	Konversi	
Tahun	Bulan	Liter	MWh	Emisi (kg CO2/TJ)	Faktor Emisi (ton CO2/MWh)	Emisi CO2 (tCO2)
	Juni	2696	27.3599	74100	0.2667	7.30
	Juli	2557	28.8472	74100	0.2667	7.69
2013	Agustus	2169	23.2083	74100	0.2667	6.19
2013	September	2073	22.1811	74100	0.2667	5.92
	Oktober	1873	20.0411	74100	0.2667	5.34
	Nopember	1132	12.1124	74100	0.2667	3.23
			TOTAL	·		35.67

Emisi $CO_2 = \Sigma$ Bahan bakar × Emisi Faktor_{Solar}

₩-1

Penggunaan Bahan Bakar Bagasse Untuk Ketel

		Konsum	si Bagasse	Faktor	Faktor Emisi	
Tahun	Bulan	Ton	MWh	Emisi <i>Moulding</i> (kgCO2/TJ)	Bagasse (tCO2/MWh)	Emisi CO2 (tCO2)
	Juni	22,791.70	47,051.81	112000	0.4032	18,971.29
	Juli	35,871.10	74,053.28	112000	0.4032	29,858.28
2013	Agustus	21,598.80	44,589.15	112000	0.4032	17,978.35
2013	September	34,718.30	71,673.41	112000	0.4032	28,898.72
	Oktober	33,834.70	69,849.28	112000	0.4032	28,163.23
	Nopember	19,762.60	40,798.45	112000	0.4032	16,449.94
			TOTAL			140,319.80

Emisi $CO_2 = \Sigma$ Bahan bakar \times Emisi Faktor_{Bagasse}

Penggunaan Bahan Bakar Moulding Untuk Ketel

		Konsums	i Moulding	Faktor	Konversi		
Tahun	Bulan	Ton	MWh	Emisi <i>Moulding</i> (kgCO2/TJ)	Faktor Emisi Moulding (tCO2/MWh)	Emisi CO2 (tCO2)	
	Juni	340.3	702.52	112000	0.4032	283.26	
	Juli	215.4	444.68	112000	0.4032	179.29	
2013	Agustus	93.3	192.61	112000	0.4032	77.66	
2013	September	25.2	52.02	112000	0.4032	20.98	
	Oktober	189.6	391.42	112000	0.4032	157.82	
	Nopember	0.0	0.00	112000	0.4032	0.00	
			TOTAL			719.01	

Emisi $CO_2 = \Sigma$ Bahan bakar × Emisi Faktor_{Moulding}

PERHITUNGAN EMISI CO₂ DARI TRANSPORTASI

Jumlah Truk Yang Digunakan Dari Tiap Daerah

Daerah	Jumlah % tebu dari jumlah keseluruhan	Jenis Truck*	Jumlah Truck	Jarak Tempuh (km)	Jumlah Solar Yang Digunakan (L)	Total Solar Yang Digunakan (L)	Kapasitas Tebu (Ton)
		A	5086			107,817.10	30517.036
Malang	24%	В	5948	134	21.2	126,090.46	41636.200
		C	8328			176,543.61	66625.300
		A	5782			22,867.81	34694.000
Nganjuk	20%	В	6608	25	4	26,134.64	46258.500
		C	4337			17,152.84	34696.280
		A	4049			70,460.70	24286.123
Lamongan	12%	В	4163	110	17.4	72,444.53	29143.034
		C	1995			34,716.99	15960.111
Madiun	11%	A	3180	80	5.3	40,246.08	19082.125
Mauiuii	1170	В	2908	60	5.5	36,803.65	20356.304

Daerah	Jumlah % tebu dari	Jenis Truck*	Jumlah Truck	Jarak Tempuh	Jumlah Solar Yang	Total Solar Yang	Kapasitas Tebu (Ton)
		С	3021			38,233.78	24168.400
		A	3374			24,019.51	20238.120
Kediri	10%	В	2478	45	7.1	17,640.88	17346.030
		С	2530			18,011.07	20240.240
		A	2776			54,895.40	16656.416
Tuban	9%	В	2825	125	19.8	55,864.38	19774.714
		C	1951			38,581.03	15610.818
		A	2698			36,280.01	16189.200
Blitar	8%	В	2641	85	13.4	35,513.53	18502.210
		C	1446			19,444.36	11568.102
		A	1900			31,560.90	11400.213
Sidoarjo	6%	В	1338	105	16.6	22,225.52	9134.121
		С	1770			29,401.05	14160.303
		TOTA	AL			1,152,950.21	578243.900

^{*}Jenis Truk A = Truk dengan kapasitas menampung tebu sebesar 6 Ton B = Truk dengan kapasitas menampung tebu sebesar 7 Ton

C = Truk dengan kapasitas menampung tebu sebesar 8 Ton

Perhitungan Emisi CO₂ Rata-Rata Dari TiapDaerah Pemasok Tebu

Daerah	Jumlah Tebu (ton)	Jumlah Truk (Seluruh nya)	Jumlah Truk (kendaraan /jam)	Konsumsi Bahan Bakar (L/100km)	Faktor Emisi (g/L)	Emisi CO2 rata-rata (g/jam.km)	Emisi CO2 rata-rata (kg/jam.km)
Malang	138,778.54	19,362	5.20	15.82	2,924.90	240,837.87	240.84
Nganjuk	115,648.78	16,727	4.50	15.82	2,925.90	208,133.06	208.13
Lamongan	69,389.27	10,207	2.74	15.82	2,926.90	127,048.50	127.05
Madiun	63,606.83	9,109	2.45	15.82	2,927.90	113,420.22	113.42
Kediri	57,824.39	8,382	2.25	15.82	2,928.90	104,403.66	104.40
Tuban	52,041.95	7,552	2.03	15.82	2,929.90	94,097.55	94.10
Blitar	46,259.51	6,785	1.82	15.82	2,930.90	84,569.62	84.57
Sidoarjo	34,694.64	5,008	1.35	15.82	2,931.90	62,442.03	62.44
			TOTAL				1,034.95

 $\overline{\text{Emisi CO}_2} = \sum m \times \text{Konsumsi Bahan Bakar} \times \text{EF}$

Hasil Emisi CO₂ Dari Penggunaan Transportasi Di Tiap Daerah

Daerah	Emisi CO2 rata- rata (kg/jam.km)	Panjang Jalan (km)	Emisi CO2 (kg/jam)	Emisi CO2 (ton/jam)	Total Emisi CO2 (tCO2)
Malang	240.84	134.00	32,272.27	32.27	120,052.86
Nganjuk	208.13	25.00	5,203.33	5.20	19,356.37
Lamongan	127.05	110.00	13,975.33	13.98	51,988.25
Madiun	113.42	80.00	9,073.62	9.07	33,753.86
Kediri	104.40	45.00	4,698.16	4.70	17,477.17
Tuban	94.10	125.00	11,762.19	11.76	43,755.36
Blitar	84.57	85.00	7,188.42	7.19	26,740.91
Sidoarjo	62.44	105.00	6,556.41	6.56	24,389.86
		TOTAL			337,514.65

Emisi $CO_2 = \overline{Emisi CO_2} \times Jarak Tempuh$

PERHITUNGAN EMISI CO2 DARI PROSES PRODUKSI

A. Penggunaan Listrik Musim Giling Dari Listrik Pribadi 2013

Tahun	Bulan	Konsumsi Listrik (kWh)	Emisi Karbon (kgCO2)	Emisi Karbon (tCO2)
	Juni	2,628,839.40	2,357,543.17	2,357.54
	Juli	3,480,262.50	3,121,099.41	3,121.10
2013	Agustus	2,570,040.00	2,304,811.87	2,304.81
2013	September	3,387,780.00	3,038,161.10	3,038.16
	Oktober	3,387,780.00	3,038,161.10	3,038.16
	Nopember	1,294,755.00	1,161,136.28	1,161.14
TOTAL		16,749,456.90	15,020,912.95	15,020.91

Emisi CO_2 = Konsumsi Listrik × EF

Emisi faktor yang digunakan untuk menghtiung emisi ${\rm CO_2}$ yang dihasilkan dari penggunaan listrik miliki sendiri adalah sebesar $0.8968~{\rm kgCO_2/kWh}$, diperoleh dari persamaan berikut.

$$EF = SFC \times NCV \times CEF \times Oxid \times \frac{44}{12}$$

 $EF = 0.00014 \text{ ton/kWh x } 15.6 \text{ TJ/}1000 \text{ton x } 112000 \text{ kgCO}_2/\text{TJ x}$ 1 x 44/12

 $EF = 0.8968 \text{ kgCO}_2/\text{kWh}$

B. Penggunaan Listrik Musim Giling Dari Listrik PLN 2013

Tahun	Bulan	Konsumsi Listrik (kWh)	Emisi Karbon (kgCO2)	Emisi Karbon (tCO2)
	Juni	147,192.00	114,515.38	114.52
2013	Juli	14,400.00	11,203.20	11.20
	Agustus	119,266.00	92,788.95	92.79

Tahun	Bulan	Konsumsi Listrik (kWh)	Emisi Karbon (kgCO2)	Emisi Karbon (tCO2)
	September	70,328.00	54,715.18	54.72
	Oktober	16,520.00	12,852.56	12.85
	Nopember	17,736.00	13,798.61	13.80
TOTAL		385,442.00	286,075.27	286.08

Sedangkan untuk emisi faktor yang digunakan untuk menghitung emisi CO_2 dari penggunaan listrik PLN adalah sebesar $0.778\ kgCO_2/kWh$ dari RUPTL.

Emisi Yang Dihasilkan Di Tiap Proses Produksi Gula

Stasiun	Konsumsi Listrik (MWh)	Emisi Faktor (kgCO2/kWh)	Emisi CO2 (kgCO2)	Emisi CO2 (tCO2)
Penggilingan	12,325,948.56	0.8968	11,053,910.67	11,053.91
Pemurnian	831,709.04	0.8968	745,876.67	745.88
Penguapan	1,837,536.72	0.8968	1,647,902.93	1,647.90
Kristalisasi	877,475.40	0.8968	786,919.94	786.92
Putaran	876,787.18	0.8968	786,302.74	786.30
Penerangan	385,442.00	0.778	299,873.88	299.87
	15,320.79			

 $Emisi~CO_2 = Konsumsi~Listrik_{\it tiap~stasiun} \times EF$

PERHITUNGAN EFFISIENSI BOILER

Bolier Takuma (Beroperasi sejak tahun 1996)

$$\begin{split} \textit{Effisiensi Boiler} &= \frac{Q \times (h_g - h_f)}{q \times \text{GHV}} \times 100\% \\ &= \frac{71750 \times (735.25 - 105.1)}{38020 \times 1776} \times 100\% \\ &= \frac{38020 \times 1776}{100\%} \times 100\% \\ &= \frac{1000}{100} \times 100\% \\ &= \frac{1000}{100}$$

Boiler Yoshimine (Beroperasi sejak tahun 1986)

$$\begin{split} & \text{Effisiensi Boiler} = \frac{Q \times (h_g - h_f)}{q \times \text{GHV}} \times 100\% \\ & \text{Effisiensi Boiler} = \frac{55417 \times (735.25 - 105.1)}{29792 \times 1776} \times 100\% \\ & \text{Effisiensi Boiler} = 0.66 \times 100\% \\ & \text{Effisiensi Boiler} = 66\% \end{split}$$

Dengan:

Q =Jumlah laju uap air yang dihasilkan (kg/jam)

Q =Jumlah laju alir bahan bakar yang digunakan, (kg/jam)

GHV = Nilai panas atas bahan bakar (kcal/kg)

hg = Enthalpi uap pada tekanan kerja (kcal/kg uap)

hf = Enthalpi air umpan ketel (kcal/kg uap)

Penggunaan bahan bakar untuk ketel Takuma

Bahan bakar untuk Ketel Takuma = 98,570.22 ton Bahan bakar untuk Ketel Yoshimine = 70,889.28 ton

Jumlah total bahan bakar yang digunakan selama musim giling 2013 adalah 169,459.5 ton.

PELUANG REDUKSI EMISI CO2 DARI TRANSPORTASI

Perhitungan Reduksi Emisi CO₂ Dengan Merubah Prosentase Pemasokan Tebu

Tempat	Jumlah % tebu dari jumlah keseluruhan	Jenis Truck*	Jumlah Truck	Jarak Tempuh (km)	Jumlah Solar Yang Digunakan (L)	Total Solar Yang Digunakan (L)	Kapasitas Tebu (Ton)
Malang	24%	С	17,347.32	134	9	156125.9	30517.036 41636.200 66625.300
Nganjuk	20%	С	14,456.10	25	1.6	23129.8	34694.000 46258.500 34696.280
Lamongan	12%	С	8,673.66	110	7.3	63317.7	24286.123 29143.034 15960.111
Madiun	11%	С	7,950.85	80	5.3	42139.5	19082.125 20356.304 24168.400

Tempat	Jumlah % tebu dari	Jenis Truck*	Jumlah Truck	Jarak Tempuh	Jumlah Solar Yang	Total Solar Yang	Kapasitas Tebu (Ton)
							20238.120
Kediri	10%	C	7,228.05	45	3.5	25298.2	17346.030
							20240.240
							16656.416
Tuban	9%	C	6,505.24	125	8.3	53993.5	19774.714
							15610.818
							16189.200
Blitar	8%	C	5,782.44	85	5.7	32959.9	18502.210
							11568.102
							11400.213
Sidoarjo	6%	C	4,336.83	105	7	30357.8	9134.121
							14160.303
		TC)TAL			427322.2416	578243.900

^{*}Jenis Truk C = Truk dengan kapasitas menampung tebu sebesar 8 Ton

Tempat	Jumlah Tebu (ton)	Jumlah Truck (Seluruhnya)	Jumlah Truck (kendaraan/ jam)	Konsumsi Bahan Bakar (L/100km)	Faktor Emisi (g/L)	Emisi CO2 rata-rata (g/jam.km)	Emisi CO2 rata-rata (kg/jam.km)		
Malang	138,778.54	17,347.32	4.66	15.82	2,924.90	215,777.86	215.78		
Nganjuk	115,648.78	14,456.10	3.89	15.82	2,925.90	179,876.36	179.88		
Lamongan	69,389.27	8,673.66	2.33	15.82	2,926.90	107,962.70	107.96		
Madiun	63,606.83	7,950.85	2.14	15.82	2,927.90	98,999.62	99.00		
Kediri	57,824.39	7,228.05	1.94	15.82	2,928.90	90,030.40	90.03		
Tuban	52,041.95	6,505.24	1.75	15.82	2,929.90	81,055.02	81.06		
B litar	46,259.51	5,782.44	1.55	15.82	2,930.90	72,073.50	72.07		
\S idoarjo	34,694.64	4,336.83	1.17	15.82	2,931.90	54,073.57	54.07		
	TOTAL								

Tempat	Emisi CO2 rata-rata (kg/jam.km)	Panjang Jalan (km)	Emisi CO2 (kg/jam)	Emisi CO2 (ton/jam)	Total Emisi CO2 (tCO2)
Malang	215.78	134.00	28,914.23	28.91	107,560.95
Nganjuk	179.88	25.00	4,496.91	4.50	16,728.50
Lamongan	107.96	110.00	11,875.90	11.88	44,178.34
Madiun	99.00	80.00	7,919.97	7.92	29,462.29
Kediri	90.03	45.00	4,051.37	4.05	15,071.09
Tuban	81.06	125.00	10,131.88	10.13	37,690.58
Blitar	72.07	85.00	6,126.25	6.13	22,789.64
Sidoarjo	54.07	105.00	5,677.72	5.68	21,121.14
		TOTAL			294,602.52

PELUANG REDUKSI EMISI CO2 DARI PROSES PRODUKSI

Reduksi Dari Penggunaan Motor Listrik

Data Namplate Motor

	No.	Stasiun	Nama Motor	P (kW)	V (v)	I(A)	CosФ
	1		Motor penggerak cane carrier	37	380	58	0.67
	2	Penggilingan	Motor penggerak cane Cutter	450	380	345	0.93
	3	i chiggiinigan	Motor penggerak pompa nira mentah	37	380	70	0.87
	4		Motor penggerak pompa imbibisi	37	380	49	0.86
₿-	5		Motor Condensor Juice Heater	7.5	380	14.88	0.88
. 16	6		Motor pompa Injeksi RVF	18.5	380	36.5	0.86
	7		Mixer nira Kotor	4	220	9	0.83
	8	Pemurnian	Motor penggerak nira Tapis	11	380	22.3	0.83
	9		Motor pompa Vacuum Condensor	30	380	62.1	0.81
	10		Motor Pengerak Floculant	2	380	3.7	0.82
	11		Motor pompa nira Kotor	15	380	31	0.83
	12	Penguapan	Motor pompa Injeksi	260	380	536	0.8
	13	i ciiguapaii	Motor pompa Condensor badan pemanas	11	380	25	0.8
	14	Kristalisasi	Motor pompa Vacuum VP V	45	380	88.5	0.83

No.	Stasiun	Nama Motor	P (kW)	V (v)	I(A)	CosФ
15		Motor pompa Vacuum VP VI	45	380	88.5	0.87
16		Motor pompa Vacuum VP VII	45	380	90	0.84
17		Motor pompa Vacuum VP VIII	45	380	84	0.8
18		Motor Vacuum central	90	380	66.7	0.76
19		Motor HGF	15	380	30	0.86
20	Dutoron	MotorLGF	45	380	90	0.88
21	Putaran	Motor pompa Gula	37	380	49	0.87
22		Motor pompa stroop	15	380	31	0.83

Hasil Pengukuran Pembebanan dan Efisiensi Motor Listrik Pabrik Gula Lestari

#Stasiun Penggilingan#

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
	Motor	R	372	50							
1	penggerak	S	370	54	0.67	0.88	23.11	42.05	54.95	20.33	0.00
	cane carrier	T	371	57							
	Motor	R	520	340							
p 2	penggerak	S	521	341	0.93	0.8	285.49	562.50	50.75	228.39	25.95
<u></u>	cane Cutter	T	521.6	341							
	Motor	R	387	60							
3	penggerak	S	386	61	0.87	0.78	35.57	47.44	74.99	27.75	4.04
	pompa nira mentah	T	388	62							
	Motor	R	379	44							
4	penggerak	S	380	45	0.86	0.8	24.89	46.25	53.82	19.91	2.77
	pompa imbibisi	Т	380.3	43							
	TOTAL 32.76										

#Stasiun Pemurnian#

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
1	Motor	R	387	9	0.88	0.76	5.61	9.87	56.82	4.26	0.76
	Condensor	S	386	9.6							
	Juice Heater	T	386	10							
2	Motor pompa	R	389	34	0.86	0.76	14.16	24.34	58.17	10.76	1.93
	Injeksi RVF	S	388	35							
þ		T	38.7	36							
5 3	Mixer nira	R	235	7	0.83	0.84	2.64	4.76	55.51	2.22	0.12
	Kotor	S	234	8							
		T	233	8.6							
4	Motor	R	386	18	0.83	0.84	10.37	13.10	79.19	8.71	0.47
	penggerak nira	S	385.5	20							
	Tapis	Т	385	18.2							
5	Motor pompa	R	388	42	0.81	0.84	23.12	35.71	64.72	19.42	1.05
	Vacuum	S	388.2	43							
	Condensor	T	389.1	42.4]						

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
6	Motor	R	385	3	0.86	0.86	1.53	2.33	65.58	1.31	0.03
	Pengerak	S	386.3	2.8							
	Floculant	T	382	2.2							
7	Motor pompa	R	382	20	0.83	0.85	11.48	17.65	65.07	9.76	0.39
	nira Kotor	S	384	21							
		T	383.7	21.6							
	•	•	•	T	OTAL		•	•	•	•	4.76

#Stasiun Penguapan#

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
	N. A.	R	380	320							
1	Motor pompa Injeksi	S	381	321	0.8	0.88	168.74	188.52	89.51	232.72	0.00
	Injeksi	T	382	319							
	Motor pompa	R	383	8							
2	Condensor	S	384	8.3	0.8	0.75	4.30	9.36	45.97	5.06	1.00
W	badan pemanas	T	384.2	8							
	TOTAL										

#Stasiun Kritalisasi#

No.	Nama Motor	Fasa	V (v)	I (A)	CosФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
	Motor pompa	R	388	68							
1	Vacuum VP	S	389	69	0.83	0.82	37.88	54.88	69.03	31.07	2.58
	V	T	387	67							
	Motor pompa	R	387.3	67							
2	Vacuum VP	S	388	63	0.87	0.88	37.37	51.14	73.07	32.88	0.00
	VI	Т	388.4	62							
В-	Motor pompa	R	386	62.4							
3	Vacuum VP	S	386	67.3	0.84	0.86	37.00	52.33	70.71	31.82	1.72
	VII	Т	387	68							
	Motor pompa	R	388	65							
4	Vacuum VP	S	388.6	68	0.8	0.79	35.99	56.96	63.19	28.43	3.68
	VIII	Т	389	67.8							
	Motor	R	390	80							
5	Vacuum	S	392	83	0.76	0.74	43.20	121.62	35.52	31.97	6.87
	central	T	391.4	89							
	TOTAL 14.86										

#Stasiun Putaran#

No.	Nama Motor	Fasa	V (v)	I (A)	CosФ	η	Pi	Pr	Load (%)	P (kW)	Energi Saving (kW)
		R	388	21							
1	Motor HGF	S	387	22	0.86	0.72	12.71	20.83	61.00	9.15	2.31
		Т	386.2	23.2							
		R	385	61							
2	MotorLGF	S	384.2	62.3	0.88	0.8	36.15	56.25	64.26	28.92	3.29
		Т	384	62							
Β.	24	R	383	40							
23 3	Motor pompa Gula	S	384	41	0.87	0.88	23.70	42.05	56.37	20.86	0.00
	Guia	Т	385.3	42							
	3.6	R	388	17							
4	Motor pompa stroop	S	389	18.6	0.83	0.82	10.16	18.29	55.52	8.33	0.69
	stroop	T	388.8	19							
					TOTAL				-	_	6.29

PENGELOMPOKAN MOTOR LISTRIK SESUAI EFISIENSI

Motor Listrik dengan Efisiensi Lebih Dari 80%

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Save Energi (kW)
	Motor	R	372	50							
1	penggerak cane	S	370	54	0.67	0.88	23.11	42.05	54.95	20.33	0.00
	carrier	T	371	57							
	Motor	R	520	340							
2	penggerak cane	S	521	341	0.93	0.8	285.49	562.50	50.75	228.39	25.95
₿.	Cutter	T	521.6	341							
. 24	Motor	R	379	44							
3	penggerak	S	380	45	0.86	0.8	24.89	46.25	53.82	19.91	2.77
	pompa imbibisi	T	380.3	43							
	3.4:	R	235	7							
4	Mixer nira Kotor	S	234	8	0.83	0.84	2.64	4.76	55.51	2.22	0.12
	Kotoi	T	233	8.6							
	Motor	R	386	18							
5	penggerak nira	S	385.5	20	0.83	0.84	10.37	37 13.10	79.19	8.71	0.47
	Tapis	T	385	18.2							

	No.	Nama Motor	Fasa	V (v)	I (A)	CosФ	η	Pi	Pr	(%)	P (kW)	Energi (kW)
		Motor pompa	R	388	42							
	6	Vacuum	S	388.2	43	0.81	0.84	23.12	35.71	64.72	19.42	1.05
		Condensor	T	389.1	42.4							
		M (D 1	R	385	3							
	7	7 Motor Pengerak Floculant	S	386.3	2.8	0.86	0.86	1.53	2.33	65.58	1.31	0.03
		Tioculant	T	382	2.2							
		3.6.4	R	382	20							
	B - 8	Motor pompa nira Kotor	S	384	21	0.83	0.85	11.48	17.65	65.07	9.76	0.39
	25	ilita Kotoi	T	383.7	21.6							
		3.6.4	R	380	320							
	9	Motor pompa Injeksi	S	381	321	0.8	0.88	168.74	188.52	89.51	232.72	0.00
		Injeksi	T	382	319							
		3.6	R	388	68							
		Motor pompa Vacuum VP V	S	389	69	0.83	0.82	37.88	37.88 54.88	69.03	31.07	2.58
		vacuum vr v	T	387	67							

Save

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Save Energi (kW)
	Matarnama	R	387.3	67							
11	Motor pompa Vacuum VP VI	S	388	63	0.87	0.88	37.37	51.14	73.07	32.88	0.00
	vacuum vi vi	T	388.4	62							
	Matanana	R	386	62.4							
12	Motor pompa Vacuum VP VII	S	386	67.3	0.84	0.86	37.00	52.33	70.71	31.82	1.72
	vacaum vi vii	Т	387	68							
		R	385	61							
₩ ₁ 13	MotorLGF	S	384.2	62.3	0.88	0.8	36.15	56.25	64.26	28.92	3.29
26		T	384	62							
	26.4	R	383	40							
14	Motor pompa Gula	S	384	41	0.87	0.88	23.70	42.05	56.37	20.86	0.00
	Guia	T	385.3	42							
	M	R	388	17							
15	Motor pompa stroop	S	389	18.6	0.83	0.82	10.16	18.29	55.52	8.33	0.69
	siroop	T	388.8	19							
	TOTAL 39.0°										39.07

Motor Listrik dengan Efisiensi Kurang Dari 80%

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Save Energi (kW)
1	Motor penggerak pompa nira mentah	R	387	60	0.87	0.78	35.57	47.44	74.99	27.75	4.04
		S	386	61							
		T	388	62							
	Motor Condensor Juice Heater	R	387	9	0.88	0.76	5.61	9.87	56.82	4.26	0.76
2		S	386	9.6							
В-		T	386	10							
27	Motor pompa Injeksi RVF	R	389	34	0.86	0.76	14.16	24.34	58.17	10.76	1.93
3		S	388	35							
		T	38.7	36							
4	Motor pompa Condensor badan pemanas	R	383	8	0.8	0.75	4.30	9.36	45.97	5.06	1.00
		S	384	8.3							
		T	384.2	8							
5	Motor pompa Vacuum VP VIII	R	388	65	0.8	0.79	35.99	56.96	63.19	28.43	3.68
		S	388.6	68							
		T	389	67.8							

No.	Nama Motor	Fasa	V (v)	I (A)	СоѕФ	η	Pi	Pr	Load (%)	P (kW)	Save Energi (kW)
6	Motor Vacuum central	R	390	80	0.76	0.74	43.20	121.62	35.52	31.97	6.87
		S	392	83							
		T	391.4	89							
7	Motor HGF	R	388	21	0.86	0.72	12.71	20.83	61.00	9.15	2.31
		S	387	22							
		T	386.2	23.2							
TOTAL									20.60		

Persamaan yang digunakan:

$$\begin{aligned} &P_i = \frac{V \times I \times PF \times \sqrt{3}}{1000} \\ &P_r = HP \times \frac{0.746}{\eta_r} \\ &\text{Load(\%)} = \frac{P_i}{P_r} \times 100\% \\ &P = P_{Nameplate} \times \text{Load} \end{aligned}$$

Energy Saving = $P_{\text{Nameplate}} \times L \times N \times \left(\frac{100}{E_a} - \frac{100}{E_b}\right)$

Dengan:

Pi =Daya tiga fase (kW)

V =Tegangan (v) I =Arus (A)

 $Cos\Phi$ =Faktor daya

Pr =Daya masuk pada beban penuh (kW)

HP =Horse Power pada nameplate η_r =Effisiensi pada beban penuh

N =Waktu operasi

L =Prosentase beban yang dibagi 100

Ea =Efisiensi motor

Eb =Efisiensi motor yang diinginkan

PERHITUNGAN PENURUNAN EMISI CO₂ DARI PROSES PRODUKSI GULA

Dari pengukuran langsung diperoleh 22 m otor memiliki daya sebesar 885.15 kW dengan operasi motor selama 3441.08 jam maka diperoleh konsumsi listrik sebesar 3,045,854.97 kWh, jika efisiensi ditingkatkan ke 88% maka diperoleh potensi penurunan listrik sebesar 205,322.44 kWh atau sekitar 6.74%. Konsumsi listrik yang digunakan untuk motor-motor listrik sebanyak 188 unit di Pabrik Gula Lestari sebesar 11,994,429.23 kWh, sehingga jika semua motor listrik dilakukan perbaikan untuk meningkatkan efisiensi menjadi 88% maka diperoleh penurunan konsumsi listrik sebesar 4,776,181.72 kWh.

Penggunaa n Listrik	Nyata	Peluang Penurunan	Hasil Rekomendasi		
Penggunaan Listrik Seluruhnya (kWh)	17,134,898.90	-	-		
Penggunaan Listrik Oleh Motor (kWh)	11,994,429.23	4,776,181.72	7,218,247.51		
Emisi CO ₂ (Kg tCO ₂)	10,756,604.13	4,283,279.77	6,473,324.37		
Emisi CO ₂ (tCO ₂)	10,756.60	4,283.28	6,473.32		

PERHITUNGAN PENURUNAN EMISI CO₂ DARI PENGGUNAAN BAHAN BAKAR KETEL

$$Kebutuhan Bahan Bakar = \frac{Q \times (h_g - h_f)}{n \times GHV}$$

Dengan Persamaan diatas jika effisiensi dari ketel Takuma di tingkatkan menjadi 70% maka dapat dihitung kebutuhan bahan bakar yang digunakan, dengan persamaan diatas dihasilkan kebutuhan bahan bakar untuk ketel Takuma adalah sebaga berikut.

Kebutuhan Bahan Bakar =
$$\frac{\frac{Q\times(h_g-h_f)}{\eta\times GHV}}{Kebutuhan Bahan Bakar} = \frac{71750\times(735.25-105.1)}{0.7\times1776}$$
 Kebutuhan Bahan Bakar = 36,195.31 kg

Untuk bahan bakar yang digunakan jika boiler Yoshimine diganti maka diperoleh effisiensi untukboiler Yoshimine sebesar 89%, dengan begitu bahan bakar yang digunakan dapat dihitung menggunakan persamaan diatas sebgai berikut.

Kebutuhan Bahan Bakar =
$$\frac{Q \times (h_g - h_f)}{\eta \times GHV} \times 100\%$$
Kebutuhan Bahan Bakar =
$$\frac{60000 \times (735.25 - 105.1)}{0.89 \times 1776}$$
Kebutuhan Bahan Bakar = 23,806.18 kg

Jadi jika ketel yang digunakan ditingkatkan maka bahan bakar yang digunakan ketel selama musim giling adalah sebagai berikut.

Penggunaan bahan bakar untuk ketel Takuma

Bahan bakar untuk Ketel Takuma = 95,555.6 ton Bahan bakar untuk Ketel Yoshimine = 62,848.3 ton

Jumlah total bahan bakar yang digunakan selama musim giling 2013 adalah 158,403.9 ton, sehingga emisi yang dapat direduksi sebesar 9,296.44 tCO $_2$ atau sekitar 6.59% dari total emisi CO $_2$ sebelumnya yang sebesar 141,074.49 tCO $_2$