

TESIS – TM 185400

"STUDI EKSPERIMEN PENGARUH PLAT ABSORBER V-CORRUGATED BENTUK DIMPLE DENGAN SUSUNAN STAGGERED TERHADAP PERFORMANSI KOLEKTOR SURYA"

Stefanus Neno NRP 02111750020010

Dosen Pembimbing : Prof. Dr. Ir. Djatmiko Ichsani, M. Eng

PROGRAM MAGISTER BIDANG KEAHLIAN REKAYASA KONVERSI ENERGI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2021

THESIS – TM 185400

"EKSPERIMENTAL STUDY OF THE EFFECT OF PLATE ABSORBER V- ORRUGATED DIMPLE FORM WITH STAGGERED COMPOSITION ON SOLAR COLLECTOR PERFORMATION"

Stefanus Neno NRP 02111750020010

Supervisor : Prof. Dr. Ir. Djatmiko Ichsani, M. Eng

MAGISTER PROGRAM FIELD STUDY OF ENERGY CONVERSION ENGINEERING MECHANICAL ENGINEERING DEPARTEMENT FACULTY OF INDUSTRIAL TECHNOLOGY SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA 2021

Lembar Pengesahan

Tesis disusun untuk memenuhi salah satu syarat memperoleh gelar

Magister Teknik (MT)

Institut Teknologi Sepuluh Nopember

Oleh STEFANUS NENO

NRP. 02111750020010

Tanggal Ujian

: 04 Maret 2021

Periode Wisuda

: April 2021

Disetujui Oleh :

- 1. Prof. Dr. Ir. Djatmiko Ichsani. M. Eng. NIP. 195310191979031002
- 2. Prof. Dr. Ir. Prabowo. M.Eng. NIP. 196505051990031005
- 3. Dr. Bambang Sudarmanta, ST. MT NIP. 197301161997021001
- Ary Bachtiar Khrisna. P. ST. MT, Ph.D. NIP. 196505051990031005

(Penguji)

.....(Penguji)

atmiko (Pembimbing)

... (Penguji)

Kepala Departemen Teknik Mesin FTIRS-ITS

Dr. Atok Setiyawan, M. Eng. Sc. NIP. 196604021989031002

iii

STUDI EKSPERIMEN PENGARUH PLAT ABSORBER V-CORRUGATED BENTUK DIMPLE DENGAN SUSUNAN STAGGERED TERHADAP PERFORMANSI KOLEKTOR SURYA

Nama Mahasiswa	: Stefanus Neno
NRP	: 0211750020010
Jurusan	: Teknik Mesin, FTI-ITS
Dosen Pembimbing	: Prof. Dr. Ir. Djatmiko Ichsani, M. Eng.

ABSTRAK

Krisis energi saat ini menjadi isu utama dunia beberapa dekade terakhir, pemakaian energi hampir di segala aspek dan semua aktivitas manusia tergantung pada energi, untuk saat ini konsumsi energi dunia masih di dominasi oleh energi fosil (minyak bumi, gas dan batu bara), Mengingat terbatasnya persediaan sumber energi tersebut, maka alternatif energi yang bisa dimanfaatkan adalah energi matahari. Teknologi pemanfaatan energi surya dapat dibedakan menjadi dua yaitu konversi energi surya menjadi listrik melalui sel surya dan pemanfaatan panas matahari menggunakan kolektor surya untuk pengeringan. Kolektor surya yang dipakai dalam penelitian ini adalah kolektor surya dengan plat *absorber v-corrugated* tipe *dimple* dengan susunan *staggered*.

Pada penelitian ini dibahas pengaruh plat *Absorber V-Corrugated* dengan penambahan *dimple* dengan susunan *Staggered* terhadap performasi kolektor surya. Diameter *dimple* pada plat absorber berukuran 5 mm, 7 mm, 9 mm. Penelitian ini dilakukan secara eksperimen dengan menggunakan cahaya lampu halogen dengan variasi intensitas radiasi 431 W/m², 575 W/m², dan 719 W/m², dan memvariasikan laju massa udara 0.001 kg/s, 0.002 kg/s, 0.004 kg/s dan 0.006 kg/s.

Berdasarkan eksperimen yang dilakukan, hasil yang diperoleh adalah besarnya energi berguna yang diserap oleh fluida kerja kolektor surya berbanding lurus dengan peningkatan laju massa dan intensitas radiasi, Hasil eksperimen untuk plat absorber v-corrugated dengan diameter dimple 9 mm, *Qusefull* paling tinggi dicapai pada laju massa 0.006 kg/s dengan intensitas radiasi 718 watt/m² yakni 65.91 Watt dan effisiensi paling tinggi sebesar 65.77 % dicapai pada laju massa aliran massa 0.006 kg/s dengan intensitas radiasi 718 W/m².

Kata kunci : Kolektor Surya, Absorber V-Corrugated, Dimple, Staggered, Efisiensi Kolektor Surya.

EXPERIMENTAL STUDY OF THE EFFECT OF PLATE ABSORBER V-CORRUGATED DIMPLE FORM WITH STAGGERED COMPOSITION ON SOLAR COLLECTOR PERFORMATION

Nama Of Student	: Stefanus Neno
NRP	: 0211750020010
Departement	: Mechanical Engineering FTI-ITS
Advisory Lecture	: Prof. Dr. Ir. Djatmiko Ichsani, M. Eng.

ABSTRACT

Today's energy crisis became the main issue of the world in recent decades, energy consumption in almost all aspects and all human activity depends on energy, for now the world's energy consumption is still in dominance by fossil energy (petroleum, gas and stone Because of the limited supply of energy sources, the energy alternative that can be utilized is solar energy. Solar energy utilization technology can be distinguished into two namely the conversion of solar energy into electricity through solar cells and the utilization of solar heat using solar collectors for drying. The solar collector used in this study is a solar collector with a V-corrugated absorber plate type dimple with a staggered arrangement.

In this study discussed the influence of plate Absorber V-Corrugated plates with the addition of dimple with Staggered arrangement of solar collector performation. Diameter Dimple on the absorber plate measuring 5 mm, 7 mm, 9 mm. This research was conducted experimentally using halogen lamps with a variation of radiation intensity 431 W/m², 575 W/m², and 719 W/m², and varying the rate of air mass of 0.001 kg/s, 0.002 kg/s, 0.004 kg/s and 0.006 kg/s.

Based on the experiments done, the results obtained are the magnitude of useful energy that is absorbed by the working fluid of solar collectors directly proportional to the increase of mass rate and radiation intensity, results of the experiment for the V-corrugated absorber plate with a diameter of 9 mm dimple, Qusefull is highest achieved at a mass rate 0.006 kg/s with 718 watt/m² radiation intensity of 65.91 Watt and the highest efficiency of 65.77 % achieved at mass flow mass rate of 0.006 kg/s with radiation intensity 718 W/m².

Keywords : Solar Collectors, Absorber V-Corrugated, Dimple, Staggered, Efficiency.

KATA PENGANTAR

Puji syukur penulis sampaikan kehadirat Tuhan yang maha kuasa yang telah melimpahkan rahmat-Nya, Sehingga penulis dapat menyelasaikan penulisan tesis ini dengan judul "STUDI EKSPERIMEN PENGARUH PLAT *ABSORBER V-CORRUGATED BENTUK DIMPLE DENGAN SUSUNAN STAGGERED TERHADAP PERFORMANSI KOLEKTOR SURYA*" disusun sebagai persyartan untuk mendapatkan gelar Magister Teknik pada Program Studi Rekayasa Konversi Energi, Departemen Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember Surabaya.

Penulis menyampaikan ucapan terima kasih kepada semua pihak atas segala bantuan dan dorongan serta dedikasihnya yang telah membantu penyusunan tesis ini hingga selesai. Ucapan terima kasih penulis sampaikan kepada :

- 1. Bapak Prof. Dr. Ir. Djatmiko Ichsani, M. Eng. Sebagai dosen pembimbing
- Bapak Dr. Eng Harus Laksana Guntur, ST. M. Eng Sebagai ketua program studi Pasca Sarjana Departemen Teknik Mesin FTI-ITS
- Bapak Prof. Dr. Eng. Ir. Prabowo. M. Eng, Bapak Ary Bachtiar Khrisna P., ST.MT. Phd. Bapak Dr, Bambang Sudarmanta, ST. MT. Sebagai dosen penguji tesis.
- 4. Seluruh staf pengajar di jurusan teknik mesin atas bantuan dan bimbingannya selama studi
- Seluruh staf dan karyawan jurusan Teknik Mesin, Fakultas Teknologi Industri dan Program Pasca Sarjana Its khususnya, Mbak Celly, Mbak Ddari, Mas Resa, Pak Erdin, dan pak Faisal atas bantuan dan dukungannya selama studi.
- 6. Kementrian Riset, Teknologi dan pendidikan Tinggi Republik Indonesia dan Lembaga Pengelolah Dana Pendidikan yang telah memberikan beasiswa kepada penulis sehingga penulis dapat mengikuti perkuliahan Magister di Institut Teknologi Sepuluh Nopember.
- 7. Kedua orang tuaku, Bapak Kansel Neno dan Mama Agustina D. Baria yang telah membesarkan penulis dengan penuh kasih sayang yang membuat penulis termotivasi untuk bisa menyelasaikan tesis ini. Saudara terkasih Kaka Mery sekeluarga, Kaka ady sekeluarga, Adik marta dan anak-anak

Roland, Veren, Hanny dan anak Elwisda Neno yang selalu memberikan dukungan kepada penulis.

- Teman teman kuliah RKE (rekayasa konversi energi) angkatan tahun 2017, yang senantiasa saling memberikan semangat dan dorongan, khususnya, Depi, Dueng, Arby, Angga, Irfan, Abdul, Farai, Bahrul, Rita, Septi, Firdiana, dan lain-lain
- Teman-teman Unimor Khususnya Paul, Sandro, Masri, Agil, Briel, Oris dan Gaspar.
- 10. Teman-teman PA Tenggilis, yang selalu mendoakan saya. Terimakasih.
- 11. Teman Teman Tim Pelayanan GKI Manyar Surabaya.
- 12. Dan Kepada semua pihak yang tidak dapat penulis sebutkan satu-persatu yang sangat membantu dalam penyelasaian tesis maupun selama perkuliahan, terimakasih banyak.

Dengan segala keterbatasan kemampuan serta pengetahuan penulis, tidak menutup kemungkinan Tesis ini jauh dari sempurna. Oleh karena itu, penulis bersedia menerima kritik dan saran dari berbagai pihak untuk menyempurnakan lebih lanjut. Semoga hasil penulisan Tesis ini dapat bermanfaat bagi semua pihak.

Surabaya, 04 Maret 2021

Stefanus Neno.

DAFTAR ISI

<u>Halaman</u>

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	iii
ABSTRAK	iv
ABSTRACT	v
KATA PENGANTAR	vi
DAFTAR ISI	viii
DAFTAR GAMBAR	xii
DAFTAR TABEL	xvi
BAB I PENDAHULUAN	
1.1. Latar Belakang	1
1.2. Perumusan Masalah	4
1.3. Batasan Masalah	4
1.4. Tujuan	5
1.5. Manfaat Penelitian	5
BAB II. KAJIAN PUSTAKA	
2.1. Prinsip Kerja Kolektor Surya	6
2.2. Dimple	7
2.3. Dasar Teori Perpindahan Panas	8
2.3.1 Perpindahan Panas Konduksi	8
2.3.2 Perpindahan Panas Konveksi	9
2.3.3 Perpindahan Panas Radiasi	11
2.4. Konsep Tahanan Thermal Pada Kolektor Surya	12
2.5. Analisa Perpindahan Panas Pada Kolektor Surya Pemanas Udara	13
2.5.1. Analisa Perpindahan Panas Konduksi	13
2.5.2. Analisa Perpindahan Panas Radiasi	19
2.6. Analisa Energi Surya Pada Kolektor Surya Pemanas Udara	21
2.7. Analisa Perpindahan Panas di bagian Bawah Kolektor Surya (U_B) .	21
2.8. Koefisien Perpindahan Panas Total (UL)	22
2.9. Analisa Energi Surya Pada Kolektor Surya Pemanas Udara	22

2.9.1 Faktor Efisiensi Kolektor (F")	22
2.9.2 Faktor Pelepasan Panas (F _R)	23
2.9.3 Analisa Panas Yang Berguna Pada Kolektor Surya, Useful (Q_u)	23
2.9.4 Analisa Efisiensi Kolektor Surya (η)	24
2.10. Penelitian terdahulu	24
2.10.1. El-Sebai, dkk, (2011). Investigation of thermal performance of	of-
double pass-flat and v-corrugated plate solar air heaters	24
2.10.2. Bashria, dkk, (2004). Prediction of the thermal performace of so	lar
air heaters by internet-based methematical simulation	26
2.10.3. Hikmat Esen, (2007). Eksperimental Energy and Exergy Analy	sis
Of a Double Flow Solar Air Heater Having Different Obstacles On A	An
Absorber Plates	27
2.10.4. Md. Azharul Karim, dkk, (2006).Performance Investigation of f	lat
plate, v-corrugated and finned air collectors	28
2.10.5. Tao Liu, dkk, (2007). A Parametric Study on thermal Performan	nce
of a Solar Air Collector with a V-Groove Absorber	30
2.10.6. Nat Varayos, dkk, (2016). Heat Transfer behavior of flat pla	ate
having spherical dimpled surfaces	31
2.10.7. Brijh Brushan, dkk, (2011). Nusselt number and friction fact	tor
correlation for solar air heater duct having articifially roughened absorb	ber
plate	33
2.10.8. RP Saini, dkk (2008). Heat Transfer And Friction Fact	tor
Correlations For A Duct Having Dimple-Shape Artificial Roughness F	For
Solar Air Heaters	34
2.10.9. Ekadewi A. Handoyo, (2014). Peningkatan Kinerja Kolektor Sur	rya
Tipe V-Corrugated Absorber Plate Menggunakan Obstacle yang Ditek	uk
Secara Vertikal	35
2.10.10. Hakam, dkk. (2008). Pengaruh penambahan fin sebagai vort	tex
generator dan extended surface terhadap performansi kolektor sur	rya
pemanas udara tipe v-corrugated absorber plate	36

2.10.11. Marsianus, dkk, (2019). Studi Eksperimen Performasi Kole	ktor
Surya Pemanas Udara Tipe Dimple Inline Plat V-Corrugated	37
BAB III METODE PENELITIAN	
3.1 Desain pemilihan diameter dan jarak dimple	39
3.2 Ukuran Jarak dan diameter Dimple	39
3.3 Gambaran Sistem Kerja	40
3.4 Parameter Yang diukur dan peralatan penelitian	42
3.4.1 Parameter Yang Diukur	40
3.4.2 Peralatan Penelitian	43
3.5 Tahap-tahap Penelitian	45
3.6 Flow Chart	47
3.6.1 Flow Chart Penelitian	47
3.6.2 Flow Chart Pengambilan Data	48
3.6.3 Flow Chart Perhitungan	49
BAB IV ANALISA DAN PEMBAHASAN	
4.1 Eksperimen	51
4.1.1 Dimensi Kolektor Surya Pemanas Udara	51
4.1.2 Perhitungan Data Eksperimen	52
4.2 Pembahasa Grafik	62
4.2.1. Analisa Energi Berguna Dengan Variasi Intensitas (W/m ²)	
Terhadap (Qu) Aktual pada Kolektor Surya	62
4.2.2. Pembahasan Grafik Laju massa udara Terhadap (Qu) Aktual.	65
4.2.3. Pembahasan Grafik Laju Aliran Massa Udara Terhadap (Qu)	
Aktual Pada Variasi IT Dengan Diameter Dimple yang sama	67
4.2.4. Pembahasan Grafik (Qu) Desain	69
4.2.5. Pembahasan Grafik Distribusi Temperatur	73
4.2.6. Analisa Effisiensi terhadap intensitas radiasi pada variasi laju ma	issa
udara dengan plat absorber v-corrugated tipe dimple staggered	77
1.2.7. Pembahasan grafik (η) desain pada kolektor surya v-corrugated	
tipe dimple staggered	81
BAB V KESIMPULAN DAN SARAN	
5.1 Kesimpulan	86

5.2 Saran	87
DAFTAR PUSTAKA	
LAMPIRAN	
BIODATA PENULIS	

DAFTAR GAMBAR

<u>Halaman</u>

Gambar 1.1. Road Map Penelitian Tentang Kolektor Surya	4
Gambar 2.1. Skema Kolektor Surya V-Corrugated dengan susunan Staggered	6
Gambar 2.2. Cross Section 1 tekuk ke dalam dan Cross Section 2 tekuk	
keluar pada plat absorber tipe v-corrugated	7
Gambar 2.3. Tipe Cekungan dimple pada plat absorber	8
Gambar 2.4. Perpindahan Panas Konduksi	9
Gambar 2.5. Perpindahan Panas Konveksi	10
Gambar 2.6. Perpindahan Panas Radiasi	11
Gambar 2.7. Skema Tahanan Thermal Kolektor Surya V-Corrugated	13
Gambar 2.8. Skema Plat Penyerap Berbentuk V Dan Kaca Penutup	15
Gambar 2.9. Luas Penampang Inlet Fluida dan Sisi Plat Absorber V-Corrugate	ed
Dengan Susunan Dimple Staggered	16
Gambar 2.10. Luasan Penampang Inlet fluida Cross section 1 dan Cross section	n
2 pada plat absorber	17
Gambar 2.11. Tahanan Thermal Pada Isolator Bagian Bawah	21
Gambar 2.12. Skema Kolektor Surya	25
Gambar 2.13. Perbandingan Kinerja Untuk DPFPSAH dan DPCVPSAH	26
Gambar 2.14. Plat Penyerap Dan Rangkaian Termal Kolektor Surya	26
Gambar 2.15. Perbandingan Efisiensi Dan Temperatur Udara Keluar Pada	
Penyerap Plat Datar Dan v -groove	26
Gambar 2.16. Skema Rangkaian	27
Gambar 2.17. Perbandingan Efisiensi	28
Gambar 2.18. Tiga Kolektor Surya yang diteliti	29
Gambar 2.19. Grafik Variasi Efisiensi Flat Plate, V-Corrugated And Finned	
Air Collector Terhadap Laju Aliran Udara	29
Gambar 2.20. Geometri Kolektor Surya	30
Gambar 2.21. Pengaruh Intensitas Radiasi Terhadap Efisiensi Temperatur	

Dan Beberapa Komponen Kolektor	31
Gambar 2.22. Pengaturan Dan Prosedur Eksperimental	32
Gambar 2.23. Pengaruh pengaturan dimple pada koefisien perpindahan panas	
unuk pengaturan staggered	32
Gambar 2.24. A. Pandangan Plat Absorber Bentuk Dimple, B. Susunan	
Dimple Secara Staggered Pada Plat Absorber	31
Gambar 2.25. Variation Of Nusselt Number With Reynolds Number	34
Gambar 2.24. Diagram Schematic dan Pengaturan Eksperimental	34
Gambar 2.26. Prediksi perbandingan nilai faktor gesekan dengan nilai	
eksperimen	33
Gambar 2.27. Kolektor Surya dengan penambahan obstacle berbentuk paruh	36
Gambar 2.28. Perbandingan antara efisiensi kolektor surya dan bilangan Reynd	olds
pada intensitas radiasi 430 W/m ²	36
Gambar 2.29. Skema alat uji penelitian	37
Gambar 2.30. Perbandingan $Q_{useaktual} = f$ (It) pada variasi $\dot{m} = 0.006$ kg/s dan	
Diameter dimple pada plat absorber	38
Gambar 3.1. Kolektor Surya Untuk Ukuran, Jarak dan diameter	39
Gambar 3.2. Skema Kolektor Surya V-Coruggatered Dengan Susunan	
Dimple Staggered	40
Gambar 3.3. Dimensi dan bagian-bagian alat	41
Gambar 3.4 Peralatan Kolektor Surya V-Corrugated dengan susunan dimpel	
Secara staggered	41
Gambar 3.5. Penempatan Thermal Sensor, Pandangan Depan dan Pandangan	
Samping	42
Gambar 3.6. Posisi Penempatan Pressure tap (Pandangan Atas)	42
Gambar 3.7. Flow Chart Penelitian	47
Gambar 3.8. Flow Chart Pengambilan Data	48
Gambar 3.9. Flow Chart Perhitungan	49
Gambar 4.1.a. Grafik Pengaruh f (I _T) Intensitas Radiasi (W/m ²) terhadap (Q _u)	
aktual (Watt), dengan Variasi m = 0.001 kg/s	62
Gambar 4.1.b. Grafik Pengaruh f (I _T) Intensitas Radiasi (W/m ²) terhadap (Q _u)	

aktual (Watt), dengan Variasi m = 0.002 kg/s	63
Gambar 4.1.c. Grafik Pengaruh f (I _T) Intensitas Radiasi (W/m ²) terhadap (Q _u)	
aktual (Watt), dengan Variasi ṁ = 0.004 kg/s	64
Gambar 4.1.d. Grafik Pengaruh f (I _T) Intensitas Radiasi (W/m ²) terhadap (Q _u)	
aktual (Watt), dengan Variasi m = 0.006 kg/s.	65
Gambar 4.2.a. Pengaruh Laju massa Udara terhadap Qu aktual dengan	
Intensitas Radiasi 431 Watt/m ²	66
Gambar 4.2.b. Pengaruh Laju massa Udara terhadap Qu aktual dengan	
Intensitas Radiasi 575 Watt/m ²	66
Gambar 4.2.c. Pengaruh Laju massa Udara terhadap Qu aktual dengan	
Intensitas Radiasi 718 Watt/m ²	67
Gambar 4.3.a. Grafik Laju Aliran Massa Terhadap (Q _u) aktual Pada Plat	
Absorber (Ø=5 mm)	68
Gambar 4.3.b. Grafik Laju Aliran Massa Terhadap (Q _u) aktual Pada Plat	
Absorber (Ø=7 mm)	68
Gambar 4.3.c. Grafik Laju Aliran Massa Terhadap (Q _u) aktual Pada Plat	
Absorber (Ø=9 mm)	69
Gambar 4.4.a. Grafik Pengaruh Laju massa udara terhadap Qu desain dengan	
Intensitas radiasi 431 W/m ²	70
Gambar 4.4.b Grafik Pengaruh Laju massa udara terhadap Qu desain dengan	
Intensitas radiasi 573 W/m ²	71
Gambar 4.4.c Grafik Pengaruh Laju massa udara terhadap Qu desain dengan	
Intensitas radiasi 718 W/m ²	73
Gambar 4.5.a. Grafik Pengaruh Intensitas Radiasi (W/m ²) terhadap Tabs (K)	
dengan variasi mʻ = 0.001 kg/s	74
Gambar 4.5.b. Grafik Pengaruh Intensitas Radiasi (W/m ²) terhadap Tabs (K)	
dengan variasi ṁ = 0.002 kg/s	75
Gambar 4.5.c. Grafik Pengaruh Intensitas Radiasi (W/m ²) terhadap Tabs (K)	
dengan variasi mʻ = 0.004 kg/s	76
Gambar 4.5.d. Grafik Pengaruh Intensitas Radiasi (W/m ²) terhadap Tabs (K)	
dengan variasi m = 0.006 kg/s	77

78
79
80
81
82
83
84

DAFTAR TABEL

<u>Halaman</u>

Tabel 2.1. Nilai Konstanta Untuk Persamaan enclosures	15
Tabel 2.2 Tabel Dimensi Dimple	17
Tabel 2.3 Analisis Exergy Percobaan SAH	28
Tabel 3.1. Spesifikasi Kolektor Surya	40
Tabel 3.2. Peralatan Penelitian	44
Tabel 3.3. Pengambilan Data Ekperimen	46
Tabel 3.4. Desain Eksperimen	47
Tabel 4.1. (Q _u) aktual Kolektor surya V-Corrugated tipe dimple staggered	
pada Laju massa udara 0.001 kg/s	62
Tabel 4.2. (Q _u) aktual Kolektor surya V-Corrugated tipe dimple staggered	
pada Laju massa udara 0.002 kg/s	63
Tabel 4.3. (Q _u) aktual Kolektor surya V-Corrugated tipe dimple staggered	
pada Laju massa udara 0.004 kg/s	64
Tabel 4.4. (Qu) aktual Kolektor surya V-Corrugated tipe dimple staggered	
Pada Laju massa udara 0.006 kg/s	61
Tabel 4.5. (Q _u) desain Kolektor surya v-corrugated tipe dimple staggered	
dengan Intensitas Radiasi 431 W/m ²	70
Tabel 4.6. (Q _u) desain Kolektor surya v-corrugated tipe dimple staggered	
dengan Intensitas Radiasi 573 W/m ²	71
Tabel 4.7. (Q _u) desain Kolektor surya v-corrugated tipe dimple staggered	
dengan Intensitas Radiasi 718 W/m ²	72
Tabel 4.8. Tabs pada Kolektor surya <i>v</i> -corrugated tipe dimple staggered	
pada Laju massa udara 0.001 kg/s	73
Tabel 4.9. Tabs pada Kolektor surya v-corrugated tipe dimple staggered	
pada Laju massa udara 0.002 kg/s	74
Tabel 4.10. Tabs pada Kolektor surya v-corrugated tipe dimple staggered	
pada Laju massa udara 0.004 kg/s	75
Tabel 4.11. Tabs pada Kolektor surya v-corrugated tipe dimple staggered	

pada Laju massa udara 0.006 kg/s	76
Tabel 4.12. Efisiensi (η) aktual pada Kolektor surya v-corrugated tipe dimple	
staggered pada Laju massa udara 0.001 kg/s	78
Tabel 4.13. Efisiensi (η) aktual pada Kolektor surya v-corrugated tipe dimple	
staggered pada Laju massa udara 0.002 kg/s	78
Tabel 4.14. Efisiensi (η) aktual pada Kolektor surya v-corrugated tipe dimple	
staggered pada Laju massa udara 0.004 kg/s	76
Tabel 4.15. Efisiensi (η) aktual pada Kolektor surya v-corrugated tipe dimple	
staggered pada Laju massa udara 0.006 kg/s	80
Tabel 4.16. Efisiensi (η) desain pada Kolektor surya v-corrugated tipe dimple	
staggered pada pada Intensitas Cahaya 431 W/m ²	81
Tabel 4.17. Efisiensi (η) desain pada Kolektor surya v-corrugated tipe dimple	
staggered pada pada Intensitas Cahaya 575 W/m ²	82
Tabel 4.18. Efisiensi (η) desain pada Kolektor surya v-corrugated tipe	
dimple staggered pada pada Intensitas Cahaya 718 W/m ²	83

BAB I

PENDAHULUAN

1.1. Latar Belakang

Krisis energi saat ini menjadi isu utama dunia beberapa dekade terakhir, pemakaian energi hampir disegala aspek dan semua aktivitas manusia sangat tergantung pada energi. Berbagai alat pendukung seperti alat penerangan, motor pengerak, peralatan rumah tangga dan mesin-mesin industri hampir sebagian besar menggunakan energi. Untuk saat ini konsumsi energi dunia masih di dominasi oleh energi fosil (minyak bumi, gas dan batu bara), Mengingat terbatasnya persediaan sumber energi tersebut, maka alternatif energi yang bisa dimanfaatkan adalah energi matahari. Sebagai negera yang berada dibawah garis khatulistiwa, Indonesia mempunyai potensi sumber daya energi surya yang dapat dimanfaatkan, dan diaplikasikan untuk berbagai kebutuhan, salah satunya sebagai sumber energi matahari untuk proses pengeringan. Berdasarkan data (*Indonesia Energy Outlook 2017*), mengatakan bahwa energy surya yang dapat dimanfaatkan di Indonesia sebesar 4.80 kwh/m²/hari dan kapasitas terpasang 14,006.5 KW.

Ketersediaan energi matahari sangatlah melimpah dan mudah di dapat karena itu sangat penting untuk dikembangkan. Walaupun energi matahari tersedia dalam jumlah melimpah namun terdapat beberapa kendala dalam penyimpanan energi dan pengkonversiannya. Teknologi pemanfaatan energi surya dapat dibedakan menjadi dua yaitu konversi energi surya menjadi listrik melalui sel surya dan pemanfaatan panas matahari menggunakan kolektor surya untuk pengeringan. Energi yang dapat dimanfaatkan adalah energi surya dikarenakan energi surya bersifat energi yang dapat diperbarui dan jumlah energi yang dihasilkan tidak terbatas, keuntungan dari pemanfaatan energi surya yaitu pengunaannya aman dan tidak menghasilkan polusi udara. Energi surya dapat dikonversikan menjadi energi panas yang berguna di dalam suatu kolektor surya (solar collector).

Kolektor surya merupakan suatu alat yang berfungsi untuk mengumpulkan energi matahari yang masuk dan diubah menjadi energi termal dan meneruskan energi tersebut ke fluida. Prinsip kerja dari kolektor surya ini adalah radiasi matahari yang jatuh permukaan kolektor, kemudian ditransmisikan melalui kaca penutup transparan dan diubah menjadi energi panas oleh pelat penyerap. Selanjutnya akan terjadi perpindahan panas dari pelat penyerap menuju fluida yang mengalir melewati dalam kolektor. Ada banyak jenis kolektor surya yang berbedabeda seperti pelat datar, pelat gelombang, tipe rak, dan masih banyak kolektor lainnya dan semuanya tergantung dari desain dan bentuk absorbernya.

Pada penelitian-penelitan terdahulu yang telah dilakukan (El-Sebaii, dkk 2011), untuk meningkatkan kinerja kolektor surya antara lain adalah menggunakan plat penyerap yang dicat warna hitam. Bashria, dkk (2006), melakukan penelitian tentang analisis performansi kolektor surya *V-groove*. Penelitian ini menunjukan bahwa saluran pada absorber gelombang V, dengan menggunakan media penyerap dan variasi aliran yang melewati saluran ganda (atas dan bawah) pelat absorber mengalami penurunan tekanan. Hal ini disebabkan aliran udara yang melewati *V-groove* mengalami peningkatan efisiensi mencapai 4-5 %. Untuk aliran udara yang menggunakan media penyerap terjadi peningkatan efisiensi mencapai 7%, sedangkan efisisensi panas yang dihasilkan dari kolektor surya yang tanpa menggunakan media penyerap penyerapan hanya bertambah 2-3%.

M.d Azharul Karim, dkk, (2006), meningkatkan luas bidang penyerapan radiasi matahari dengan mengganti plat penyerap yang umumnya berbentuk plat datar dengan plat bergelombang atau *v-corrugated absorber plate*. Tao Liu, dkk (2006) juga melakukan penelitian dengan membandingkan *V-grove absorber solar air heater* dengan *flat plate absorber solar air heater* hasil penelitiannya diketahui bahwa kolektor surya jenis *v-corrugated absorber* menghasilkan performa lebih baik jika dibandingkan dengan kolektor plat datar.

Nat Varayos, dkk, (2016) melakukan percobaan dengan melakukan analisis perpindahan panas, dimana plat dibentuk *dimple* disusun secara *Staggered* sebanyak 14 *dimple* dan dipelajari, kemudian hasil penelitian dibandingkan dengan permukaan plat halus. Dimana jumlah Nusselt untuk *dimple* dengan susunan *Staggered* 26% lebih baik dari pada permukaan plat halus. Dan untuk plat absorber dengan permukaan *dimple* pengaturan susunan *inline* hasilnya menunjukan jumlah Nusselt 25 % lebih baik dari plat permukaan halus.

Afanasyev, dkk, (1993) melakukan penelitian terhadap kolektor surya dimana tingkat perpindahan panas secara keseluruhan pada sebuah plat *dimple*

terdapat udara yang bergejolak dan terjadi peningkatan 30-40 % dari kinerja perpindahan panas dengan penurunan tekanan yang dapat diabaikan. Brij Brushan, dkk, (2011), melakukan penelitian tentang nusselt number dan friction faktor untuk pipa pemanas udara yang dimiliki oleh plat penyerap, dari hasil penelitiannya secara eksperimen pada plat absorber bentuk *dimple* menghasilkan keofisien perpindahan panas lebih tinggi dibandingkan dengan plat halus. Ekadewi A. Handoyo, dkk, (2014). melakukan pengujian pada kolektor surya pemanas udara dengan plat penyerap jenis *v*-corrugated yang diberi obtacle pada lantai saluran Eksperimen dilakukan untuk aliran tanpa obstacle dan aliran dengan udara. *obstacle* yang ditekuk dengan semua sudut tekuk yang berbeda mulai dari 0^0 (lurus, tidak ditekuk), 10° , 20° , 30° , 40° , 50° , 60° , 70° , dan 80° . Effisiensi kolektor tertinggi, yaitu 0.85, dicapai ketika intensitas radiasi 430 W/m², kecepatan aliran udara dalam saluran 6.5 m/s (bilangan Reynolds 10000), dan diberi obstacle lurus. Dari hasil yang diperoleh, obstacle dengan kinerja optimal adalah ketika ditekuk dengan sudut 30° .

Hakam, dkk, (2018). melakukan penelitian secara eksperimen pada kolektor surya pemanas udara dengan penyerap v-corrugated yang ditambahkan obstacle berbentuk paruh dengan sudut tekuk 30°. efisiensi terbaik yaitu 0,926 didapat saat laju massa udara 0,008 kg/s dan intensitas radiasi matahari 431 W/m². Marsiaunus, dkk, (2019). melakukan penelitian Kolektor surya Tipe Dimple susunan Inline Plat V-Corrugaterd Absorber plate, dengan membandingkan 3 plat absorber dengan variasi diameter dimple 5 mm, 7 mm dan 9 mm. Berdasarkan hasil eksperimen Q_{use} paling tinggi sebesar 51.59 Watt pada laju massa 0.006 kg/s dengan intensitas radiasi 718 Watt/m² dan effisiensi paling tinggi sebesar 48.72 % dicapai pada laju massa 0.006 kg/s dengan intensitas 431 Watt/m².

Dari uraian-uraian penelitian di atas maka diambil kesimpulan bahwa penelitian tentang kolektor surya telah banyak dilakukan, tetapi masih ada kemungkinan untuk memperbaiki penelitan tersebut. Pada penelitian ini penulis memfokuskan penelitian pada kolektor surya pemanas udara dengan menggunakan plat penyerap Tipe *V-Coruggated* bentuk *dimple* dengan susunan *staggered*. Penelitian tentang kolektor surya dapat dilihat pada gambar dibawah ini :

Gambar 1.1 Road Map penelitian tentang kolektor surya.

1.2. Perumusan Masalah

Permasalahan pokok yang dibahas dalam tesis ini adalah:

- 1. Bagaimana pengaruh diameter *dimple* dengan susunan *staggered* terhadap performasi kolektor surya tipe *v Corurugated absorber Plate* ?
- 2. Bagaimana pengaruh bentuk plat absorber *V-corrugated* dengan *dimple* susunan *staggered* terhadap peningkatan temperatur dari absorber ke fluida kerja?
- 3. Bagaimana pengaruh laju aliran udara dan intensitas radiasi terhadap variasi diameter dimple?

1.3. Batasan Masalah

Batasan masalah yang digunakan dalam penelitian ini adalah sebagai berikut:

1. Analisa performansi kolektor surya dilakukan pada kondisi steady state.

- 2. Arbsorber yang digunakan terbuat dari bahan plat Alumanium tipe v yang dibentuk *dimple* pada permukaan plat dengan susunan *dimple* secara *staggered*.
- 3. Pengambilan data dilaksanakan pada laboratorium energi surya.
- 4. Aliran udara yang melewati dalam kolektor surya dianggap satu arah dan memenuhi luasan absorber secara menyeluruh.
- 5. Tidak ada kebocoran udara
- 6. Temperature udara yang mengalir dianggap hanya berubah dalam arah aliran.

1.4. Tujuan

Adapun penelitian ini bertujuan untuk:

- 1. Perancangan kolektor surya type *v corrugated* dengan plat absorber berbentuk dimple dengan variasi diameter dimple untuk mendapatkan performansi terbaik.
- 2. Mengetahui besarnya koefisien kehilangan panas total yang terjadi antara variasi diameter dimple dan perubahan tipe aliran udara pada performansi kolektor surya pemanas udara.
- 3. Melakukan tes performansi dilaboratorium untuk kolektor prototype.

1.5. Manfaat Penelitian

Adapun manfaat dari penelitian ini adalah sebagai berikut:

- Didapatkan kolektor surya pemanas udara yang memiliki kinerja yang lebih baik yang dapat meningkatkan efisiensi.
- 2. Mengetahui secara teoritis, penelitian secara langsung dan lebih mendalami tentang perpindahan panas.
- 3. Hasil penelitian ini dapat dijadikan referensi perancangan peralatan yang melibatkan perpindahan panas dan laju aliran udara dalam kolektor surya pemanas udara.
- 4. Dapat mengalihkan dan mempengaruhi manusia terhadap penggunaan energi fosil dengan menggunakan energi alternative yang sangat melimpah seperti energi matahari.

BAB II

TINJAUAN PUSTAKA

2.1. Prinsip Kerja Kolektor

Kolektor surya adalah suatu alat penyerap energi panas matahari yang terdiri dari rangka, kaca penutup dan plat absorber. Tujuan dari kolektor surya adalah menyerap panas radasi matahari kemudian memanfaatkan panas tersebut untuk memanaskan fluida kerja yang mengalir di dalam kolektor surya. Untuk memperbesar koefisien perpindahan panas yang dihasilkan oleh kolektor surya, perlu adanya penambahan gangguan di dalam saluran kolektor surya. Gangguan yang diberikan dapat berupa permukaan plat yang ditekuk dimple. Dengan adanya dimple akan terjadi olakan pada fluida sehingga dapat meningkatkan temperature keluaran dari kolektor surya.

Kolektor surya yang dipakai dalam penelitian ini adalah kolektor surya dengan plat absorber berbentuk *v-corrugated*, yang ditambahkan *dimple* dengan susunan secara *Staggered* pada plat absorber di sepanjang saluran kolektor surya pada sisi kanan dan kiri. Gambar 2.1 menunjukan pandangan samping absorber yang dipasang dimple secara staggered. Pada umumnya, kolektor surya digunakan untuk memanaskan udara, misalnya sebagai alat pengering pada industri.

- (1). Cover Glass
- (2). Absorber plate
- (3). Dimple yang disusun secara staggered.

Keterangan untuk D = (5, 7 dan 9) mm, P/e = 50 mm, L/e = 29 mm.

Prinsip kerja dari kolektor surya adalah sinar radiasi matahari yang menembus kaca penutup akan diteruskan menuju plat absorber dipindahkan energi panasnya ke fluida yang mengalir pada ducting dibawah plat absorber. Keberadaan plat yang dibentuk dimple dengan susunan staggered pada sisi kiri dan kanan plat tersebut bertujuan untuk menimbulkan olakan (turbulensi) aliran udara, yang akan memberi pengaruh terhadap koefisien perpindahan panas konveksi antara permukaan plat absorber dengan aliran fluida kerja. Pada bagian bawah kolektor surya di lengkapi dengan plat isolasi yang berada di bawah ducting berfungsi sebagai isolator agar panas tidak terdistribusi keluar system kolektor surya.

2.2. Dimple

Dimple adalah bentuk cekungan setengah lingkaran pada plat datar, yang disusun secara staggered pada permukaan plat absorber, dimple pada kolektor surya ini berfungsi untuk membuat udara didalam plat absorber terjadi pergolakan aliran udara dan mengakibatkan peningkatan temperatur. Dimple yang dirancang pada kolektor ini terdiri dari 3 plat absorber dengan diameter dimple yaitu 5 mm, 7 mm dan 9 mm. Pembuatan dimple ini menggunakan batang pipa yang ujungnya dibuat bentuk bola, dan diberikan tekanan pada permukaan plat datar sehingga menghasilkan cekungan pada plat. Cekungan ini hanya setengah dari diameter bola pada ujung pipa. Untuk dimple 5 mm, memilliki cekungan kedalaman dimple 9 mm, memilliki cekungan kedalaman 4.5 mm.

Gambar 2.2 *Cross Section* 1 tekuk kedalam dan *Cross Section* 2 tekuk keluar pada Plat *absorber tipe V-corrugated*.

Gambar 2.3 Tipe Cekungan *dimple* pada plat absorber.

2.3. Dasar Teori Perpindahan Panas

Perpindahan panas merupakan perpindahan energi yang diakibatkan oleh adanya perbedaan temperature. Panas berpindah dari medium yang memiliki temperature tinggi menuju temperature rendah. Terdapat tiga macam cara perpindahan panas, yaitu perpindahan panas secara konduksi, konveksi dan radiasi.

2.3.1 Perpindahan Panas Konduksi

Perpindahan panas konduksi terjadi pada material solid. Konduksi disebabkan oleh adanya pergerakan aktif molekul-molekul di dalamnya sehingga molekul tersebut saling bertumbukan satu sama lain sehingga akan menyebabkan perpindahan energi ketika terjadi tumbukan. Akibatnya, molekul yang ditabrak akan memperoleh energy dari molekul yang menabraknya. Besarnya laju perpindahan panas dapat dinyatakan dalam bentuk Heal Flux q'' $\binom{W}{m^2}$ yaitu perpindahan panas per satuan luas, dimana arahnya tegak lurus dengan luasan dan besarnya sebanding dengan gradient temperature. Secara umum besarnya nilai perpindahan panas dapat dinyatakan dengan:

$$q"conduction = k \frac{T_1 - T_2}{L} = k \frac{\Delta T}{L}$$
(2.1)

Keterangan:

q" Conduction = Fluks perpindahan panas konduksi (W_{m^2})

k	= Properties yang disebut sebagai konduktifitas thermal	$\left(\frac{W}{m.K} \right)$

- T_1 = Temperatur pada titik 1 (K)
- T_2 = Temperatur pada titik 2 (K)

Gambar 2.4 Perpindahan Panas Konduksi. (Incopera & Dewitt, 2002).

2.3.2 Perpindahan Panas Konveksi

Perpindahan panas konveksi merupakan proses perpindahan panas melalui suatu media perantara dan disertai pergerakan molekul-molekul media perantaranya. Konveksi dapat terjadi pada zat cair dan gas yang memiliki molekul bebas. Secara umum, perpindahan panas konveksi dibagi menjadi dua yaitu konveksi paksa (*forced convection*) dan konveksi bebas (*free convection*). Konveksi paksa adalah proses konveksi yang terjadi secara paksa karena adanya faktor dari luar, misalnya *fan, blower, air conditioner*, dan sebagainya. Sedangkan konveksi bebas adalah konveksi yang terjadi secara natural karena *bouyancy forced* (Incropera & DeWitt, 2011).

Perpindahan panas konveksi terjadi pada suatu permukaan dengan fluida yang mengalir. Gerakan olakan dari aliran fluida tersebut sangat berpengaruh terhadap perpindahan panas yang terjadi. Aliran yang berolak dapat meningkatkan perpindahan panas konveksi. Persamaan laju perpindahan panas konveksi dapat dirumuskan seperti pada persamaan (2.2) dan skema perpindahan panas konveksi ditunjukkan pada Gambar 2.3 (Incropera & DeWitt, 2011).

q" Convection = $h(T_s - T_{\infty})$

(2.2)

dengan:

q"*convection* = fluks perpindahan panas konveksi (W/m²)

h = koefisien konveksi $\left(\frac{W}{K,m^2} \right)$

 T_s = temperatur permukaan (K)

 T_{∞} = temperatur fluida (K)

Koefisien perpindahan panas konveksi (h) diperoleh dari hasil perhitungan dengan beberapa faktor yang mempengaruhi. Beberapa parameter tidak berdimensi digunakan untuk menghitung nilai koefisien perpindahan panas konveksi. Parameter-parameter tersebut antara lain:

a. *Reynolds number* (*Re*) adalah bilangan tidak berdimensi yang menunjukkan perbandingan antara gaya inersia dengan gaya gesek. Suatu aliran dapat dikategorikan sebagai aliran laminar atau turbulen dengan menghitung besar bilangan *Reynolds*. Bilangan *Reynolds* dirumuskan dalam persamaan (2.3).

$$R_e = \frac{V.L}{\upsilon}$$
(2.3)

dengan:

- V = kecepatan fluida (m/s)
- L = panjang lintasan (m)
- v = koefisien gesek kinematis (m²/s)
- b. Prandtl number (Pr) adalah bilangan tidak berdimensi yang menunjukkan perbandingan antara viskositas kinematis dengan difusivitas termal. Bilangan Prandtl dirumuskan dalam persamaan (2.4).

$$P_{\rm r} = \frac{\nu}{\alpha} \tag{2.4}$$

dengan:

v = koefisien gesek kinematis (m²/s)

 α = difusivitas panas (m²/s)

c. *Nusselt number* (*Nu*) adalah bilangan tidak berdimensi yang menunjukkan perbandingan antara koefisien perpindahan panas konveksi (h) dengan koefisien

perpindahan panas konduksi (k). Bilangan *Nusselt* dirumuskan dalam persamaan (2.5).

$$Nu = \frac{h.L}{k}$$
(2.5)

dengan:

- h = koefisien perpindahan panas konveksi $(W/m^2.K)$
- L = panjang lintasan (m)
- k = koefisien perpindahan panas konduksi (W/m.K)

2.3.3 Perpindahan Panas Radiasi

Perpindahan panas radiasi adalah perpindahan energy panas yang terjadi pada medium perantara. Radiasi yang dipancarkan oleh permukaan berasal dari energy panas zat yang dipindahkan oleh permukaan tersebut. Besarnya laju perpindahan panas radiasi sangat dipengaruhi oleh kemampuan suatu permukaan untuk memancarkan energy (ϵ), dan temperature. Laju perpindahan panas radiasi dapat ditunjukan oleh persamaan berikut:

$$q''radiation = \sigma \mathcal{E}_{bahan} \cdot \left(T_s^4 - T_{sur}^4\right)$$
(2.6)

Keterangan:

$$q''_{rad}$$
 = Fluks panas radiasi (W/m²)

T_s = Temperature permukaan (K)

 T_{sur} = Temperature Lingkungan (K)

 ϵ = Konstanta Stephen Boltzman (5,6697 x 10⁻⁸ W/m².K⁴)

 $\varepsilon_{bahan} = Emisifitas bahan$

Gambar 2.6 Perpindahan Panas Radiasi. (Incopera & Dewitt, 2002)

Laju perpindahan panas radiasi juga dapat dituliskan dalam bentuk lain, seperti yang ditunjukan pada persamaan sebagai berikut :
$$q'' rad = h_r \left(T_s - T_{sur} \right)$$
(2.7)

Keterangan

 q''_{rad} = Fluks panas radiasi (W/m²)

$$h_r$$
 = Koefisien perpindahan panas radiasi (W/m²K)

 T_s = Temperature permukaan (K)

$$T_{sur}$$
 = Temperature Lingkungan (K)

Dari persamaan (2.6) dan (2.7), nila h_r dirumuskan dengan persamaan sebagai berikut :

$$h_{r} = \sigma \mathcal{E} \left(T_{s} - T_{sur} \right) \left(T_{s}^{4} - T_{sur}^{4} \right)$$
(2.8)

Laju perpindahan panas radiasi untuk dua plat parallel, ditunjukan oleh persamaan berikut :

$$q'' \operatorname{rad} = \frac{\sigma}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1} \left(T_1^4 - T_2^4 \right)$$
(2.9)

Keterangan:

 q''_{rad} = Fluks panas radiasi (W/m²)

 T_1 = Temperatur permukaan (K)

T₂ = Temperatur surrounding

 ϵ_1 = Emisivitas bahan 1

 ϵ_2 = Emisivitas bahan 2

2.4. Konsep Tahanan Thermal Pada Kolektor Surya

Proses perpindahan panas yang terjadi pada kolektor surya berbentuk *vcorrugated* dengan tambahan dimple pada sisi kiri dan kanan plat absorber dapat digambarkan melalui *equivalent thermal circuit*, dibawah ini:

Gambar 2.7 Skema Tahanan Thermal Kolektor Surya V- Corrugated

2.5. Analisa Perpindahan Panas pada Kolektor Surya Pemanas Udara

Pada kolektor surya dengan plat penyerap *v*-corrugated ini terjadi tiga proses perpindahan panas, yaitu: konveksi, konduksi dan radiasi. Energi radiasi matahari (S) yang diterima oleh pelat penyerap *v*-corrugated, sebagian akan dimanfaatkan menjadi energi yang berguna (Q_u), sebagian akan mengalami rugi panas ke atas kolektor (U_t) dan sebagian yang lain akan mengalami rugi panas ke bawah (U_b) (Duffie & Beckman, 2013).

2.5.1 Analisa Perpindahan Panas Konduksi

1. Koefisien perpindahan panas konveksi antara kaca penutup dengan udara

luar (hc. Cg-amb)

Koefisien perpindahan panas konveksi oleh kaca penutup terhadap udara luar (h_w), didasarkan pada hembusan angin di atas kaca penutup, dengan persamaan sebagai berikut:

$$\mathbf{h}_{c.Cg-amb} = \frac{Nu_{L}.k}{L}$$
(2.10)

Keterangan :

hc.Cg-amb	= Koefisien konveksi angin (W/m^2K)
N_{uL}	= Bilangan Nusselt

L = Panjang karakteristik kaca penutup (m)

k = Koefisien konduksi (W/m.K)

Untuk aliran *free convection* dengan asumsi udara sekitar dianggap diam, fluida dianggap sebagai gas ideal, dan properties udara konstan pada *inclined* dan *horizontal plate* (permukaan plat bagian atas panas), menggunakan bilangan *Nusselt* sebagai berikut:

Nu =
$$\{0.65 + 0.36 \text{ Ra } 1/6\}^2$$

 $1 \le Ra_L \le 1.5 \times 10^9$ (2.11)

$$Ra = \frac{g\beta^{1}\Delta TL^{3}}{v \alpha}$$
(2.12)

Keterangan:

Ra = Raileight Number

g = Konstanta gravitasi (m/s^2)

 β' = Koefisien ekspansi volumetrik (untuk gas ideal $\beta = \frac{1}{\overline{\tau}}$)

 ΔT = Perbedaan temperatur antara penutup dengan plat *absorber* (K)

L = Panjang karakteristik kaca penutup (m)

$$v$$
 = Viskositas kinematik (m²/s)

$$\alpha$$
 = Difusivitas thermal (m²/s)

2. Koefisien perpindahan panas konveksi antara kaca penutup dengan plat absorber (hc, abs-cg)

Perpindahan panas konveksi antara plat penyerap dengan kaca penutup terjadi secara konveksi murni. Dengan plat penyerap berbentuk V, tinjauan untuk mendapatkan bilangan *Nusselt* didasarkan pada penelitian Randall (1978) dengan memakai persamaan *enclosures* sebagai berikut:

$$Nu = \max\left[\left(C.Ra^{n}\right), 1\right]$$
(2.13)

Nilai C dan n tertera pada Tabel 2.1 sebagai fungsi dari sudut kemiringan gelombang (β) dan aspek perbandingan plat penyerap berbentuk V (A'), yakni perbandingan antara jarak plat penyerap ke kaca penutup (L) terhadap tinggi gelombang (L') seperti terlihat pada gambar di bawah ini:

Gambar 2.8 Skema plat penyerap berbentuk-V dan kaca penutup. (Randall, 1978)

Tabel 2.1 Nilai konstanta untuk persamaan enclosures

β (degree)	A'	С	n
0	0.75	0.060	0.41
	1	0.060	0.41
	2	0.043	0.41
45	0.75	0.075	0.36
	1	0.082	0.36
	2	0.037	0.41
60	0.75	0.162	0.30
	1	0.141	0.30
	2	0.027	0.42

Sumber: Randall (1978) V-Corrugated Enclosures

Adapun nilai persamaan Rayleigh memakai persamaan yakni:

$$Ra = \frac{g\beta'\Delta T_{cg-abs}L^3}{v\alpha} = \frac{g\frac{1}{T_{f,cg-abs}}\Delta T_{cg-abs}L^3}{v\alpha}$$

(2.14)

Keteragan:

g = Konstanta gravitasi (m/s^2)

 β' = Koefisien ekspansi volumetrik (untuk gas ideal $\beta = \frac{1}{\tau}$)

 ΔT = Perbedaan temperatur antara penutup dengan plat *absorber* (K)

L = Panjang karakteristik kaca penutup (m)

v = Viskositas kinematik (m²/s)

 α = Difusitivas thermal (m²/s)

Sehingga diperoleh nilai koefisien konveksi antara plat penyerap dengan kaca penutup dengan persamaan:

$$h_{\text{conv, abs-cg}} = \frac{\text{Nu.k}_{\text{f}}}{\text{L}}$$
(2.15)

Keterangan :

N_u = Nusselt Number

 $K_f = Konduksi Termal fluida pada T_{avg}$

L = Jarak antara cover dan absorber

3. Koefisien perpindahan panas konveksi antara plat penyerap dengan fluida $(h_{c, fluida-abs})$.

Perpindahan panas yang terjadi antara plat penyerap dengan fluida yang mengalir di dalam saluran merupakan konveksi secara paksa. Untuk mendapatkan nilai bilangan *Nusselt* (Nu), dengan plat penyerap berbentuk *v-corrugated*, persamaan *enclosures* yang digunakan adalah sebagai berikut:

$$Nu_{\rm D} = \frac{h \, x \, D_{\rm h}}{k_{\rm Fluida}} \tag{2.16}$$

$$D_{h} = \frac{4 x \overline{A_{c}}}{P}$$
(2.17)

Keterangan:

h = Koefisien konveksi (W/m^2K)

 K_{fluida} = Konduktifitas fluida (W/mK)

 D_h = Diameter hidrolik (m)

Ac = Luasan *inlet* fluida (m^2)

P = Keliling *inlet* fluida (m)

Dimana Nilai D_h dapat dihitung dengan mengetahui besarnya luasan penampang yang dilalui fluida (A_c), dapat dilihat pada gambar 2.7 :

Gambar 2.9 Luasan penampang *inlet* fluida dan sisi plat absorber V *Corrugated* dengan susunan dimple secara *staggered*

Keterangan gambar :

P = 900 mm

H = 86 mm

W = 30 mm

Tabel 2.2	Tabel	Dimensi	Dim	ole
-----------	-------	---------	-----	-----

Dimple I	Diameter 5 mm	Dimp	le Diameter 7 mm	Dimple Diameter 9 mm			
L/e	= 29 mm	L/e	= 29 mm	L/e	= 29 mm		
P/e	= 50 mm	P/e	= 50 mm	P/e	= 50 mm		
e = (D/2)	= 2.5 mm	e (D/2	(2) = 3.5 mm	e = (D/2)	= 4.5 mm		

Gambar 2.10 Luasan penampang *inlet* fluida Cross Section 1 dan Cross Sectioan 2 pada plat absorber.

Perhitungan H', untuk menghitung sisi miring tanpa dimple pada plat absorber.

$$H' = \frac{1}{2}\sqrt{4H^2 + W^2}$$
(2.18)

Perhitungan H", untuk menghitung sisi miring dengan dimple pada plat absorber.

$$H' = H + \frac{n}{2} \times D \times \left(\frac{n}{2} - 1\right)$$
 (2.19)

Perhitungan Luasan inlet fluida Cross section 1.

$$A_{c1} = \frac{W \times H}{2} - \left(n \times \frac{\pi D^2}{8}\right)$$
(2.20)

Perhitungan Luasan inlet fluida Cross section 2.

$$A_{c2} = \frac{W \times H}{2} + \left(n \times \frac{\pi D^2}{8}\right)$$
(2.21)

Maka untuk mendapatkan nilai luasan inlet fluida digunakan persamaan sebagai berikut :

$$\overline{\mathbf{A}_{c}} = \frac{\mathbf{A}_{c1} \mathbf{x} \mathbf{A}_{c2}}{2}$$
(2.22)

Untuk persamaan Luas Penampang Dimple menggunakan Persamaan

$$L_{\rm PD} = \frac{1}{2} \pi \frac{D^2}{4} = \pi \frac{D^2}{8}$$
(2.23)

Keterangan :

Ac = Luasan Inlet Fluida (m^2)

H = Tinggi Duct

W = Lebar Duct

n = Number Of Dimple

Lpd = Luas $\frac{1}{2}$ Penampang Dimple

Untuk mendapatkan nilai keliling dari luasan penampang yang dilalui fluida (P) digunakan persamaan sebagai berikut:

$$P = (2xH'') + W$$
(2.24)

Keterangan :

P = Keliling Inlet Fluida

H" = Sisi Miring Beserta Dimple

W = Lebar Duct

Adapun *Reynolds Number* untuk cross section 1 dan cross section 2, memakai persamaan yakni:

$$\operatorname{Re}_{D_{h}} = \frac{\rho \operatorname{VD}_{h}}{\mu}$$
(2.25)

force convection pada aliran dalam, dikategorikan menjadi:

Aliran *laminer* jika Re < 2300
Untuk Ts = konstan, N_{UD} = 3.66
Untuk q["] = konstan, Nu_D = 4.36
Aliran *turbulent* jika Re > 2300

 $Nu_{\rm D} = 0.023 \, {\rm Re_{\rm D}}^{\frac{4}{5}} {\rm P_{\rm r}}^{0.4} \tag{2.26}$

Keterangan:

 ρ = Massa jenis fluida (kg/m³)

V = Kecepatan fluida masuk (m/s)

 D_h = Diameter hidrolik (m)

 μ = Viskositas dinamik (kg/m.s)

Sehingga diperoleh nilai koefisien konveksi antara plat *absorber* dengan fluida dengan persamaan.

$$h_{\text{conv,abs-fluida}} = \frac{Nu_{D} x k_{\text{fluida}}}{D_{h}}$$
(2.27)

2.5.2 Analisa Perpindahan Panas Radiasi

1. Koefisien perpindahan panas radiasi antara kaca penutup dengan udara luar (hr, cg-amb)

Koefisien perpindahan panas radiasi yang terjadi pada kaca penutup dengan udara sekitar dapat dihitung dengan persamaan:

$$h_{r,cg-amb} = \varepsilon_{cg} \sigma \frac{\left(T_{cg} + T_{amb}\right) \left(T_{cg}^{2} + T_{amb}^{2}\right) \left(T_{cg} - T_{amb}\right)}{\left(T_{cg} - T_{amb}\right)}$$
(2.28)

Keterangan:

 ε_{cg} = Emmisivitas *cover glass*

- σ = Konstanta Boltzman (5.6697 x 10⁻⁸ W/m²K⁴)
- T_{cq} = Temperatur *cover glass* (K)
- T_{amb} = Temperatur *ambient* (K)

2. Koefisien perpindahan panas radiasi antara kaca penutup dengan plat absorber (h_{r, abs-cg})

Faktor geometri berpengaruh pada proses perpindahan panas radiasi dari plat penyerap ke sekiliingnya. Untuk mendapatkan penyelesaian perpindahan panas radiasi pada plat penyerap berbentuk *v*-*corrugated*, maka perlu diperhitungan *view factor* dengan persamaan sebagai berikut:

$$F_{1-3} = 1 - \sin \frac{\alpha}{2}$$
 (2.29)

$$F_{12-3} = \frac{\left(L_{cg} \times W_{cg}\right) \times (F_{1-3})}{2\left(L_{abs} \times H'\right) + \left(n + \frac{3\pi(D)^2}{4}\right)}$$
(2.30)

Keterangan:

 F_{1-3} = View factor sisi miring bidang terhadap cover glass

 α = Besar sudut gelombang (20°)

L_{abs} = Panjang Plat penyerap (m)

 L_{cg} = Panjang Cover Glass (m)

 W_{cg} = Lebar Cover Glass (m)

H' = Tinggi sisi miring plat penyerap tanpa Dimle (m)

$$F_{12-3}$$
 = View factor dua sisi miring gelombang terhadap cover glass

n = Number Of Dimple

D = Diameter Dimple

Setelah diperoleh perhitungan faktor geometri tersebut, maka diperoleh koefisien perpindahan panas radiasi yang dipancarkan ke permukaan *cover*:

$$h_{r, abs-cg} = \frac{\sigma \left(T_{abs}^{2} + T_{cg}^{2}\right) \left(T_{abs} + T_{cg}\right)}{\frac{1 - \varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-3}} + \frac{(1 - \varepsilon_{c})A_{abs}}{A_{cg}}}$$
(2.31)

Keterangan:

 ε_{abs} = Emmisivitas plat penyerap

 ε_{cg} = Emmisivitas cover glass

 A_{abs} = Luas efektif plat penyerap (m²)

 A_{cg} = Luas efektif *cover glass* (m²)

3. Koefisien perpindahan panas radiasi antara plat penyerap dengan base.

Intensitas panas yang diterima oleh plat penyerap menimbulkan perpindahan panas secara radiasi antara plat penyerap dan plat bawah (*base*). Untuk mendapatkan penyelasaian perpindahan panas radiasi tersebut, maka diperoleh perhitungan view factor, namun pada perpindahan panas radiasi antara plat penyerap dan plat bawah (base) terjadi didalam ruangan tertutup maka nilai view factor nya ($F_{12-4} = 1$). Sehingga untuk mendapatkan penyelasain perhitungan perpindahan panas radiasi antara plat penyerap dan base untuk memperoleh nilai koefisien perpindahan panas radiasi yang dipancarkan ke permukaan plat penyerap menggunakan persamaan sebagai berikut :

$$h_{r,base-abs} = \frac{\sigma \left(T_{abs}^{2} + T_{base}^{2}\right) \left(T_{abs} + T_{base}\right)}{\frac{1 - \varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-4}} + \frac{\left(1 - \varepsilon_{abs}\right) A_{abs}}{A_{base}}}$$
(2.32)

Keterangan:

 ε_{abs} = Emmisivitas plat penyerap

 ε_{base} = Emmisivitas *base*

 A_{abs} = Luas efektif plat penyerap (m²)

 A_{base} = Luas efektif *base* (m²)

2.6. Analisa Energy Surya Pada Kolektor Surya Pemanas Udara

Koefisien perpindahan panas pada bagian atas (U_T) dihitung dari plat penyerap hingga udara luar. Bagian atas kolektor dihitung dengan menggunakan persamaan berikut:

$$U_{\rm T} = \frac{1}{R_{\rm total upper}} \tag{2.33}$$

$$R_{\text{total upper}} = \frac{1}{h_{w}} + \frac{1}{h_{\text{rad,cg-amb}}} + \frac{1}{h_{\text{conv,cg-abs}}} + \frac{1}{h_{\text{rad,cg-abs}}}$$
(2.34)

Keterangan:

 U_T = Koefisien perpindahan panas di bagian atas (W/m²K)

 $R_{tot,upper}$ = Total hambatan di bagian atas (m²K/W)

2.7. Analisa Perpindahan Panas di Bagian Bawah Kolektor Surya (UB)

Koefisien perpindahan panas pada bagian bawah (U_B) dihitung dari plat penyerap hingga udara luar bagian bawah kolektor. Bagian atas kolektor dihitung dengan menggunakan persamaan berikut:

Gambar 2.11. Tahanan thermal pada isolator bagian bawah

Perpindahan panas yang terjadi pada isolator adalah perpindahan panas konduksi, yang dapat dirumuskan dengan persamaan berikut ini:

$$U_{\rm B} = \frac{1}{\frac{L_1}{k_1} + \frac{L_2}{k_2} + \frac{1}{h_{\rm w}}}$$
(2.35)

Keterangan:

 U_B = Koefisien perpindahan panas di bagian bawah (W/m²K)

 L_1 = Tebal Styrofoam (0.25 m)

 L_2 = Tebal triplek (0.05 m)

 k_1 = Konduktivitas material Styrofoam (W/mK)

 k_2 = Konduktivitas material triplek (W/mK)

 h_w = Koefisien konveksi *cover glass* terhadap udara di sekitarnya (W/m²K)

2.8. Koefisien Perpindahan Panas Total (UL)

Koefisien perpindahan panas total atau disebut *Overall heat transfer* coefficient (U_L) pada kolektor surya pemanas udara dirumuskan dengan persamaan berikut:

$$\mathbf{U}_{\mathrm{L}} = \mathbf{U}_{\mathrm{T}} + \mathbf{U}_{\mathrm{B}} \tag{2.36}$$

Keterangan:

 U_L = Koefisien perpindahan panas total (W/m²K)

 U_T = Koefisien perpindahan panas di bagian atas (W/m²K)

 U_B = Koefisien perpindahan panas di bagian bawah (W/m²K)

2.9. Analisa Energi Surya pada Kolektor Surya Pemanas Udara

2.9.1 Faktor Efisiensi Kolektor (F')

Faktor efisiensi (F') untuk kolektor surya pemanas udara tipe aliran di bawah plat penyerap *v-corrugated* adalah sebagai berikut:

$$F' = \frac{1}{1 + \frac{U_L}{\frac{H_c}{\sin\frac{\emptyset}{2}} + \frac{1}{\frac{1}{h_1} + \frac{1}{h_r}}}}$$
(2.37)

Keterangan:

 h_c = Koefisien konveksi plat penyerap dengan fluida (W/m²K)

 h_r = Koefisien radiasi plat penyerap dengan plat bawah (W/m²K)

 \emptyset = Besar sudut gelombang plat penyerap (20⁰)

 U_L = Koefisien perpindahan panas total

2.9.2 Faktor Pelepasan Panas (F_R)

Persamaan faktor pelepasan panas (F_R) untuk kolektor surya pemanas udara tipe plat *v-corrugated* adalah sebagai berikut:

$$\varphi = \frac{\dot{\mathbf{m}} \cdot \mathbf{C}p}{\mathbf{A}_{c}\mathbf{U}_{L}\mathbf{F}'} \tag{2.38}$$

$$F'' = \varphi \left[1 - \exp^{-\frac{1}{\varphi}} \right]$$
(2.39)

 $F_{R} = F''. F'$ (2.40)

Keterangan:

$$\dot{m}$$
 = Laju aliran massa fluida atau mass flow rate (m/s)

- A_C = Luasan kolektor surya terpapar sinar matahari (m²)
- C_p = Panas jenis fluida atau *spesific heat of fluid* (J/kg°C)

2.9.3 Analisa Panas Yang Berguna Pada Kolektor Surya, Quseful (Qu)

Energi berupa panas yang berguna dari kolektor surya pemanas udara tipe aliran di bawah plat penyerap *v-corrugated* dijabarkan dalam persamaan di bawah ini:

$$Q_{u,aktual} = \dot{m}.Cp \Big[T_{fluida,out} - T_{fluida,in} \Big]$$
(2.41)

Atau

$$Q_{u,desain} = A_{C} \cdot F_{R} \left[S - U_{L} \left(T_{Fluida,in} - T_{amb} \right) \right]$$
(2.42)

Dengan persamaan radiasi surya yang diserap adalah:

$$S = 1.01 \text{ x } \tau_{cg} \text{ x } \alpha_{abs} \text{ x } I_{T}$$

$$(2.43)$$

Keterangan:

\mathbf{Q}_{u}	= Energi berguna (Watt)
S	= Radiasi matahari per satuan luas yang diserap (W/m ²)
U_L	= Koefisien kehilangan panas total (W/m ² K)
'n	= Laju aliran massa (kg/s)
Ср	= Panas jenis fluida atau spesifik heat of fluid (J/kg°C)
T _{fluida,in}	= Temperatur fluida masuk <i>ducting channel</i> (K)
T _{fluida,out}	= Temperatur fluida keluar <i>ducting channel</i> (K)

T _{amb}	= Temperatur lingkungan (K)
T_{abs}	= Temperatur plat penyerap (K)
T _{base}	= Temperatur plat bawah (K)
I_T	= Radiasi lampu halogen (W)
F_R	= Collector heat removal factor
$ au_{cg}$	= Transmisivitas <i>cover glass</i>
α_{abs}	= Absorbsivitas <i>plat absorber</i>

2.9.4 Analisa Efisiensi Kolektor Surya (η)

Efisiensi dari kolektor surya pemanas udara dengan plat penyerap tipe *vcorrugated* dijabarkan dalam persamaan di bawah ini:

$$\eta = \frac{Q_{\rm U}}{A_{\rm C} I_{\rm T}} \ge 100\% \tag{2.44}$$

Keterangan:

a

 Q_u = Energi berguna (Watt)

 A_c = Luasan efektif kolektor (m²)

 I_T = Intensitas radiasi matahari (W/m²)

2.10. Penelitian Terdahulu

Penelitian terdahulu mengenai kolektor surya dengan menggunakan *vcorrugated absorber* dan plat yang dibentuk dimple yang telah dilakukan sebelumnya dapat dijadikan sebagai referensi, diantaranya yaitu:

2.10.1 El-Sebaii, dkk, (2011). Investigation Of Thermal Performance Of-Double Pass-flat And V-Corrugated Plate Solar Air Heaters

El-Sebaii, dkk, (2011). Melakukan penelitian secara toritis dan eksperimen pada kolektor surya pemanas udara jenis *double pass* dengan plat datar dan *double pass* dengan *plat v-corrugated*. Skema kedua kolektor tersebut ditunjukkan pada Gambar 2.10. Perhitungan teoritis dilakukan untuk memprediksi pengaruh laju masa aliran udara terhadap penurunan tekanan dan efisiensi termal kedua jenis kolektor. Adapun perhitungan dilakukan dengan beberapa asumsi, diantaranya:

a. Kaca penutup, plat penyerap dan plat bawah serta isolator termal dianggap tidak menyimpang kalor.

b. Tidak ada perbedaan temperature dalam arah ketebalan kaca penutup. Plat penyerap dan plat bawah, sehingga temperature kaca dan semua plat sama.

c. Tidak ada kebocoran udara.

d. Temperatur udara yang mengalir dianggap hanya berubah dalam arah aliran.

Gambar 2.12. Skema kolektor surya a.) *Double pass* dengan plat datar (DPFPSAH) dan b). *double pass* dengan plat *v-corrugated* (DPVCPSAH)(El-Sebaii, dkk, 2011).

Hasil dari perhitungan model analitis yang dibangun dibandingkan dengan hasil eksperimen. Pada pengujian eksperimen, hanya dilakukan pada satu laju aliran massa yaitu 0.0203 kg/s. Dari hasil eksperimental didapatkan bahwa perhitungan memberikan hasil yang sesuai dan temperatur udara keluar dari kolektor plat *vcorrugated* lebih tinggi dibandingkan plat datar. pengaruh laju aliran massa udara terhadap Efisiensi termal dan penurunan tekanan aliran yang didapat dari model teoritis. Kolektor *plat v-corrugated* menghasilkan efisiensi termal dan penurunan tekanan lebih tinggi dari plat datar, seperti yang terlihat pada Gambar 2.11.

Gambar 2.13. Perbandingan Kinerja untuk DPFPSAH dan DPCVPSAH (El - Sebaii, dkk 2011).

2.10.2 Bashria, dkk, (2004) Prediction Of The Thermal Performance Of Solar Air Heaters By Internet-Based Mathematical Simulation.

Bashria, dkk, (2004) dalam penelitiannya mengusulkan perhitungan secara matematis untuk memperkirakan efisiensi termal kolektor surya dan kenaikan temperatur udara ketika melalui kolektor surya dengan penyerap berbentuk plat datar dan penyerap *v-groove*. Plat penyerap plat datar dan berbentuk V (*v-groove*) seperti yang ditunjukkan pada Gambar 2.12

(a) (b)
 Gambar 2.14. Plat penyerap dan rangkaian termal kolektor surya (a) berbentuk plat datar, (b) berbentuk *v-groove* (Bashria, dkk, 2004).

Dari hasil perhitungan yang telah sesuai dengan hasil eksperimen didapat bahwa kolektor surya dengan penyerap berbentuk *v-groove* mempunyai kinerja lebih baik dan temperatur udara keluar kolektor surya (T_{out}) lebih tinggi dibandingkan dengan penyerap plat datar seperti pada Gambar 2.13. Pada laju massa yang sama yaitu 0,12 kg/s, efisiensi kolektor surya dengan penyerap *v-groove* sebesar 0,73 sedangkan penyerap plat datar sebesar 0,68.

Gambar 2.15 Perbandingan efisiensi dan temperatur udara keluar pada penyerap plat datar dan *v-groove* (Bashria, dkk, 2004)

2.10.3 Hikmat Esen, (2007). Experimental Energy and Exergy Analyis Of a Double Flow Solar Air Heater Having Different Obstacles On An Absorber Plates.

Hikmat eksen, (2007) melakukan pengujian kolektor surya plat datar dengan penambahan obsacle dan tanpa penambahan obstacle, yaitu dengan tujuan meningkatkan performansi kolektor surya. Adapun tujuan dari penelitian ini adalah Mengetahui performansi kolektor surya yang menggunakan obstacle maupun tanpa pengunaan obstacle dan membandingkan bentuk obstacle kolektor surya untuk memperoleh performansi thermal yang cocok untuk pengeringan dengan memanfaatkan panas matahari.

Gambar 2.16. Skema Rangkaian (a) SAH system dan (b) pandangan depan kolektor dan (c). Tipe Plat Absorber pada kolektor surya.

Berdasarkan hasil eksperimen yang dilakukan, Kolektor surya dengan penambahan obstacle terjadi peningkatan efisiensi. Hal ini dapat dilihat dalam grafik dibawah ini.

Gambar 2.17. Perbandingan Efisiensi kolektor surya terhadap tipe plat absorber. Tabel 2.1 analisis exergy percobaan SAH

Solar	Mass flow rate	Mass flow rate Exergy input, $\dot{E}x_{in}(kW)$ Exergy output, $\dot{E}x_{out}$		Irreversibility, Ėx _{dest}			Exergy loss (%)			Second law efficiency,						
col.	(kg/s)	(kg/s) (kW)		(kW)						$\eta_{\rm H}$ (%)						
		State I	State II	State III	State I	State II	State III	State I	State II	State III	State I	State II	State III	State I	State II	State III
Type I	0.015	0.39	0.381	0.385	0.10	0.111	0.105	0.29	0.27	0.28	74.35	70.86	72.72	25.65	29.14	27.28
	0.2	0.381	0.372	0.375	0.10	0.120	0.11	0.281	0.252	0.265	73.75	67.74	70.66	26.25	32.26	29.34
	0.025	0.375	0.340	0.355	0.11	0.115	0.112	0.265	0.225	0.243	70.66	66.17	68.45	29.34	33.83	31.55
Type II	0.015	0.351	0.342	0.347	0.138	0.140	0.139	0.213	0.202	0.208	60.68	59.06	59.94	39.32	40.94	40.06
	0.2	0.341	0.330	0.335	0.143	0.148	0.145	0.198	0.182	0.19	58.06	55.15	56.71	41.94	44.85	43,29
	0.025	0.33	0.324	0.327	0.148	0.155	0.15	0.182	0.169	0.177	55.15	52.16	54.12	44.84	47.84	45.88
Туре Ш	0.015 0.2 0.025	0.31 0.32 0.30	0.328 0.321 0.310	0.316 0.318 0.314	0.145 0.150 0.148	0.170 0.180 0.189	0.155 0.175 0.180	0.165 0.17 0.152	0.158 0.141 0.121	0.161 0.143 0.134	53.22 53.12 50.66	48.17 43.92 39.03	50.94 44.96 42.67	46.78 46.88 49.34	51.83 56.08 60.97	49.06 55.04 57.33
Type IV	0.015 0.2 0.025	0.362 0.350 0.343	0.351 0.34 0.331	0.355 0.35 0.338	0.118 0.121 0.131	0.12 0.125 0.129	0.119 0.123 0.13	0.244 0.229 0.212	0.231 0.215 0.202	0.236 0.227 0.208	67.4 65.42 61.8	65.81 63.23 61.02	66.47 64.87 61.53	32.6 34.58 38.2	34.19 36.77 38.98	33.53 35.13 38.47

Dari hasil percobaan yang dilakukan dapat disimpulkan bahwa kolektor surya dengan penambahan obstacle dapat meningkatkan effisiensi, serta tipe obstacle yang paling baik adalah jenis pelat absorber tipe III karena meningkatkan turbulensi.

2.10.4 Md Azharul Karim, dkk, (2006). Performance Investigation Of Flat Plate, V-Corrugated And Finned Air Collectors.

Md Azharul Karim, dkk, (2006). Melakukan pengujian dengan membandingkan tiga tipe kolektor surya yakni antara *Flat-Plate, Finned* dan *V-Corrugated*, kesimpulan dari studi eksperimental untuk *thermal performance* dari tiga tipe *solar air collector* menunjukkan bahwa peningkatan effisiensi yang signifikan didapat dengan menggunakan tipe *V-corrugated* collector.

Hasil penelitian menunjukkan untuk semua laju alir massa air yang diuji pada ketiga jenis kolektor surya tersebut memperlihatkan bahwa kolektor surya dengan v-groove absorber mempunyai efisiensi paling tinggi dibandingkan dua jenis absorber yang lain. Efisiensi kolektor surya dengan v-groove absorber mempunyai nilai 10-15% lebih tinggi dari efisiensi kolektor surya dengan absorber plat datar. Kolektor surya dengan absorber plat datar mempunyai efisiensi yang terkecil dibandingkan dengan kolektor surya absorber plat datar dengan fin maupun kolektor surya dengan v-groove absorber.

Gambar 2.19 Grafik Variasi Efisiensi Flat Plate, V-Corrugated And Finned Air Collector Terhadap Laju Alir Udara, (Md Azharul Karim, dkk, 2006)

2.10.5 Tao Liu, dkk, (2007). A Parametric Study on the Thermal Performance of a Solar Air Collector with a V-Groove Absorber

Tao Liu, dkk, (2007) melakukan penelitian tentang pengaruh beberapa parameter yaitu: panjang kolektor L, tinggi v-*corrugated Hg*, celah antara kaca penutup dengan ujung plat *v*- *corrugated Hc*, Emisifitas radiasi *I*, Laju aliran massa *mf*, dan temperatur udara masuk T_{fi} . Terhadap kinerja kolektor surya plat datar dan plat v-*corrugated* absorber dengan skema seperti yang ditunjukan pada gambar dibawah ini :

Dari hasil penelitiannya diketahui bahwa kolektor surya jenis v-*corrugated absorber* menghasilkan performa lebih baik jika dibandingkan dengan kolektor plat datar, seperti ditunjukan pada gambar 2.16. Tao, et al., (2007) menyatakan bahwa kinerja thermal dapat ditingkatkan dengan menggunakan saluran lebih sempit atau saluran segitiga yang lebih kecil.

Gambar 2.21. Pengaruh Intensitas Radiasi Terhadap Efisiensi Temperatur Dan Beberapa Komponen Kolektor. (Tao Liu, Et al., 2007)

2.10.6 Nat Varayos, dkk, (2016). Heat Transfer Behavior Of Flat Plate Having Spherical Dimpled Surfaces.

Nat Vorayos, dkk, (2016), melakukan penelitian tentang analisis perpindahan panas, pada permukaan plat absorber yang diberikan bentuk dimpled, Terdapat 14 jenis dimpled diberi aliran dan Efek dari dimpled pitch tersebut diteliti. Percobaan dilakukan dengan mengalirkan udara melewati permukaan dimpled yang dipanaskan . Temperatur dan kecepatan aliran udara pada permukaan dimpled diukur. Transfer panas permukaan dimpled diselidiki dan dibandingkan dengan hasil pada plat datar. Untuk pengaturan dimpled secara stagered arragment, hasil perhitungan menunjukkan bahwa maksimum Nusselt untuk permukaan dimpled sekitar 26% lebih baik dari permukaan plat datar. Dan untuk pengaturan inline, hasilnya menunjukkan bahwa jumlah Nusselt maksimum untuk permukaan dimpled sekitar 25% lebih baik dari plat datar.

Gambar 2.22. (a) Pengaturan dan prosedur eksperimental,

(b) Staggered Arrangement (c) Inline Arrangement (Nat Vorayos, dkk, 2016)

Gambar 2.19 menunjukkan efek dari pitch dimple pengaturan staggered dari kinerja perpindahan panas. Hasilnya nomor Nusselt vs nomor Reynolds. Seperti yang terlihat pada gambar, nilai untuk angka Nusselt ditambah pada semua nomor Reynolds dan semua pitch dimple dibandingkan dengan pelat datar. Geometrik No. 2 menghasilkan angka Nusselt tertinggi sekitar 26% lebih baik dari plat datar, dan Geometrik No. 1, No. 7 dan No. 9 menghasilkan angka Nusselt terendah.

2.10.7 Brij Brushan, dkk, (2011). Nusselt Number And Friction Factor Correlations For Solar Air Heater Duct Having Artificially Roughened Absorber Plate.

Brij Brushan, dkk, (2011), melakukan penelitian tentang nusselt number dan friction faktor untuk pipa pemanas udara yang dimiliki oleh plat penyerap, dari hasil penelitiannya secara eksperimen pada plat absorber bentuk dimple menghasilkan keofisien perpindahan panas lebih tinggi dibandingkan dengan plat datar. Untuk maksimum jumlah nusselt number dan faktor gesekan mendapatkan nilai masing-masing 3,8 dan 2,2 kali dibandingkan dengan plat halus untuk koefisien perpindahan panas nilai (S/e) 31,25, (L/e) 31,25 dan (d/D) 0,294.

Gambar 2.24. (a) Pandangan Plat absorber bentuk dimple. (b) Susunan dimple secara staggered pada pelat absorber. (Brij Brushan, dkk, 2011)

Gambar 2.23. Variation of Nusselt number with Reynolds number for range of relative short way length (S/e). (Brij Brushan, dkk, 2011)

Dari grafik pada gambar 2.24 untuk nilai yang diberikan dari parameter kekasaran, bilangan Nusselt meningkat secara significant dengan peningkatan bilangan Reynolds. Namun, nilai bilangan Nusselt untuk plat absorber yang menonjol jauh lebih tinggi dibandingkan dengan yang diperoleh untuk absorber plat datar karena fakta bahwa tonjolan pada plat absorber mengakibatkan peningkatan koefisien perpindahan panas.

2.10.8 RP Saini, dkk, (2008). Heat Transfer And Friction Factor Correlations For A Duct Having Dimple-Shape Artificial Roughness For Solar Air Heaters.

RP Saini, dkk, (2008) melakukan penelitian tentang Korelasi perpindahan panas dan faktor gesekan untuk saluran yang memiliki kekasaran buatan bentuk dimple untuk pemanas udara tenaga surya.

Dari hasil studi eksperimental yang telah dilakukan penelitian ini mencakup kisaran bilangan Reynolds (*Re*) dari 2000 hingga 12.000, tinggi kekasaran relatif (*e/D*) dari 0,018 hingga 0,037 dan nada relatif (*p/e*) dari 8 hingga 12. Berdasarkan data eksperim, nilai dari Nomor Nusselt (*Nu*) dan faktor gesekan (*f*_r) telah ditentukan untuk nilai yang berbeda dari parameter kekasaran dan operasi.

Gambar 2.26. Prediksi Perbandingan nilai faktor gesekan dengan nilai eksperimen, (RP Saini, dkk, 2008).

Pada gambar 2.26, menunjukkan perbandingan nilai eksperimen dan nilai faktor gesekan yang diperoleh dari korelasi yang dikembangkan. Penyimpangan persentase absolut rata-rata antara nilai-nilai eksperimental dan prediksi telah ditemukan menjadi 7,58 dan 4,68 untuk bilangan Nusselt dan faktor gesekan.

2.10.9 Ekadewi A. Handoyo, (2014). Peningkatan Kinerja Kolektor Surya Tipe V-Corrugated Absorber Plate Menggunakan Obstacle yang Ditekuk Secara Vertikal.

Ekadewi A. Handoyo, dkk, (2014). melakukan pengujian pada kolektor surya pemanas udara dengan plat penyerap jenis *v-corrugated* yang diberi *obtacle* pada lantai saluran udara. Studi ini berupa simulasi numerik dan eksperimen dari kolektor surya yang bertujuan untuk mempelajari pengaruh penekukan obstacle dalam perpindahan kalor secara konveksi dari plat penyerap ke aliran udara di bawahnya dan penurunan tekanan yang terjadi dalam suatu kolektor surya pemanas udara.

Eksperimen dilakukan untuk aliran tanpa *obstacle* dan aliran dengan *obstacle* yang ditekuk dengan semua sudut tekuk yang berbeda mulai dari 0^{0} (lurus, tidak ditekuk), 10^{0} , 20^{0} , 30^{0} , 40^{0} , 50^{0} , 60^{0} , 70^{0} , dan 80^{0} . Simulasi numerik dengan gambit 2.4.6 dan Fluent 6.3.26 dilakukan untuk mendukung hasil eksperimen yaitu bahwa sudut tekuk optimal adalah 30^{0} . Oleh karenanya, simulasi numerik dibatasi pada aliran dengan *obstacle* 10^{0} , 20^{0} , 30^{0} , 40^{0} , dan airan tanpa *obstacle*.

Gambar 2.27 : Kolektor surya dengan penambahan obstacle berbentuk paruh

Gambar 2.28 : Perbandingan antara efisiensi kolektor surya dan bilangan *Reynolds* pada intensitas radiasi 430 W/m².

Setelah dilakukan penelitian, diketahui kenaikan temperatur udara tertinggi, yaitu 34.9 °C, dicapai ketika intensitas radiasi 716 W/m², kecepatan udara dalam saluran 1.3 m/s (bilangan Reynolds 2000), dan diberi *obstacle* lurus. Effisiensi kolektor tertinggi, yaitu 0.85, dicapai ketika intensitas radiasi 430 W/m², kecepatan aliran udara dalam saluran 6.5 m/s (bilangan Reynolds 10000), dan diberi *obstacle* lurus. Dari hasil yang diperoleh, *obstacle* yang memberikan kinerja optimal adalah ketika ditekuk dengan sudut 30⁰.

2.10.10 Hakam, dkk. (2008). Pengaruh penambahan fin sebagai vortex generator dan extended surface terhadap performansi kolektor surya pemanas udara tipe v-corrugated absorber plate.

Hakam, dkk, (2018). melakukan penelitian secara eksperimen pada kolektor surya pemanas udara dengan penyerap *v-corrugated* yang ditambahkan *obstacle* berbentuk paruh dengan sudut tekuk 30° dan fin berbentuk prisma segitiga yang dipasang di bawah plat penyerap. Fin prisma segitiga yang ditambahkan dimiringkan dengan sudut 67,5°. Penelitian dilakukan dengan memvariasikan laju massa udara 0,002 kg/s, 0,004 kg/s, 0,006 kg/s, dan 0,008 kg/s. Selain itu penelitian

juga dilakukan dengan memvariasikan intensitas radiasi matahari 431 W/m², 575 W/m², dan 719 W/m². Skema pengujian ditunjukkan pada Gambar 2.10.

Gambar 2.29. Skema alat uji penelitian (Hakam et al., 2018)

Hasil dari penelitian ini didapat bahwa penambahan fin berbentuk prisma segitiga di bawah plat penyerap dapat mempengaruhi nilai perubahan temperatur fluida (Δ T) dan nilai *pressure drop* (Δ P). Nilai efisiensi didapat dari rasio anatar *pressure drop* dan beda temperatur (Δ P/ Δ T). Berdasarkan Gambar 2.11 terlihat bahwa efisiensi terbaik yaitu 0,926 didapat saat laju massa udara 0,008 kg/s dan intensitas radiasi matahari 431,372 W/m².

2.10.11 Masrianus, dkk, (2018). Studi Eksperimen Performansi Kolektor Surya Pemanas Udara Tipe *Dimple Inline* Plat V-Corrugated Absorber.

Marsiaunus, dkk, (2019) melakukan penelitian Kolektor surya Tipe Dimple susunan Inline Plat V-Corrugaterd Absorber plate, dengan membandingkan 3 plat absorber dengan variasi diameter dimple 5 mm, 7 mm dan 9 mm. Penelitian dilakukan secara eksperimen, dengan memvariasikan laju massa udara sebesar 0.001 kg/s, 0.002 kg/s, 0.004 kg/s dan 0.006 kg/s dan intensitas radiasi, menggunakan 431 W/m², 575 W/m², 718 W/m². Hasil yang diperoleh dari penelitian ini adalah besarnya energi berguna yang diserap oleh fluida kerja berbanding lurus dengan peningkatan laju aliran massa dan intensitas radiasi.

Berdasarkan hasil eksperimen Quse paling tinggi sebesar 51.59 Watt pada laju massa 0.006 kg/s dengan intensitas radiasi 718 Watt/m2 dan effisiensi paling tinggi sebesar 48.72 % dicapai pada laju massa 0.006 kg/s dengan intensitas 432 Watt/m².

BAB III

METODE PENELITIAN

Pada penelitian ini digunakan kolektor surya tipe *v-corrugated absorber plate*, yang dibentuk *dimple* pada permukaan plate *dimple* disusun secara *staggered* pada sisi kiri dan kanan. Dimana dalam melakukan penelitian ini dilakukan secara eksperimen, penelitian ini divariasikan diameter *dimple* dengan ukuran 5 mm, 7mm dan 9 mm. Dari hasil studi eksperimen yang di pelajari mana yang terbaik akan dilanjutkan ke tahap pengolahan data.

3.1 Desain Pemilihan Diameter dan Jarak Dimple

Penggunaan *dimple* pada plat *tipe v-corrugated absorber* yang disusun secara *staggered* pada sisi kiri dan kanan, bertujuan untuk menambah luasan panas fluida kerja. Perlu diperhitungkan sehingga didapatkan Q_{usefull} yang paling optimum. Untuk mendapatkan posisi yang paling optimal agar diperoleh kenaikan temperature yang signifikan, maka dilakukan pemilihan diameter *dimple*.

3.2 Ukuran, Jarak dan Diameter Dimple

Dimple pada plat tipe v-corrugated absorber berada di sisi kiri dan kanan plat absorber. Keterangan ukuran, jarak dan diameter dimple yang digunakan adalah sebagai berikut :

Gambar 3.1. Kolektor Surya Untuk Ukuran, Jarak Dan Diameter.

Dimensi kolektor surya pada plat absorber ini adalah diameter *dimple* adalah 5 mm, 7 mm dan 9 mm. dan susunan dimple secara *staggered*, D/e = 50 mm, P/e = 29 mm.

Tabel 3.1 Spesifikasi Kolektor Surya

Deskripsi	Material atau Dimensi
Dimensi Kolektor Surya	Ukuran 900 mm (panjang) x 60 mm (Lebar) x
	125 mm (tinggi)
Kaca Penutup	Temper Glass, Tebal = 5 mm
Plat Penyerap (Absorber)	Plat berbahan alumanium dengan ketebalan 2 mm,
	dan dicat warna Hitam Berbentuk V-Corugated,
	Ukuran 900 mm (panjang) x 30 mm (lebar) x 86
	mm (tinggi)
Jumlah Laluan	1 Laluan
Jumlah Dimple Sisi Kiri	27
Dan Kanan masing-masing	
Susunan Dimple	Staggered
Diameter Dimple	5 mm, 7 mm, dan 9 mm.

3.3 Gambaran Sistem Kerja

Kolektor surya pemanas udara merupakan alat pengering yang memanfaatkan energi matahari sebagai sumber panas. Oleh karena itu performa kolektor surya terus diperbaiki agar dapat lebih effisien. Berikut adalah gambaran system kerja yang digunakan dalam eksperimen, ditujukkan pada gambar di bawah ini:

Gambar 3.2 : Skema kolektor surya V-corrugated dengan susunan dimple secara

Gambar 3.3. Dimensi dan bagian-bagian alat.

Keterangan Gambar :

- 1. Udara Masuk
- 2. Kaca penutup
- 3. Plat Absorber
- 4. Thermocouple

- 5. Isolator
- 6. Thermocouple Display
- 7. Lampu Hologen
- 8. Blower

Gambar 3.4 Peralatan Percobaan Kolektor Surya V-corrugated dengan susunan dimple secara staggered

Prinsip kerja kolektor surya ini adalah radiasi matahari akan langsung dipancarkan pada kolektor dan mengenai kaca penutup kolektor surya. Panas radiasi tersebut diserap oleh plat absorber untuk memanaskan fuida kerja. Fluida yang dihisap oleh blower dengan kecepatan tertentu menuju duct selanjunya mengenai plat absorber yang dibentuk *dimple* dengan susunan *dimple staggered*. Peningkatan temperature diharapkan terjadi saat fluida keluar dari duct.

3.4 Parameter yang diukur dan peralatan penelitian

3.4.1 Parameter yang diukur

Selama proses pengujian pada kolektor surya tersebut terdapat parameterparameter yang akan diukur dengan posisi seperti yang ditunjukan pada gambar 3.4.

Note : \bigcirc = Dimple tekuk kedalam, \bigcirc = dimple tekuk keluar

Gambar 3.5 Skema alat uji dan penempatan aat ukur, tampak depan dan tampak samping pada kolektor Surya *V-corrugated* dengan susunan dimple secara

staggered.

Gambar 3.6 Posisi Penempatan Pressure tap (Pandangan Atas) pada kolektor Surya *V-corrugated* dengan susunan dimple secara *staggered*.

Proses Eksperimen dilaksanakan di *rooftop* Jurusan Teknik Mesin, Institut Teknologi Sepuluh Nopember Surabaya, Kolektor surya yang digunakan mempunnyai dimensi Ukuran 900 mm (panjang) x 60 mm (Lebar) x 125 mm (tinggi) seperti ditunjukan pada tabel 3.1. Penempatan alat ukur pada bagian udara masuk dan keluar mengikuti ketentuan yang dibuat ASHRAE (ASHRAE 93-1986,1986). Alat ukur temperatur diletakan pada jarak yang didalamnya terdapat unsur besaran $\sqrt{(ab)}$ dimana besar a dan b adalah dimensi saluran yang digunakan

dalam kolektor surya. Mengingat saluran yang digunakan adalah segitiga dengan a = 15mm dan b = 86 mm, maka besar $\sqrt{(ab)}$ = 35,9 mm.

Sesuai dengan ketentuan ASHRAE, alat ukur temperatur udara masuk diletakkan pada jarak $2\sqrt{(ab)}$ dari ujung masukan kolektor surya, sedangkan alat ukur temperatur udara keluar diletakkan pada jarak $3,5\sqrt{(ab)}$ dari ujung keluar kolektor surya. Panjang saluran lurus sebelum ujung masukan kolektor surya adalah $3,5\sqrt{(ab)}$, sedangkan panjang saluran lurus setelah kolektor sebelum blower adalah $4\sqrt{(ab)}$.

Selama pengujian kolektor surya tersebut terdapat parameter yang diukur dengan posisi seperti gambar diatas, berikut parameter-parameter apa saja yang diukur.

- 1. Temperatur fluida kerja masuk kedalam ducting channel (T_{f, in})
- 2. Temperatur fluida kerja keluar ducting channel ($T_{f,out}$)
- 3. Temperatur udara ambient (T_{amb})
- 4. Temperatur plat absorber (T_{abs})
- 5. Temperatur cover glass (T_{cg})
- 7. Temperatur base (T_{base})
- 8. Temperatur isolasi (T_{iso})
- 9. Intensitas radiasi ektraterrestrial (It)
- 10. Kecepatan Fluida Kerja (V_f)
- 11. Δ Pressure (Pa)

Prosedur umum penelitian ini dimulai dari pengumpulan data berupa studi literature, melalui berbagai jurnal terkait, dari berbagai literature mekanika fluida dan perpindahan panas, setelah itu melakukan pembuatan alat kolektor surya dan melakukan eksperimen untuk pengambilan data, Kemudian mengolah data tersebut dan merumuskan pemecahan masalah dengan menggunakan perangkat lunak.

3.4.2 Peralatan Penelitian

Berikut ini adalah peralatan yang digunakan dalam eksperimen berupa alatalat uji dan alat bantu untuk pengukuran, Peralatan tersebut dapat dilihat pada tabel dibawah ini :

Tabel 3.2 Peralatan Penelitian

No	Keterangan	Gambar
1	Pyranometer, digunakan untuk mengukur intensitas radiasi matahari	
3	Anemometer, digunakan untuk mengukur kecepatan angin thermometer	
4	Arduino Thermocouple Multiplaxer Shield, digunakan untuk membaca suhu, Tipe: KTA-259K, thermocouple tipe K, buatan Ocean Control Australia, Kisaran temperatur: - 200 -+ 1350°C, Akurasi: 2°C.	
5	Magnetic Differential Pressure Gage, digunakan untuk membaca tekanan. Tipe : 2300-120 Pa, <i>Zero Range</i> <i>Center</i> Buatan : Dwyer Range : - 60 to 60 Pa Akurasi : ± 2%	
6	Lampu Hologen, untuk pencahayaan pada kolekor surya sebagai penganti matahari dalam melakukan penelitian.	

7	Voltage Regulator, digunakan untuk mengatur kecepatan udara masuk	
8	Blower, digunakan untuk suplay udara masuk kedalam kolektor surya. Daya : 260 Watt Voltage : 220 Volt Speed : 3600 rpm Diameter Discharge : 2,5 Inch	

3.5 Tahap-tahap Penelitian

Dalam penelitian tugas akhir ini ada tiga tahap dalam penelitian diantaranya tahap persiapan, tahap pengambilan data, dan tahap akhir. Adapun penjelasan masing-masng tahap akan dijelaskan sebagai berikut :

a. Tahap Persiapan

- Mempersiapkan dan memastikan semua peralatan yang digunakan dalam kondisi sudah dikalibrasi yaitu : pyranometer, thermocouple selector, blower, thermometer digital, magnetic differential pressure gage dan rangkaian-rangkaian listrik yang dibutuhkan.
- 2. Merangkai semua peralatan dengan benar

b. Tahap pengambilan data

- 1. Memastikan semua peralatan disusun dengan benar
- Memvariasikan laju massa udara 0.001 kg/s, 0.002 kg/s, 0.004 kg/s, dan 0.006 kg/s,
- 3. Memvariasikan intensitas radiasi 431 W/m², 575 W/m², dan 719 W/m², pada insitu condition.
- 4. Mengambil data yang dibutuhkan meliputi : V_f , I_T , T_d , in, T_f , Out, T_{amb} , T_{abs} , T_{cg} , T_{base} .

c. Tahap akhir

- 1. Menurunkan Kecepatan blower secara perlahan-lahan lalu dimatikan.
- 2. Mematikan semua peralaan listrik
- 3. Meletakan perelatan utama dan peralatan bantu sesuai dengan tempat semula.

Dimensi	Laju	Intensitas		$T_{cg}(^{0}C)$)	Т	Tabs (⁰ C	C)	Tflui	da (⁰ C)		Tbase		
Diameter <i>dimple</i>	Massa Udara	Radiasi. I _T	Tcg 1	Tcg 2	Tcg 3	Tabs 1	Tabs 2	Tabs 3	In	out	Tbase 1	Tbase 2	Tbase 3	Tamb
		431 W/m ²												
	mi	575 W/m ²												
	¹¹¹ 1	719 W/m ²												
		431 W/m ²												
5 mm, 7 mm, dan 9 mm.	m ₂	575 W/m ²												
		719 W/m^2												
		431 W/m ²												
	mi	575 W/m ²												
	III ₃	719 W/m ²												
		431 W/m ²												
	mi	575 W/m ²												
	1114	719 W/m^2												

 Table 3.3 Pengambilan Data Eksperimen
Table 3.4 Desain Eksperimen

Variabel Tetap	Input Variabel Kontrol		Diukur	Dianalisa
Dimensi Kolektor Surya pada kolektor Surya.	Laju Massa udara Intensitas Radiasi	0.001 kg/s 0.002 kg/s 0.004 kg/s 0.006 kg/s 431 W/m ² 575 W/m ² 719 W/m ²	$V_{f}, I_{T}, T_{d},$ in, $T_{f, Out},$ $T_{amb}, T_{abs},$ $T_{cg}, T_{base}.$	Q _{usefull} , Effisiensi Kolektor Surya

3.6 Flow Chart

3.6.1 Flow Chart Penelitian

Gambar 3.7 Flow Chart Penelitian

3.6.2 Flow Chart Pengambilan Data

Gambar 3.8 Flow Chart Pengambilan Data

3.6.3 Flowchart Perhitungan

Gambar 3.9 Flow Chart Perhitungan

The state be state

18/50

BAB IV

ANALISA DAN PEMBAHASAN

Pada penelitian ini pengambilan data pada plat absorber dengan penambahan *dimple* dengan susunan *staggered*. Dalam menentukan geometri kolektor surya yang akan digunakan sebagai studi eksperimen, hasil eksperimen yang dilakukan pada kolektor surya dengan Plat absorber diameter dimple 5 mm, 7 mm dan 9 mm. Pada eksperimen ini akan digunakan variasi laju alir massa sebesar 0,001 kg/s, 0,002 kg/s, 0,004 kg/s, dan 0,006 kg/s. dengan intensitas radiasi menggunakan lampu halogen sebagai penganti sinar matahari. Intensitas radiasi yang digunakan adalah 431 W/m², 575 W/m², dan 719 W/m².

4.1. Eksperimen

Pengambilan data dilakukan di Laboratorium Energi Surya Jurusan Teknik Mesin, Institut Teknologi Sepuluh Nopember Surabaya yang memiliki koordinat posisi 7,2821°S – 112,7951°E, sebagai bahan studi eksperimental kolektor surya pemanas udara v-corrugated dengan dimple yang di susun secara staggered.

Pengujian ini dilakukan pada *insitu condition* dimana data yang diambil sesuai dengan keadaan pada lingkungan saat itu. Data diambil selama 3 hari yaitu pada tanggal 23 Mei 2019, 24 Mei 2019, dan 25 Mei 2019.

4.1.1 Dimensi Kolektor Surya Pemanas Udara

Kolektor surya pemanas udara yang digunakan pada percobaan ini adalah kolektor surya dengan plat *absorber* berbentuk v *Corrugated* dengan susunan dimple staggered pada setiap sisi kiri dan kanan sepanjang laluan, dimana fluida kerja dialirkan di bagian bawah plat absorber. Plat absorber terdiri dari 1 laluan. Dimensi kolektor surya yang digunakan dalam percobaan adalah sebagai berikut.

- Panjang kolektor surya L : 0,9 m
- Lebar kolektor surya W : 0.03 m
- Tinggi Ducting channel H : 0.85 m
- Luasan efektif kolektor surya : 0.169 m²
- Cover glass (Kaca Penutup)
- 1. Transmisivitas (τ_{cg}) : 0,85
- 2. Emisivitas (ε_{cg}) : 0,99

• Plat Absorber

1.	Absorbsivitas	(α_{abs})	: 0,88
	11000100111000	(abs)	. 0,00

- 2. Emisivitas (ε_{abs}) : 0,9
- Styrofoam Insulasi
- 1. Ketebalan : 0.02 m
- 2. Konduktifitas termal (K_{styrofoam}): 0,01 W/m.K
- Papan Triplek Insulasi
- 1. Ketebalan : 0.01 mm
- 2. Konduktifitas termal (K_{triplek}) : 0,12 W/m.K

4.1.2 Perhitungan Data Eksperimen

Berdasarkan data – data yang diperoleh dari hasil percobaan, selanjutnya dilakkukan perhitungan untuk mengetahui performansi dari kolektor surya pemanas udara *v-corrugated* untuk kemudian dianalisa. Perhitungan dilakukan berdasarkan batasan-batasan masalah yang ada pada subbab batasan masalah. Berikut ini adalah contoh perhitungan pada kolektor surya dengan plat absorber diameter dimple 9 mm dan laju aliran massa 0,006 kg/s, intensitas radiasi sebesar 718 Watt/m² Adapun data-data untuk contoh perhitungan adalah sebagai berikut :

 Intensitas Cahaya Lampu Halogen 	: $I_T = 431,372 \text{ Watt/m}^2$
 Laju aliran massa udara 	$: \dot{m} = 0.006 \text{ m/s}$
 Kecepatan udara ambient 	$: \mathbf{V}_{w} = 0 \text{ m/s}$
 Temperatur ambient 	$: T_{amb} = 30 \ ^{0}C = 303 \ K$
 Temperatur cover glass 	: $T_{cg} = 62.1 \ ^{0}C = 335.1 \ K$
 Temperatur plat absorber 	: $T_{abs} = 43.2 \ ^{0}C = 316.2 \ K$
 Temperatur Fluida Kerja Sisi Inlet 	: $T_{f,in}$ = 30.8 ^{0}C = 303.8 K
 Temperatur Fluida Kerja Sisi Outlet 	$: T_{f,out} = 39.0 \ ^{0}C = 312.0 \ K$
 Temperatur Base 	: $T_{base} = 32.2 \ ^{0}C = 305.2 \ K$
 Temperatur Isolasi 	: $T_{iso} = 31.4 \ ^{0}C = 304.4 \ K$
 Tebal styrofoam 	$: L_1 = L_{styrofoam} = 0.02 m$
 Konduktifitas termal styrofoam 	: $K_1 = K_{styrofoam} = 0,01 \text{ W/m.K}$
 Tebal triplek 	$: L_2 = L_{triplex} = 0.01 \text{ m}$
 Konduktifitas termal triplek 	$: \mathbf{K}_2 = \mathbf{K}_{triplek} = 0,12 \text{ W/m.K}$

•	Percepatan Gravitasi	: g	$= 9,8 \text{ m/s}^2$
•	Emisivitas plat aborber	: \mathcal{E}_{abs}	= 0,98
•	Absorbsivitas	$: \alpha_{abs}$	= 0,88
•	Emisivitas Cover glass	$: \mathcal{E}_{cg}$	= 0,99
•	Transmisivitas cover glass	: $ au_{cg}$	= 0,85
•	Konstanta Stefan Boltzman	: 5,67	$x 10^8 W/m^2.K^4$

1. Menghitung intensitas cahaya yang mengenai plat absorber.

Intensitas radiasi matahari terbaca oleh pyranometer sebesar 3.3 mVolt. Ketelitian pyranometer adalah 7.65 mVolt/Kw.m², sehingga intensitas yang mengenai plat absorber adalah :

$$I_{T} = \frac{3.3 \text{ mVolt}}{0.00765 \text{ mVolt}_{W,m^{2}}}$$

= 431,372 W/m²
S = (1.01) x \tau_{cg} x \alpha_{abs} x I_{T}
S = (1.01) x 0.85 x 0.88 x 431,372 W/m² = 325,893 W/m²

2. Menghitung koefisien perpindahan panas konveksi antara kaca penutup dengan udara luar (hw).

$$L = \frac{AS}{P} = \frac{0.09 \text{ m x } 0.9 \text{ m}}{2(0.09 \text{ m} + 0.9 \text{ m})} = 0.0409 \text{ m}$$

Percobaan dilakukan di Laboratorium Perpindahan panas dan Massa, Jurusan Teknik Mesin ITS, sehingga kecepatan angin tidak mempengaruhi percobaan sehingga dapat diabaikan, $V_w = 0$ m/s.

3. Menghitung koefisien perpindahan panas konveksi antara kaca penutup dengan plat absorber. (h_{conv,cg-abs}).

Data berikut adalah temperatur rata-rata pada kaca penutup dan temperatur plat absorber kolektor surya *v-coruggated* bentuk *dimple* dengan susunan *staggered*.

$$T_{f cg-abs} = \frac{T_{cg} + T_{abs}}{2}$$
$$T_{f cg-abs} = \frac{335.7 \text{ K} + 316.2 \text{ K}}{2} = 325.6 \text{ K}$$

Berdasarkan $T_{fcg-abs}$ maka dari tabel *A-4 Thermophysical properties of gases at atmospheric preassure* selanjutnya didapatkan.

1

$$v = 1,846 \text{ x } 10^{-5} \text{ m}^{2}/\text{s}$$

$$\alpha = 2,6294 \text{ x } 10^{-5} \text{ m}^{2}/\text{s}$$

$$k = 0,02819 \text{ W}/\text{m.K}$$

$$\beta' = \text{Koefisien ekspansi volumetrik} \left(\text{untuk gas ideal } \beta' = \frac{1}{T_{f.cg-abs}} \right)$$

 $\beta' = \frac{1}{T_{f.cg-abs}} = \frac{1}{325.6 \,\text{K}} = 0.003070 \,\text{K}^{-1}$

Bilangan Rayleight didapat menggunakan persamaan sebagai berikut :

$$\operatorname{Ra} = \frac{g\beta' \Delta T_{cg-abs} L_{cg}^{3}}{v.\alpha} = \frac{g \frac{1}{T_{fcg-abs}} \Delta T_{cg-abs} L^{3}}{v.\alpha}$$

$$Ra = \frac{9.8 \text{ m/s}^2 \text{ x } 0.003070 \text{ K}^{-1} (335.7 - 316.2) \text{ K. } (0.04090 \text{ m})^3}{(1,846 \text{ x } 10^{-5} \text{ m}^2/\text{s}) \text{ x } (2,6294 \text{ x } 10^{-5} \text{ m}^2/\text{s})} = 80050.30$$

Menentukan nilai konstanta (C3 dan n) Berdasarkan Tabel 2.1

Maka hasil bilangan Nusselt didapat menggunakan persamaan sebagai berikut :

 $N_u = C_3 \cdot Ra^n$ $N_u = 0.06 \times 80050.30^{0.41} = 6.1451$

Sehingga, koefisien konveksi antara kaca penutup dan plat absorber kolektor surya yang didapat menggunakan persamaan sebagai berikut :

$$h_{conv,cg-abs} = \frac{Nu.K_{f}}{L_{cg}}$$
$$= \frac{6.1451 x (0,02819 \text{ W/}_{m.K})}{0.04090 \text{ m}} = 4.235 \text{ W/}_{m^{2}} \text{ K}$$

4. Menghitung Koefisien perpindahan panas radiasi antara kaca penutup dengan udara Luar (h_{r,cg-amb})

Untuk mendapatkan koefisien perpindahan panas radiasi antara kaca penutup dan udara luar diperoleh dengan menggunakan persamaan sebagai berikut :

$$h_{r,cg-amb} = \varepsilon_{cg} \sigma \frac{\left(T_{cg} + T_{abm}\right) \left(T_{cg}^{2} + T_{abm}^{2}\right) \left(T_{cg} - T_{abm}\right)}{\left(T_{cg} + T_{amb}\right)}$$

$$h_{r,cg-amb} = 0.8 \text{ x } \left(5.67 \text{ x } 10^{-8} \text{ W/m}^{2} \text{ K}^{4}\right)$$

$$\frac{(335.1 \text{ K} + 303 \text{ K}) (335.1 \text{ K}^{2} + 303 \text{ K}^{2}) (335.1 \text{ K} - 303 \text{ K})}{(335.1 \text{ K} + 303 \text{ K})}$$

$$= 5.9065 \text{ W/m}^{2} \text{ K}$$

5. Menghitung Koefisien Perpindahan panas radiasi antara kaca penutup dengan plat absorber (h_{r,cg-abs})

Untuk mengetahui koefisien perpindahan panas radiasi antara kaca penutup dan plat absorber, maka harus mencari terlebih dahulu nilai dari F_{1-3} dengan persamaannya sebagai berikut :

$$F_{1-3} = 1 - \sin\frac{\alpha}{2} = 1 - \sin\frac{20^0}{2} = 0.82635$$

 F_{1-3} merupakan *view factor* (faktor bentuk) berpengaruh pada proses perpindahan radiasi dari plat absorber ke kaca penutup dan sekelilingnya.

H' = 0.08631 m

$$F_{12-3} = \frac{\left(L_{cg} x W_{cg}\right) x \left(F_{1-3}\right)}{2\left(L_{abs} x H_{abs}\right) + \left(n x \frac{3 \pi (D)^2}{4}\right)}$$

$$F_{12-3} = \frac{(0.9 \text{ mx } 0.03 \text{ m}) \text{ x } 0.82635}{2(0.9 \text{ m x } 0.08631 \text{ m}) + \left(27 \text{ x } \frac{3 \text{ x } 3.14(0.009 \text{ m})^2}{4}\right)} = 0.139005 \text{ m}^2$$

$$\begin{aligned} A_{abs} =& 2x \left(L_{abs} \ x \ H' \right) + \left(n \ x \ \frac{3\pi (D)^2}{4} \right) \\ A_{abs} =& 2x \left(0.08631 \ m \ x \ 0.9 \ m \right) + \left(27 \ x \ \frac{3 \ x \ 3.14 \ x \ (0.009 \ m)^2}{4} \right) \\ A_{abs} =& 0.165659 \ m^2 \\ A_{cg} =& L_{cg} \ x \ W_{cg} \\ A_{cg} =& 0.9 \ m \ x \ 0.03 \ m = 0.027 \ m^2 \\ A_{base} =& 0.9 \ m \ x \ 0.03 \ m = 0.027 \ m^2 \end{aligned}$$

Maka, besarnya koefisien perpindahan panas radiasi yang terjadi antara kaca penutup dan plat absorber diperoleh menggunakan persamaan sebagai berikut :

$$h_{r,cg-abs} = \frac{\sigma \left(T_{abs}^{2} + T_{cg}^{2}\right) \left(T_{abs} + T_{cg}\right)}{\frac{1 - \varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-3}} + \frac{\left(1 - \varepsilon_{cg}\right) A_{abs}}{A_{cg}}}{A_{cg}}$$

$$h_{r,cg-abs} = \frac{5,67 \ x \ 10^{8} \ \text{W}_{m^{2}.K^{4}} \ x \left(316.2 \ \text{K}^{2} + 335.1 \ \text{K}^{2}\right) x \left(316.2 \ \text{K} + 335.1 \ \text{K}\right)}{\frac{1 - 0.9}{0.9} + \frac{1}{0.139005} + \frac{\left(1 - 0.8\right) x \ 0.155358 \ \text{m}^{2}}{0.027 \ \text{m}^{2}}}$$

$$h_{r,cg-abs} = 0.91861 \ \text{W/m^{2}K}$$

6. Menghitung Rtotal upper

Tahanan thermal yang terjadi di bagian atas kolektor surya didapat dengan menggunakan persamaan sebagai berikut :

$$R_{\text{total upper}} = \frac{1}{h_{w}} + \frac{1}{h_{\text{r,cg-amb}}} + \frac{1}{h_{\text{conv,cg-abs}}} + \frac{1}{h_{\text{r,cg-abs}}}$$
$$R_{\text{total upper}} = \left(\frac{1}{5.90658} + \frac{1}{4.2355} + \frac{1}{0.9186}\right) + \frac{1}{W/m^{2}K} = 1.4939 \text{ W/m}^{2}K$$

7. Menghitung Overall heat coefficient top (UT)

kerugian panas yang terjadi di bagian atas kolektor surya diperoleh dengan menggunakan persamaan sebagai berikut :

$$U_{\rm T} = \frac{1}{R_{\rm total upper}}$$

$$U_{\rm T} = \frac{1}{1.4939 \,\text{W/m}^2\text{K}}$$
$$= 0.66934 \,\text{W/m}^2\text{K}$$

8. Menghitung Overall heat coefficient bottom (UB)

Untuk menghitung nilai U_B pada kolektor surya digunakan persamaan sebagai berikut.

$$U_{B} = \frac{1}{\left(\frac{L_{1}}{k_{1}} + \frac{L_{2}}{k_{2}} + \frac{1}{h_{w}}\right) \cdot A_{iso}}$$
$$U_{B} = \frac{1}{\left(\frac{0.02m}{0.01^{w}/_{m} \cdot K} + \frac{0.01m}{0.12^{w}/_{m} \cdot K}\right) \cdot (0.027 \text{ m}^{2})}$$
$$= 17.777 \frac{w}{m^{2}} \cdot K$$

9. Menghitung Overall heat coefficient total (UL)

Untuk menghitung nilai U_L pada kolektor surya digunakan persamaan sebagai berikut.

$$U_{L} = U_{T} + U_{B}$$
$$U_{L} = 0.66934 \text{W/m}^{2}\text{K} + 17.777 \text{W/m}^{2}\text{.K}$$
$$= 18.4471 \text{W/m}^{2}\text{K}$$

10. Menghitung Koefisien konveksi antara plat absorber dengan fluida (hconv,abs-fluida)

Untuk penampang *ducting* fluida mengalir yang tidak berbentuk lingkaran, maka disarankan agar korelasi perpindahan panas didasarkan atas diameter hidraulik D_h, pada kolektor surya v corrugated dengan menggunakan persamaan sebagai berikut :

Perhitungan Luasan Inlet Fluida Cross Section 1

$$Ac_{1} = \frac{WxH}{2} - \left(n x \frac{\pi(D)^{2}}{8}\right)$$
$$Ac_{1} = \frac{0.03x0.085}{2} - \left(4 x \frac{3.14(0,09)^{2}}{8}\right)$$
$$= 0.00114783 m^{2}$$

Perhitungan Luasan Inlet Fluida Cross Section 2

$$Ac_{2} = \frac{WxH}{2} + \left(n x \frac{\pi(D)^{2}}{8}\right)$$

$$Ac_{2} = \frac{0.03x0.085}{2} + \left(2 x \frac{3.14(0,09)^{2}}{8}\right)$$

$$= 0.001338585 m^{2}$$

$$\overline{Ac} = \frac{Ac_{1} + Ac_{2}}{2}$$

$$\overline{Ac} = \frac{0.00114783 m + 0.001338585 m}{2}$$

$$= 0.001243208 m^{2}$$

$$H' = 0.08631 m$$

$$H'' = H' + \frac{n}{2} x D x \left[\frac{\pi}{2} - 1\right]$$

$$H'' = 0.08631 m + \frac{4}{2} x 0.009 m x \left[\frac{\pi}{2} - 1\right]$$

$$H'' = 0.09657 m$$
Perimeternya :
$$P = (2xH'') + W$$

$$P = (2x0.09657 m) + 0.03 m = 0.22314 m$$

Sehingga Dh didapat menggunakan persamaan sebagai berikut :

$$D_{h} = \frac{4x\overline{A_{C}}}{P}$$

$$D_{h} = \frac{4x0.001243208 \text{ m}^{2}}{0.22314 \text{ m}} = 0.0222856 \text{ m}$$

$$T_{Fluida} = \frac{T_{in} + T_{out}}{2}$$

$$T_{Fluida} = \frac{303.8 \text{ K} + 312.0 \text{ K}}{2} = 307.9 \text{ K}$$

Berdasarkan T_{fluida} maka dari tabel A.4 *Thermophysical properties of gases at atmospheric preassure* selanjutnya didapatkan :

$$\rho = 1.1351 \frac{\text{kg}}{\text{m}^{3}}$$

$$Cp = 1007, 3 \frac{\text{kg}}{\text{kg.K}}$$

$$\mu = 1.883 \times 10^{-5} \frac{\text{m}^{2}}{\text{s}}$$

$$k = 0.02688 \frac{\text{W}}{\text{m.K}}$$

$$P_{r} = 0.705$$

Reynold number didapat dengan persamaan sebagai berikut :

$$Re_{D_{h}} = \frac{\rho x V x D_{h}}{\mu}$$

$$Re_{D_{h}} = \frac{1.1351^{kg} x 3.84 m'_{s} x 0.0222856 mm}{1.883 x 10^{-5} m^{2}/_{s}} = 5163.34$$

$$Nu_{D} = 0.023 Re_{Dh}^{4/5} Pr^{n}$$

$$Nu_{D} = 0.023 x (5163.34 m'_{5}) (0.705^{0.4}) = 18.68$$

Sehingga, besarnya koefisien perpindahan panas yang terjadi antara plat absorber dan fluida yang didapatkan menggunakan persamaan sebagai berikut :

$$h_{\text{conv,abs-fluida}} = \frac{NU_{\text{D}} \times K_{\text{Fluida}}}{D_{\text{h}}}$$
$$h_{\text{conv,abs-fluida}} = \frac{18.68 \times 0,02688 \text{ W/}_{\text{m.K}}}{0.0222856 \text{ m}} = 22.544 \text{ W/}_{\text{m}^2.\text{K}}$$

11. Menghitung koefisien perpindahan panas radiasi antara plat absorber dan base (h_{r,base-abs})

Untuk mengetahui koefisien perpindahan panas radiasi antara plat absorber dan base, maka F_{12-4} *view factor* (faktor bentuk) yang berpengaruh pada proses perpindahan radiasi dari base ke plat absorber dan sekelilingnya. Sehingga faktor bentuknya adalah $F_{12-4} = 1$, karena perpindahan panas radiasi yang terjadi antara plat absorber dan base berada pada ruangan tertutup.

Maka, besarnya koefisien perpindahan panas radiasi yang terjadi antara base dan plat absorber diperoleh dari persamaan sebagai berikut :

$$h_{r,base-abs} = \frac{\sigma \left(T_{abs}^{2} + T_{base}^{2}\right) \left(T_{abs} + T_{base}\right)}{\frac{1 - \varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-4}} + \frac{\left(1 - \varepsilon_{abs}\right) A_{abs}}{A_{base}}}$$

$$h_{r,base-abs} = \frac{5,67 \times 10^8 \text{ W}_{\text{m}^2,\text{K}^4} (316.2 \text{ K})^2 + (305.2 \text{ K})^2 (316.2 \text{ K} + 305.2 \text{ K})}{\frac{1-0.9}{0.9} + \frac{1}{1} + \frac{(1-0.9)0.1656588 \text{ m}^2}{0.027 \text{ m}}}$$
$$h_{r,base-abs} = 4.21716 \text{ W}_{\text{m}^2,\text{K}}$$

12. Menghitung faktor pelepasan panas (Fr)

Untuk menghitung nilai F_r pada kolektor surya digunakan persamaan sebagai berikut.

$$F = \frac{1}{1 + \frac{U_L}{\frac{h_1}{\sin\frac{\emptyset}{2}} + \frac{1}{\frac{1}{h_1} + \frac{1}{h_r}}}}}{F = \frac{1}{1 + \frac{18.4471 \text{ W/m^2K}}{\frac{22.5447 \text{ W/m^2K}}{\sin\frac{20}{2}} + \frac{1}{22.5447 \text{ W/m^2K}} + \frac{1}{4.21716 \text{ W/m^2K}}}}$$

F = 0.8921

$$\varphi = \frac{\dot{m}C_{p}}{A_{c}U_{L}F'}$$

$$\varphi = \frac{0.006^{kg} \times 1007.3^{J}_{kg.K}}{0.16565 \,m \times 18.447^{W}_{m^{2}.K} \times 0.8921} = 2.1023$$

$$F' = \varphi \left[1 - \exp^{-\frac{1}{\varphi}}\right]$$

$$F' = 2.1023 \left[1 - \exp^{-\frac{1}{2.1023}}\right] = 0.796$$

Sehingga faktor pelepasan panas pada kolektor surya dapat diperoleh dengan persamaan sebagai berikut :

$$F_{R} = F' \cdot F'$$

 $F_{R} = 0.796 \times 0.8921$
 $= 0.7099$

13. Menghitung Energi Berguna (Qusefull)

Pada penelitian ini memperhitungkan energi berguna secara termodinamika dan energi berguna secara perpindahan panas.

a)
$$(Q_u)$$
 aktual = \dot{m} .Cp $[Tf_{,out} - Tf_{,in}]$
 (Q_u) aktual = 0.006 ^{kg}/s x 1007,3 ^J/_{kg} x [312.0 K-303.8 K]
 (Q_u) aktual = 46.99 Watt
b) (Q_u) desain = $A_c.F_R [S-U_L (Tf_{,in} - Tf_{,amb} -)]$
 (Q_u) desain = 0.165658 m² 0.7099[325.893 W 18.44 W (303.8 K - 303 K)]

$$(Q_u) desain = 0.165658 m^2 .0.7099 \left[325.893 \frac{w}{m^2} - 18.44 \frac{w}{m^2 K} (303.8 K - 303 K) \right]$$
$$(Q_u) desain = 36.59 Watt$$

14. Menghitung Efisiensi (η)

Pada penelitian ini memperhitungkan efisiensi secara desain dan efisiensi secara aktual.

a.
$$(\eta) \text{ aktual} = \frac{(Q_u) \text{ aktual}}{A_c I}$$

 $(\eta) \text{ aktual} = \frac{46.99 \text{ Watt}}{0.165658 \text{ m}^2 \text{ x } 431 \text{ Watt}/\text{m}^2} = 0.66$
b. $(\eta) \text{ desain} = \frac{(Q_u) \text{ desain}}{A_c I}$
 $(\eta) \text{ desain} = \frac{36.59 \text{ Watt}}{0.165658 \text{ m}^2 \text{ x } 431 \text{ Watt}/\text{m}^2} = 0.51$

Perhitungan akhir dari subbab ini adalah performa dari kolektor surya *v*corrugated tipe dimple staggered, dengan diameter dimple 5 mm, 7 mm dan 9 mm, ditunjukan oleh nilai Usefull energy (Q_u) aktual dan Effisiensi (η) pada kolektor surya. (Q_u) aktual merupakan energi berguna, pengertian (Q_u) aktual adalah besarnya panas yang diserap oleh fluida kerja untuk meningkatkan temperatur keluar dari fluida kerja. Untuk hasil (Q_u) aktual dan (η) aktual menjelaskan tentang besar energi yang dihasilkan oleh kolektor surya, untuk (Q_u) aktual dan (η) aktual diperoleh berdasarkan desain kolektor surya yakni dari dimensi dan data temperatur.

4.2. Pembahasan Grafik

4.2.1 Analisa Energi Berguna (Qu) aktual Dengan Variasi Intensitas Radiasi (I_T)

Pada Tampilan tabel dan grafik dibawah ini memaparkan Grafik Variasi Intensitas Radiasi 431 W/m², 575 W/m², 718 W/m² terhadap (Qu) Aktual dengan variasi Laju massa udara 0.001 kg/s pada kolektor surya plat absorber v-corrugated tipe dimple staggered, dengan ukuran dimple berdiameter 5 mm, 7 mm dan 9 mm. Berdasarkan hasil eksperimen yang telah dilakukan, maka nilai (Q_u) aktual yang dihasilkan akan ditinjau secara termodinamika (akual) dan perpindahan panas (desain).

Tabel 4.1. (Q_u) aktual Kolektor surya v-corrugated tipe dimple staggered pada Laju massa udara 0.001 kg/s.

Laju massa	Intensitas	(Q _u) aktual, Diameter Dimple			
Udara	Radiasi (I _T)	5 mm	7 mm	9 mm	
0.001 kg/s	431 W/m ²	11.88	13.46	17.09	
	575 W/m ²	16.01	19.29	23.78	
	718 W/m ²	17.93	24.07	28.56	

Gambar 4.1.a. Grafik Pengaruh f (I_T) Intensitas Radiasi terhadap (Q_u) aktual, pada laju aliran massa konstan (\dot{m}) = 0.001 kg/s.

Pada Gambar 4.1.a menunjukan trend grafik (Q_u) aktual, akan meningkat seiring dengan peningkatan intensitas radiasi yang diberikan pada laju massa udara yang sama. Pada grafik ini laju massa udara yang diberikan sebesar 0.001 kg/s, pada diameter dimpel 5 mm, dimana hasil (Q_u) aktual pada intensitas radiasi 431 Watt/m²

sebesar 11.88 watt, dan intensitas radiasi 575 Watt/m² (Q_u) aktual sebesar 16.01 Watt, kemudian pada intensitas radiasi 718 Watt/m² (Q_u) aktual sebesar 17.93 Watt. Analisis pada kolektor surya diameter dimple 7 mm dan 9 mm adalah mirip diameter dimple 5 mm, untuk massa udara dan Intensitas radiasi makin tinggi maka diperoleh (Q_u) aktual makin tinggi.

Tabel 4.2. (Q_u) aktual Kolektor surya V-Corrugated tipe dimple staggered pada Laju massa udara 0.002 kg/s.

Laju massa	Intensitas	(Q _u) aktual, Diameter Dimple		
Udara	Radiasi (IT)	5 mm	7 mm	9 mm
	431 W/m ²	13.70	21.70	29.13
0.002 kg/s	575 W/m ²	16.72	26.08	33.13
	718 W/m ²	19.94	34.65	42.46

Gambar 4.1.b. Grafik Pengaruh f (I_T) Intensitas Radiasi terhadap (Q_u) aktual, pada laju aliran massa konstan (\dot{m}) = 0.002 kg/s.

Gambar 4.1.b, pada grafik ini laju massa udara yang diberikan sebesar 0.002 kg/s, dan trend grafik (Q_u) aktual yang ditampilkan terjadi peningkatan seiring naiknya intensitas radiasi. Untuk diameter dimpel 5 mm, dimana hasil (Q_u) aktual pada intensitas radiasi 431 Watt/m² sebesar 13.70 Watt, Intensitas radiasi 575 W/m² (Q_u) aktual sebesar 16.72 Watt, dan Intensitas radiasi 718 Watt/m² (Q_u) aktual sebesar 16.72 Watt, dan Intensitas radiasi 718 Watt/m² (Q_u) aktual sebesar 19.94 Watt. Untuk diameter 7 dan 9, tampilan pada grafik juga sama, yaitu nilai (Q_u) aktual pada kolektor surya meningkat seiring dengan peningkatan intensitas radiasi.

Tabel 4.3. (Q_u) aktual Kolektor surya v-corrugated tipe dimple staggered pada Laju massa udara 0.004 kg/s.

Laju massa	Intensitas	(Q_u) aktual, Diameter Dimple		
Udara	Radiasi (IT)	5 mm	7 mm	9 mm
	431 W/m ²	22.16	35.12	45.05
0.004 kg/s	575 W/m ²	30.22	41.99	53.83
	718 W/m ²	35.46	48.10	61.85

Gambar 4.1.c. Grafik Pengaruh f (I_T) Intensitas Radiasi terhadap (Q_u) aktual, pada laju aliran massa konstan (\dot{m}) = 0.004 kg/s.

Gambar 4.1.c menampilkan trend grafik (Q_u) aktual terjadi peningkatan seiring naiknya intensitas radiasi, pada kasus ini untuk kolektor surya dengan dimpel diameter 5 mm, 7 mm dan 9 mm dengan laju massa udara sebesar 0.004 kg/s, Untuk kolektor surya dengan dimple diameter 5 mm, Intensitas radiasi sebesar 431 Watt/m² (Q_u) aktual 22.16 Watt, Intensitas Radiasi sebesar 575 Watt/m² (Q_u) aktual sebesar 30.22 Watt dan Intensitas sebesar 718 Watt/m² (Q_u) aktual sebesar 35.46 Watt. Untuk nilai (Q_u) aktual pada diameter 7 dan 9 terjadi perubahan dengan peningkatan intensitas radiasi hal tersebut dapat dilihat pada tabel pada tabel 4.3. Tabel 4.4. (Q_u) aktual Kolektor surya v-corrugated tipe dimple staggered pada Laju massa udara 0.006 kg/s

Laju massa	Intensitas	(Q_u) akt	r Dimple	
Udara	Radiasi (IT)	5 mm	7 mm	9 mm
	431 W/m ²	24.77	39.54	46.99
0.006 kg/s	575 W/m ²	30.21	45.28	60.18
	718 W/m ²	36.26	52.73	65.91

Gambar 4.1.d. Grafik Pengaruh f (I_T) Intensitas Radiasi terhadap (Q_u) aktual, pada laju aliran massa konstan (\dot{m}) = 0.006 kg/s.

Gambar 4.1.d terlihat trend grafik (Q_u) aktual terjadi peningkatan seiring naiknya intensitas radiasi yang diberikan pada laju massa udara sebesar 0.006 kg/s, untuk diameter dimpel 5 mm, Intensitas Radiasi 431 W/m² hasil (Q_u) aktual sebesar 24.77 Watt, terjadi lagi peningkatan dengan Intensitas Radiasi 575 W/m² hasil (Q_u) aktual sebesar 30.21 Watt dan peningkatan trend grafik Intensitas Radiasi 718 W/m² hasil (Q_u) aktual sebesar 36.26 Watt. Untuk kasus yang sama juga pada plat absorber diameter dimpel 7 mm dan 9 mm. Hal ini dikarenakan perhitungan (Q_u) aktual dipengaruhi oleh besarnya laju massa udara (m) dan beda pada temperatur yang dihasilkan pada saat proses pengujian, berdasarkan hasil perhitungan (Q_u) aktual, semakin besar diameter *dimple* pada plat absorber v-corrugated tipe dimple staggered, maka temperatur yang dihasilkan semakin besar. (Q_u) aktual dapat dihitung secara thermodinamika, dengan persamaan, (Q_u) aktual = m x Cp (T_{Fluidai} In).

4.2.2 Pembahasan Grafik Laju massa Udara Terhadap (Qu) Aktual

Pada Tampilan grafik dibawah ini memaparkan Grafik Laju massa Udara 0.001 kg/s, 0.002 kg/s, 0.004 kg/s dan 0.006 kg/s. Terhadap (Qu) Aktual dengan Intensitas Radiasi 431 Watt/m². Pada kolektor surya plat absorber v-corrugated tipe dimple staggered, dengan ukuran dimple berdiameter 5 mm, 7 mm dan 9 mm.

Gambar 4.2.a. Pengaruh Laju massa Udara terhadap Qu aktual dengan Intensitas Radiasi 431 Watt/m², pada kolektor surya *v-coruggated* tipe *dimple staggered*.

Gambar 4.2.a menunjukan trend grafik (Q_u) aktual akan meningkat seiring dengan peningkatan laju massa udara, pada intensitas radiasi 431 Watt/m², untuk plat absorber diameter dimple 5 mm, laju massa 0.001 kg/s hasil (Q_u) aktual sebesar 11.88 watt, pada laju massa 0.002 kg/s hasil (Q_u) aktual sebesar 13,70 watt, dan laju massa 0.004 kg/s hasil (Q_u) aktual sebesar 22.16 Watt, dan laju massa 0.006 kg/s hasil (Q_u) aktual sebesar 24.77 watt. Analisis pada kolektor surya diameter dimple 7 mm dan 9 mm adalah mirip dengan diameter dimple 5 mm, untuk perubahan massa udara makin tinggi dengan diameter dimple makin besar maka diperoleh (Q_u) aktual makin tinggi.

Gambar 4.2.b. Pengaruh Laju massa Udara terhadap Qu aktual dengan Intensitas Radiasi 575 Watt/m², pada kolektor surya *v-coruggated* tipe *dimple staggered*.

Gambar 4.2.b menunjukan trend grafik (Q_u) aktual akan meningkat seiring dengan peningkatan laju massa udara, pada intensitas radiasi 575 Watt/m² untuk

plat absorber diameter dimple 5 mm laju massa 0.001 kg/s hasil (Q_u) aktual sebesar 16,01 watt, kemudian laju massa 0.002 kg/s hasil (Q_u) aktual sebesar 16.72 watt, dan laju massa 0.004 kg/s hasil (Q_u) aktual sebesar 30,22 watt kemudia pada perubahan laju massa 0.006 kg/s hasil (Q_u) aktual sebesar 30.26 Watt. Analisis pada kolektor surya diameter dimple 7 mm dan 9 mm adalah mirip dengan diameter dimple 5 mm, untuk perubahan massa udara yang semakin meningkat dengan diameter dimple yang semakin besar maka diperoleh (Q_u) aktual makin tinggi.

Gambar 4.2.c. Pengaruh Laju massa Udara terhadap Qu aktual dengan Intensitas Radiasi 718 Watt/m², pada kolektor surya *v-coruggated* tipe *dimple staggered*.

Gambar 4.2.c memaparkan trend grafik (Q_u) aktual terjadi peningkatan seiring dengan perubahan laju massa udara dimana pada intensitas radiasi 718 Watt/m², untuk plat absorber diameter dimple 5 mm, laju massa yang diberikan sebesar 0.001 kg/s hasil (Q_u) aktual 17,93 Watt, pada laju massa 0.002 kg/s hasil (Q_u) aktual sebesar 19.94 Watt, kemudian laju massa 0.004 kg/s hasil (Q_u) aktual sebesar 35,46 Watt dan laju massa 0.006 kg/s hasil (Q_u) aktual sebesar 36,26 Watt. Analisis pada kolektor surya diameter dimple 7 mm dan 9 mm adalah mirip dengan diameter dimple 5 mm, untuk perubahan massa udara dan diameter dimple maka terjadi kenaikan (Q_u) aktual makin tinggi.

4.2.3 Pembahasan Grafik Laju Aliran Massa Udara Terhadap (Qu) aktual Pada Variasi IT dengan Diameter Dimple Yang Sama

Dari pemaparan grafik yang terdapat pada gambar 4.2.a, gambar 4.2.b dan gambar 4.2.c, (Qu) aktual terbesar terjadi untuk diameter Dimple 9 mm. Untuk itu

pada grafik 4.3.a akan dilihat pengaruh laju aliran massa udara terhadap (Qu) aktual pada kolektor surya v-corrugated plat absorber diameter dimple 5 mm.

Gambar 4.3.a. Grafik Laju Aliran Massa Terhadap (Q_u) aktual Pada Plat Absorber (Ø=5 mm)

Gambar 4.3.a menunjukan trend grafik (Q_u) aktual akan meningkat seiring dengan peningkatan laju massa udara, pada setiap intensitas radiasi 431 Watt/m², 575 Watt/m² dan 718 Watt/m². Untuk plat absorber diameter dimple 5 mm, laju massa 0.001 kg/s hasil (Q_u) aktual sebesar 11.88 watt, pada laju massa 0.002 kg/s hasil (Q_u) aktual sebesar 13,70 watt, laju massa 0.004 kg/s hasil (Q_u) aktual sebesar 22.16 Watt dan laju massa 0.006 kg/s hasil (Q_u) aktual sebesar 24.77 Watt. Hal ini membuktikan bahwa semakin besar Intensitas radiasi dan laju massa yang diberikan kepada kolektor surya maka (Q_u) aktual dengan sendirinya akan mengalami peningkatan.

Gambar 4.3.b. Grafik Laju Aliran Massa Udara Terhadap (Q_u) aktual Pada Plat Absorber (Ø=7 mm)

Gambar 4.3.b pada grafik ini menunjukan trend grafik (Q_u) aktual akan terjadi peningkatan seiring dengan peningkatan laju massa udara, pada setiap intensitas radiasi 431 Watt/m², 575 Watt/m², 718 Watt/m². Untuk plat absorber diameter dimple 7 mm, laju massa 0.001 kg/s hasil (Q_u) aktual sebesar 13.46 watt, pada laju massa 0.002 kg/s hasil (Q_u) aktual sebesar 21,70 watt, laju massa 0.004 kg/s hasil (Q_u) aktual sebesar 35.12 Watt, dan laju massa 0.006 kg/s hasil (Q_u) aktual sebesar 39.54 watt. Hal ini membuktikan bahwa semakin besar Intensitas radiasi dan laju massa yang diberikan kepada kolektor surya maka (Q_u) aktual dengan sendirinya akan mengalami kenaikan.

Gambar 4.3.c. Grafik Laju Aliran Massa Udara Terhadap (Q_u) aktual Pada Plat Absorber (Ø=9 mm)

Gambar 4.3.c trend grafik (Q_u) aktual pada grafik menunjukan peningkatan terjadi seiring dengan bertambahnya laju massa udara yang diberikan, pada setiap intensitas radiasi 431 Watt/m², 575 Watt/m², 718 Watt/m². Untuk plat absorber diameter dimple 9 mm, laju massa 0.001 kg/s hasil (Q_u) aktual sebesar 17.29 Watt, kemudian laju massa 0.002 kg/s hasil (Q_u) aktual sebesar 29.13 Watt dan laju massa 0.004 kg/s hasil (Q_u) aktual sebesar 45.05 Watt, kemudian laju massa 0.006 kg/s hasil (Q_u) aktual sebesar 46.99 Watt. Hal ini membuktikan bahwa semakin besar Intensitas radiasi dan laju massa yang diberikan kepada kolektor surya maka (Q_u) aktual dengan sendirinya akan mengalami peningkatan.

4.2.4 Pembahasan Grafik (Q_u) Desain.

Pada kolektor surya pembahasan selanjutnya adalah (Q_u) desain yang diperoleh berdasarkan desain kolektor surya yakni dari dimensi dan data temperatur, tabel dan grafik dapat dilihat pada pemaparan dibawah ini :

Tabel 4.5. Tabel (Q_u) desain Kolektor surya v-corrugated tipe dimple staggered dengan Intensitas Radiasi 431 W/m².

Intensitas	Laju massa	(Q _u) desa	in, Diamete	er Dimple
Radiasi (IT)	Udara	5 mm	7 mm	9 mm
	0.001 kg/s	13.06	13.24	14.27
431 W/m ²	0.002 kg/s	20.48	21.88	23.39
	0.004 kg/s	28.46	30.08	32.52
	0.006 kg/s	32.33	33.53	36.59

Gambar 4.4.a. Grafik Pengaruh Laju massa udara terhadap Qu desain dengan Intensitas radiasi 431 W/m².

Pada grafik ini terlihat perubahan trenline dikarenakan luas plat absorber menggunakan diameter dimple yang berbeda-beda dengan ukuran 5 mm, 7 mm dan 9 mm. Hal ini menunjukan perbedaan tiap-tiap plat absorber sangat berpengaruh terhadap hasil dari (Q_u) desain. Semakin besar diamater dimple pada plat absorber maka semakin besar hasil dari (Q_u) desain, hal ini dikarenakan ruang penyerapan panas pada plat absorber terjadi peningkatan temperatur ke fluida kerja kolekor surya, sehingga pada beda temperatur yang dihasilkan semakin besar. Pada proses pengujian kolektor surya v – *corugated* dengan *dimple* diameter 5 mm, yang disusun secara *staggered*, dengan menggunakan intensitas radiasi It = 431 W/m². Hasil (Q_u) desain pada laju massa 0.001 kg/s. (Q_u) desain sebesar 13.06 Watt, seiring dengan penambahan laju massa udara terjadi peningkatan (Q_u) desain. Pada pengujian kedua massa udara 0.002 kg/s terjadi peningkatan (Q_u) desain sebesar 20.48 Watt, dan pengujian ketiga dengan massa udara 0.004 kg/s. (Q_u) desain 28.46 Watt, dan pengujian keempat menggunakan massa udara 0.006 kg/s. (Q_u) desain 32.33 Watt. Untuk kasus yang sama pada diameter dimple 7 mm dan 9 mm dapat dilihat pada tabel 4.5.

Tabel 4.6. Tabel (Q_u) desain Kolektor surya v-corrugated tipe dimple staggered pada pada Intensitas Radiasi 573 W/m²

Intensitas	Laju massa	(Q _u) desain, Diameter Dimple				
Radiasi (IT)	Udara	5 mm	7 mm	9 mm		
	0.001 kg/s	17.96	18.26	19.24		
575 W/m ²	0.002 kg/s	28.26	29.68	31.28		
	0.004 kg/s	39.17	40.41	43.99		
	0.006 kg/s	44.52	46.85	49.96		

Gambar 4.4.b. Grafik Pengaruh Laju massa udara terhadap Qu desain dengan Intensitas radiasi 573 W/m².

Berdasarkan tabel 4.6 dan grafik 4.4 b data penelitian yang yang ada menunjukan kenaikan (Q_u) desain seiring bertambahnya massa udara yang diberikan, pada plat absorber diameter dimple 5 mm Intensitas Radiasi 573 Watt/m² laju massa udara diberikan sebesar 0.001 kg/s, nilai (Q_u) desain sebesar 17.96 Watt. Pengujian kedua dengan menggunakan laju massa udara sebesar 0.002 kg/s nilai (Q_u) desain 28.26 Watt kemudian pengujian ketiga menggunakan laju massa udara 0.004 kg/s hasil (Q_u) desain mencapai 39.17 Watt dan pada pengujian keempat laju massa udara yang digunakan sebesar 0.006 kg/s nilai (Q_u) desain sebesar 44.52 Watt. Untuk kasus yang sama juga dialami pada plat absorber diameter dimpel 7 dan 9 mm dapat dilihat pada tabel 4.6.

Tabel 4.7. Tabel (Q_u) desain Kolektor surya v-corrugated tipe dimple staggered pada pada Intensitas Radiasi 718 W/m²

Intensitas	Laju massa	aju massa (Q _u) desain, Diameter Dimp		
Radiasi (I _T)	Udara	5 mm	7 mm	9 mm
	0.001 kg/s	22.77	23.00	24.08
718 W/m^2	0.002 kg/s	36.31	37.45	39.00
	0.004 kg/s	50.06	51.85	54.84
	0.006 kg/s	56.91	57.80	63.09

Gambar 4.4.c. Grafik Pengaruh Laju massa udara terhadap Qu desain dengan Intensitas radiasi 718 W/m².

Berdasarkan tabel 4.7 dan grafik 4.4.c, trendline menunjukan kenaikan (Q_u) desain seiring dengan kenaikan laju massa udara, pada kolektor surya diameter dimple 5 mm, proses pengujian dengan Intensitas Radiasi 718 W/m² hasil (Q_u) desain dengan laju massa udara 0.001 kg/s mencapai 22.77 Watt, proses pengujian kedua dengan laju massa udara 0.002 kg/s, hasil (Q_u) desain 36.31 Watt, kemudian pengujian ketiga dengan laju massa udara 0.004 kg/s hasil (Qu) desain mencapai 50.06 Watt dan Proses pengujian keempat dengan laju massa udara 0.006 kg/s hasil (Q_u) desain mencapai 56.91Watt, pada kasus yang sama juga untuk plat absorber diameter dimpel 7 mm dan 9 mm terjadi perubahan hasil (Q_u) desain hal ini dapat dilihat pada tabel 4.7. Untuk menghitung (Q_u) desain pada kolektor surya vcorrugated dimple staggered tipe menggunakan persamaan $Quse_{desain} = A_{C} \cdot F_{R} \left[S - U_{L} \left(T_{Fluida,in} - T_{amb} \right) \right]$, dimana Ac adalah luas efektif kolektor surya, T_{Fluida in} adalah temperatur yang masuk dalam kolektor surya dan T_{amb} adalah

temperatur sekitar. Besar dan kecilnya (Q_u) desain pada kolektor surya dipengaruhi oleh besar intensitas radiasi yang diberikan oleh kolektor surya serta luas efektif dari plat absorber tersebut. Dari ketiga plat penyerap absorber dengan variasi diameter dimple yakni 5 mm, 7 mm dan 9 mm, semakin besar diameter dimple pada plat absorber maka (Q_u) desain yang dihasilkan oleh kolektor surya semakin besar Jika (Q_u) desain yang dihasilkan besar dikarenakan intensitas radiasi yang diterima besar dan kerugian panas yang terjadi dibagian atas kolektor surya kecil $Q_{loss} = A_c \left[U_T (T_{abs} - T_{amb}) \right]$, dimana nilainya bergantung pada koefisien konveksi dan radiasi pada plat penyerap dan cover glass, dimana U_L = U_T+U_B dan $R_{lot,upper} = \frac{1}{h_w} + \frac{1}{h_{r,cg-amb}} + \frac{1}{h_{conv,cg-abs}} + \frac{1}{h_{r,cg-amb}}$. Pada hasil perhitungan (Q_u) desain

dan (Q_u) aktual terdapat selisih yang cukup besar. Perbedaan ini dikarenakan dalam melakukan perhitungan (Q_u) desain, Banyak asumsi yang digunakan seperti pelepasan panas, FR, dan perbedaan luas efektif dari plat penyerap absorber tipe dimple stagered sehingga nilai hasil (Q_u) desain lebih besar dari hasil (Q_u) aktual.

4.2.5 Pembahasan Grafik Distribusi Temperatur.

Tampilan grafik dibawah ini memaparkan Grafik Intensitas Radiasi (IT) 431 W/m², 575 W/m², 718 W/m² terhadap distribusi temperatur dengan laju massa udara 0.001 kg/s, 0.002 kg/s, 0.004 kg/s, 0.006 kg/s pada kolektor surya plat absorber *v*-*corrugated* tipe *dimple staggered*, dengan ukuran *dimple* berdiameter 5 mm, 7 mm dan 9 mm.

Tabel 4.8. Tabs pada Kolektor surya *v*-*corrugated* tipe *dimple staggered* pada Laju massa udara 0.001 kg/s.

Laju massa	Intensitas	Tabs (K), j	oada kolektor	r surya (K)
Udara	Radiasi (IT)	5 mm	7 mm	9 mm
	431 W/m ²	319.33	321.97	326.10
0.001 kg/s	575 W/m^2	326.97	330.20	332.20
	718 W/m^2	334.47	336.03	338.87

Gambar 4.5.a. Grafik Pengaruh Intensitas Radiasi (W/m^2) terhadap Tabs (K) dengan variasi $\dot{m} = 0.001$ kg/s.

Berdasarkan tabel 4.8 dan grafik pada gambar 4.5.a menunjukan kolektor surya dengan laju massa udara 0.001 kg/s, terjadi perubahan distribusi temperatur seiring dengan kenaikan yang terjadi pada Intensitas radiasi berbanding dengan *Overall Heat Coefficient Top* (U_T) yang diterima oleh kolektor surya. Pada grafik ini terlihat plat absorber dengan diameter dimple 5 mm intensitas radiasi 431 W/m² memiliki temperatur 319.3 K dan terjadi peningkatan Intensitas radiasi 575 W/m² memiliki temperatur 326.9 K. Percobaan selanjutnya Intensitas radiasi 718 W/m² temperatur pada plat absorber 334.4 K. Grafik ini terlihat perbedaan temperatur yang begitu besar pada setiap plat absorber karena ruang penyerapan yang berbedabeda, untuk Temperatur absorber dengan diameter dimple 7 mm dan 9 mm dapat dilihat pada tabel 4.8.

Tabel 4.9. Tabs pada Kolektor surya *v-corrugated* tipe *dimple staggered* pada Laju massa udara 0.002 kg/s.

Laju massa	Intensitas	Tabs (K), pada kolektor surya			
Udara	Radiasi (IT)	5 mm	7 mm	9 mm	
0.002 kg/s	431 W/m ²	317.50	320.10	323.93	
	575 W/m^2	323.23	327.40	329.13	
	718 W/m^2	327.67	331.30	335.47	

Gambar 4.5.b. Grafik Pengaruh Intensitas Radiasi (W/m^2) terhadap Tabs (K) dengan variasi $\dot{m} = 0.002$ kg/s.

Tabel 4.9 dan gambar 4.4.b dengan variasi nilai massa udara 0.002 kg/s, trendline grafik terlihat plat absorber dengan diameter dimple 5 mm, memiliki trenline temperatur yang terus meningkat seiring dengan bertambah besarnya intensitas radiasi It 431 W/m² memiliki temperatur 317.50 K untuk Intensitas Radiasi 575 W/m² memiliki temperatur 323.23 K dan Intensitas radiasi 718 W/m² memiliki temperatur 327.67 K. Hal yang sama juga dialami untuk plat absorber diameter dimple 7 mm dan 9 mm, terjadi perubahan temperatur seiring dengan peningkatan Intensitas radiasi pada kolektor surya, perubahan itu dapat dilihat pada tabel 4.9.

Tabel 4.10. Tabs pada Kolektor surya v-corrugated tipe dimple staggered pada Laju massa udara 0.004 kg/s.

Laju massa	Intensitas	Tabs (K), pada kolektor surya			
Udara	Radiasi (IT)	5 mm	7 mm	9 mm	
0.004 kg/s	431 W/m ²	313.97	315.17	317.13	
	575 W/m^2	318.20	320.67	321.80	
	718 W/m^2	321.10	323.20	327.47	

Gambar 4.5.c. Grafik Pengaruh Intensitas Radiasi (W/m²) terhadap Tabs (K) dengan variasi $\dot{m} = 0.004$ kg/s.

Tabel 4.10 dan Gambar 4.4.c dengan variasi nilai laju massa udara 0.004 kg/s, grafik ini terlihat plat absorber dengan diameter dimple 5 mm memiliki trenline temperatur yang terus meningkat seiring dengan bertambah besarnya intensitas radiasi yang diberikan kepada kolektor surya, Nilai It 431 W/m² memiliki data temperatur 313.97 K untuk It 575 W/m² data temperatur 318.20 K dan pada intensitas radiasi 718 W/m² data temperatur terus mengalami kenaikan 321.10 K. Untuk diamater dimpel pada plat absorber 7 mm dan 9 mm juga mengalami hal yang sama terjadi perubahan peningkatan temperatur pada plat absorber seiring dengan meningkatnya intensitas radiasi proses perubahan kenaikan temperatur dapat dilihat pada tabel 4.10.

massa	a udara 0.006 k	g/s.	
	Laju massa	Intensitas	Tabs (K), pada kolektor surva

Tabel 4.11. Tabs pada Kolektor surva v-corrugated tipe dimple staggered pada Laju

Laju massa	Intensitas	Tabs (K), pada kolektor surya			
Udara	Radiasi (I _T)	5 mm	7 mm	9 mm	
0.006 kg/s	431 W/m ²	313.07	314.87	316.20	
	575 W/m^2	315.60	317.33	319.47	
	718 W/m^2	318.10	322.47	326.80	

Gambar 4.5.d. Grafik Pengaruh Intensitas Radiasi (W/m²) terhadap Tabs (K) dengan variasi ṁ = 0.006 kg/s.

Berdasarkan tabel 4.11 dan gambar 4.5.d menunjukan bahwa trendline mengalami kenaikan yang signifikan dengan variasi nilai massa udara 0.006 kg/s. Hal ini menunjukan bahwa Intensitas radiasi yang diberikan pada kolektor surya sangat berpengaruh pada perubahan temperatur plat absorber. Kolektor surya v-corrugated dengan plat absorber diamater dimple 5 mm memiliki ternline yang terus meningkat pada intensitas radiasi 431 W/m² memiliki temperatur 313.07 K kemudian terjadi peningkatan temperatur seiring bertambahnya intensias radiasi untuk Intensitas radiasi 575 W/m² data temperatur menunjukan315.60 K dan kemudian intensitas radiasi 718 W/m² data temperatur yang begitu besar pada setiap plat absorber karena ruang penyerapan yang berbeda-beda, maka dari itu temperatur pada plat absorber semakin besar QuseAktual akan semakin kecil karena Qloss yang dihasilkan besar. Begitu pula dengan semakin tinggi intensitas radiasi, Qloss juga yang dihasilkan semakin besar. Hal ini mengakibatkan tren grafik Qu aktual naik seiring kenaikan laju aliran massa pada semua intensitas radiasi.

4.2.6 Analisa Effisiensi terhadap intensitas radiasi pada variasi laju massa udara dengan plat absorber v-corrugated tipe dimple staggered.

Tampilan grafik dibawah ini memaparkan Grafik Intensitas radiasi terhadap $(\eta)_{aktual}$, dengan laju massa udara 0.001 kg/s, 0.002 kg/s, 0.004 kg/s, 0.006 kg/s pada kolektor surya plat absorber *v-corrugated* tipe *dimple staggered*, dengan ukuran *dimple* berdiameter 5 mm, 7 mm dan 9 mm.

Tabel 4.12. Efisiensi (η) aktual pada Kolektor surya v-corrugated tipe dimple staggered pada Laju massa udara 0.001 kg/s.

Laju massa	Intensitas	Efisiensi (η) aktual pada Kolektor			
Udara	Radiasi (I _T)	5 mm	7 mm	9 mm	
0.001 kg/s	431 W/m ²	17.38	19.32	23.92	
	575 W/m^2	17.47	20.70	24.96	
	718 W/m^2	17.59	20.78	23.98	

Gambar 4.6.a. Grafik Intensitas Radiasi (W/m²) Terhadap η_{Aktual} dengan Variasi $\dot{m} = 0.001$ kg/s, pada kolektor surya *v-coruggated* tipe *dimple staggered*.

Berdasarkan perhitungan yang telah dilakukan, unjuk kerja dari kolektor surya dapat dilihat pada tabel 4.12 dan Gambar 4.6.a menggunakan laju massa 0.001 kg/s terlihat trendline terendah pada kolektor surya *v-coruggated* tipe *dimple staggered*, diameter dimple 5 mm, efisiensi (η) aktual sebesar 17.38 % pada Intensitas radiasi 431 W/m², dan terjadi perubahan efisiensi (η_{Aktual}) 17.47 % pada Intensitas radiasi 575 W/m² Dan efisiensi (η) aktual terjadi peningkatan 17.59 % dengan intensitas 718 Watt/m². Hal yang sama juga dialami oleh kolektor surya plat absorber dengan diameter dimple 7 mm dan 9 mm dapat dilihat pada tabel 4.12.

Tabel 4.13. Efisiensi (η) aktual pada Kolektor surya v-corrugated tipe dimple staggered pada Laju massa udara 0.002 kg/s.

Laju massa	Intensitas	Efisiensi (η) aktual pada Kolektor			
Udara	ra Radiasi (IT)		7 mm	9 mm	
0.002 kg/s	431 W/m ²	20.03	31.14	40.77	
	575 W/m ²	18.34	28.07	34.77	
	718 W/m ²	18.50	29.83	35.66	

Pada tabel 4.13 dan gambar 4.6.b pengujian ini menggunanakan laju massa 0.002 kg/s pada kolektor surya terlihat perbedaan trendline pada kolektor surya *vcoruggated* tipe *dimple staggered* diameter dimple 5 mm efisiensi (η) aktual sebesar 20.03 %, pada intensitas radiasi 431 Watt/m² kemudian efisiensi (η_{Aktual}) mengalami perubahan menjadi 18.34 % pada intensitas radiasi 575 Watt/m² dan kemudian efisiensi (η) aktual mengalami perubahan sebesar 18.50 % pada intensitas radiasi 718 Watt/m², maka dari keterangan yang didapat kolektor surya plat absorber diamter dimple 7 mm dan 9 mm mengalami hal yang sama proses perubahan tersebut tersaji pada tabel 4.13.

Tabel	4.14.	Efisiensi	(η)	aktual	pada	Kolektor	surya	v-corrugated	tipe	dimple
stagger	red pa	da Laju m	assa	udara	0.004	kg/s.				

Laju massa	Intensitas	Efisiensi (η) aktual pada Kolektor			
Udara	Radiasi (I _T)	5 mm	7 mm	9 mm	
0.004 kg/s	431 W/m ²	32.40	50.39	63.04	
	575 W/m ²	33.14	45.19	56.50	
	718 W/m ²	31.11	41.41	51.94	

Tabel 4.14 dan Gambar 4.6.c dengan laju massa 0.004 kg/s terlihat trendline terendah pada kolektor surya *v-coruggated* tipe *dimple staggered*, diameter 5 mm, efisiensi (η) aktual Sebesar 32.40 %, pada intensitas radiasi 451 Watt/m² kemudian efisiensi (η) aktual 33.14 % pada intensitas radiasi 575 Watt/m² dan terjadi perubahan efisiensi (η) aktual 31.11 % pada Intensitas radiasi 718 Watt/m². Untuk diameter dimple 7 mm dan 9 mm pada kolektor surya v-corrugated mangalami hal yang sama perubahan tersebut dapat dilihat pada tabel 4.14

Tabel 4.15. Efisiensi (η) aktual pada Kolektor surya v-corrugated tipe dimple staggered pada Laju massa udara 0.006 kg/s.

Laju massa	Intensitas	Efisiensi (η) aktual pada Kolektor			
Udara	Radiasi (I _T)	5 mm	7 mm	9 mm	
0.006 kg/s	431 W/m ²	36.23	56.74	65.77	
	575 W/m ²	33.14	48.72	63.16	
	718 W/m ²	31.82	45.39	55.35	

Gambar 4.6.d. Grafik Intensitas Radiasi (W/m²) Terhadap η_{Aktual} dengan Variasi m = 0.006 kg/s, pada kolektor surya *v-coruggated* tipe *dimple staggered*.

Pada tabel 4.15 dan Gambar 4.6.d kolektor surya dengan laju massa udara 0.006 kg/s terlihat jelas trendline terendah pada kolektor surya *v-coruggated* tipe *dimple staggered*, diameter dimple 5 mm efisiensi (η) aktual dengan nilai 36.23%, pada intensitas radiasi 431 Watt/m² kemudian terjadi perubahan nilai efisiensi (η) aktual menjadi 33.14 % dengan intensitas radiasi yang diberikan sebesar 575 Watt/m², kemudian mengalami perubahan nilai Efiisiensi (η) aktual sebesar 31.82% dengan intensitas radiasi 718 Watt/m². Hal ini sesuai dengan persamaan $\eta_{akual} = \frac{Q_{useaktual}}{A_c.I_T}$ bahwa besar efisiensi berbanding lurus dengan kalor yang diterima udara dan berbanding terbalik dengan intensitas radiasi yang diterima plat penyerap, Oleh karena itu tren grafik meningkat seiring dengan perubahan laju aliram massa yang diberikan kepada kolektor surya.

4.2.7 Pembahasan grafik (η) desain pada kolektor surya v-corrugated tipe dimple staggered.

Tampilan tabel dan grafik dibawah ini memaparkan Grafik Laju massa udara terhadap (η) desain dengan variasi intensitas matahari 431 W/m², 575 W/m², 718 W/m² dan variasi laju massa udara 0.001 kg/s, 0.002 kg/s, 0.004 kg/s dan, 0.006 kg/s. Pada kolektor surya plat absorber *v*-corrugated tipe dimple staggered, dengan ukuran dimple berdiameter 5 mm, 7 mm dan 9 mm.

Tabel 4.16. Efisiensi (η) desain pada Kolektor surya v-corrugated tipe dimple staggered pada Intensitas Cahaya 431 W/m².
Intensitas	Laju massa	Efisiensi (η) desain pada Kolekto								
Radiasi (IT)	Udara	5 mm	7 mm	9 mm						
	0.001 kg/s	19.10	19.18	19.97						
431 W/m ²	0.002 kg/s	29.95	31.40	32.73						
	0.004 kg/s	41.62	43.17	45.51						
	0.006 kg/s	47.28	48.11	51.21						

Gambar 4.7.a. Grafik Laju Massa Udara (kg/s) terhadap (η) desain dengan Variasi Intensitas Radiasi 431 W/m².

Berdasarkan tabel 4.16 dan gambar 4.7. a. Grafik laju massa udara terhadap (η) desain dengan Intensitas Radiasi 431 W/m² terlihat trenline yang ada, terjadi peningkatan yang signifikan. Efisiensi menjadi semakin meningkat seiring dengan bertambahnya perubahan massa udara, hal ini dikarenakan terjadi kenaikan laju massa yang diberikan kolektor surya. Pada plat absorber diameter dimple 5 mm dengan laju massa 0.001 kg/s (η) desain sebesar 19.10 %, perubahanpun terjadi dengan menggunakan laju massa 0.002 kg/s effisiensi (η) desain menjadi 29.95 % kemudian dengan perubahan laju massa 0.004 kg/s effisiensi (η) desain sebesar 41.62 %, dan pada laju massa 0.006 kg/s effisiensi (η) desain menjadi 47.28 %, dan hal yang samapun terjadi pada kolektor surya tipe v-corrugated diameter dimple 7 mm dan 9 mm. Perubahan tersebut tersaji dalam tabel 4.16.

Tabel 4.17. Efisiensi (η) desain pada Kolektor surya v-corrugated tipe dimple staggered pada pada Intensitas Cahaya 575 W/m²

Intensitas	Laju massa	Efisiensi (η) desain pa	ada Kolektor
Radiasi (IT)	Udara	5 mm	7 mm	9 mm

	0.001 kg/s	19.70	19.82	20.19
575 W/m ²	0.002 kg/s	31.00	31.94	32.84
	0.004 kg/s	42.96	43.49	46.17
	0.006 kg/s	48.83	50.42	52.44

Gambar 4.7.b. Grafik Laju Massa Udara (kg/s) terhadap (η) desain dengan Variasi Intensitas Radiasi 574 W/m².

Berdasarkan tabel 4.17 dan Grafik 4.7.b. Grafik Laju Massa terhadap η) desain dengan Variasi Intensitas Radiasi 574 W/m² pada trenline yang ada, terjadi peningkatan yang signifikan seiring kenaikan laju massa. Efisiensi (η) desain semakin meningkat seiring dengan bertambahnya perubahan massa udara, hal ini dikarenakan karena kenaikan laju massa yang diberikan kolektor surya. Pada kasus ini dengan menggunakan diameter dimple 5 mm pada plat absorber. laju massa 0.001 kg/s effisiensi (η) desain sebesar 19.70 % kemudian terjadi peningkatan dengan perubahan laju massa 0.002 kg/s effisiensi η_{desain} sebesar 31.00 %, dan terus meningkat laju massa 0.004 kg/s effisiensi (η) desain sebesar 48.83 %. Hal yang sama juga dialami pada diameter dimple 7 mm dan 9 mm, perubahan yang terjadi dapat dilihat pada tabel 4.17.

Tabel 4.18. Efisiensi (η) desain pada Kolektor surya v-corrugated tipe dimple staggered pada pada Intensitas Cahaya 718 W/m²

Intensitas	Laju massa	Efisiensi (η) desain pada Kolektor								
Radiasi (IT)	Udara	5 mm	7 mm	9 mm						
718 W/m ²	0.001 kg/s	19.28	19.80	20.23						
	0.002 kg/s	31.86	32.24	32.75						

0.004 kg/s	43.92	44.63	46.05
0.006 kg/s	49.93	49.75	52.97

Gambar 4.7.c. Grafik Laju Massa Udara (kg/s) terhadap (η) desain dengan Variasi Intensitas Radiasi 718 W/m².

Tabel 4.18 dan gambar 4.7.c. Menunjukan trendline grafik Laju massa udara terhadap (η) desain dengan intensitas radiasi 718 W/m². Dilihat pada grafik ini effisiensi (η) desain mengalami kenaikan seiring dengan bertambahnya laju aliran masssa yang diberikan kepada kolektor surya.Effisiensi merupakan perbandingan antara energi yang berguna (Qu) dengan energi yang masuk. Nilai efisiensi ini menunjukan baik atau tidaknya kolektor surya dalam mentransfer energi panas ke fluida kerja yang berupa udara. Pada hasil pengujian dapat dilihat pada kolektor surya *v-coruggated* tipe *dimple staggered* diameter dimple 9 mm efisiensi tertinggi sebesar 52.97 % dicapai pada laju aliran massa 0.006 kg/s dengan intensitas 718 Watt/m². Hal ini sesuai dengan persamaan $\eta_{desain} = \frac{Q_{usedesain}}{A_c.I_T}$ bahwa besar efisiensi

berbanding lurus dengan kalor yang diterima udara dan berbanding terbalik dengan intensitas radiasi yang diterima plat penyerap. Oleh karena itu tren grafik meningkat seiring dengan perubahan laju aliran massa. Effisiensi desain paling tinggi terjadi pada variasi intensitas yang rendah, yaitu pada pada intensitas radiasi 564 Watt/m². Hal ini dapat dijelaskan berdasarkan perumusan efisiensi, jika dijabarkan yaitu, $\eta = 1 - \frac{Qloss}{A_c.I_T}$ dimana $Q_{loss} = Ac.[U_T(T_{abs} - T_{amb})]$, semakin kecil intensitas radiasi

maka beda temperature plat penyerap dan udara sekitar semakin kecil pula. Dengan

demikian efisiensi yang dihasilkan akan besar saat intensitar rendah. Effisiensi tertinggi tidak dicapai pada intensitas yang paling rendah dikarenakan Q_{use} yang dihasilkan juga sangat kecil hal ini dapat terjadi karena kurang akuratnya pada saat pengukuran sehingga terjadi penyimpangan data.

Effisiensi dipengaruhi oleh overall heat coefficient top (U_T) . Pada perhitungan overall heat coefficient top (U_T) dipengaruhi oleh temperatur plat penyerap dan kaca penutup. Semakin kecil intensitas radiasi maka U_T semakin kecil dan Q_{use} energi surya semakin besar dengan demikian efisiensi yang dihasilkan menjadi besar saat intensitas radiasi rendah.

TATA

THE

The state

TO B

BAB V

T

BAB V

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Dari analisis dan pembahasan yang dilakukan maka didapatkan beberapa kesimpulan sebagai berikut :

- Berdasarkan perancangan kolektor surya type v-corrugated dengan plat absorber berbentuk dimple susunan dimple secara staggered dengan variasi diameter dimple ukuran 5, 7 dan 9 mm, performansi terbaik adalah kolektor surya dengan diameter dimple 9 mm.
- 2. Berdasarkan hasil eksperimen dan perhitungan pada kolektor surya vcorrugated absorber plate tipe dimple staggered, hasil (Q_u) aktual paling tinggi adalah plat absorber diamater dimple 9 mm, dengan laju aliran massa sebesar 0.006 kg/s dengan intensitas radiasi 718 Watt/m² yakni 65.91 Watt. Sedangkan (Q_u) desain paling rendah pada laju aliran massa 0.001 kg/s dengan intensitas radiasi 431 Watt/m² yakni 17.09 Watt.
- 3. Berdasarkan hasil eksperimen dan perhitungan kolektor surya *v-corrugated absorber plate* tipe *dimple staggered*, hasil effisiensi paling tinggi adalah plat absorber diameter dimple 9 mm, yakni (η) aktual sebesar 65.77 % dengan laju aliran massa 0.006 kg/s. Intensitas radiasi 431 Watt/m² dan (η) aktual paling rendah terdapat pada plat absorber dengan diameter dimple 5 mm, yakni 17.38 % dicapai pada laju aliran massa 0.001 kg/s dengan intensitas radiasi sebesar 431 W/m²
- 4. Berdasarkan hasil eksperimen dan perhitungan pada kolektor surya vcoruggated dengan dimple susunan staggered, semakin besar diameter dimple pada plat absorber maka Qusefull dan Efisiensi yang dihasilkan oleh kolektor surya akan semakin besar dengan meningkatnya laju masa udara pada kolektor surya.
- 5. Nilai U_L tertinggi pada plat absorber diameter dimple tipe staggered ukuruan dimple 9 mm, dicapai pada laju aliran massa 0.006 kg/s dengan intensitas radiasi sebesar 718 W/m².K sebesar 18,56 W/m².K sedangkan nilai U_L terendah terdapat pada plat absorber diameter dimple tipe staggered ukuran

dimple 5 mm, dicapai pada laju aliran massa 0.001 kg/s dengan intensitas radiasi sebesar 431 W/m².K sebesar 18, 40 W/m².K

6. Berdasarkan hasil eksperimen pada kolektor surya v-*coruggated* dengan *dimple* susunan *staggered*, nilai effisiensi berbanding lurus dengan laju aliran massa, semakin besar laju aliran massa maka effisiensi yang dihasilkan kolektor surya semakin besar.

5.2. Saran

Adapun beberapa saran dalam penelitian tesis ini, yang dapat menjadi *reference* untuk penelitian selanjutnya yaitu :

- 1. Pengukuran dilakukan dengan peralatan yang lebih sensitive agar holding time pengambilan data tidak terlalu lama
- 2. Pemasangan alat ukur lebih sistematis agar tidak menggangu aliran
- 3. Mempelajari karakteristik penggunaan kaca biasa dan tempered glass dan pengaruh lebar celah antara pelat penyerap dan kaca penutup
- Penambahan lau alir massa yang melewati ducting agar mendapatkan hasil kurva Q_{use} yang optimal.
- 5. Perlu dilakukan pengujian lanjutan menggunakan sinar matahari
- Studi lebih lanjut pada kolektor surya v-coruggated dengan dimple susunan staggered dapat dilakukan eksperimen dengan penambahan fins, obstacle dan reflector.
- 7. Perlu dilakukan pengujian secara simulasi pada kolektor surya v-coruggated dimple susunan staggered dengan menggunakan program Ansys.

DAFTAR PUSTAKA

- A. Bashria, and Nor Mariha Adam,"Performance Analysis For V-Groove Absorber" Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, UNIVERSITY PUTRA MALAYSIA, (2006).
- Brij Bhushan & Ranjit Singh, (2011). "Nusselt Number And Friction Factor Correlations For Solar Air Heater Duct Having Artificially Roughened Absorber Plate" Departement Of Mechanical Engineering, Beant College Of Enggineering And Technology, Gurdaspur India.
- Cengel, Y. A & Cimbala, J (2006). Fluid Mechanics. New York : Mx Graw Hill
- Cengel, Y. A (2003). Heat Transfer ; A Practial Approah. 2nd Edition Mx Graw Hill
- Duffie, J. A (1991). Solar Enggineering Of Thermal Processes, 2nd edition. John Wiley & Sons, Inc
- El-Sabaii, A. (2011). Investigation Of Thermal Performance Of Double-pass-flat and V Corrugated Plate Solar Air Heaters Energy, Volume 35. 1820
- Esen, Hikmat. (2007). Experimental Energy and Exergy Analysis Of a Double Flow Solar Air heater having Different Obstacles On an absorber Plates. Building and Environment 43 (2008) 1046-1054.
- Handoyo, Ekadewi A. (2014). Peningkatan Kinerja Kolektor Surya Tipe V-Corrugated Absorber Plate Menggunakan Obstacle yang Ditekuk Secara Vertikal. Tugas Akhir. Tidak dipublikasikan. Surabaya: Institut Teknologi Sepuluh Nopember.
- Hakam, dkk. (2018). Pengaruh penambahan fin sebagai vortex generator dan extended surface terhadap performansi kolektor surya pemanas udara tipe v-corrugated absorber plate. Tugas Akhir, Teknik Mesin, Institut Teknologi Sepuluh Nopember. Surabaya.
- Masrianus, dkk, (2018). Studi Eksperimen Performansi Kolektor Surya Pemanas Udara Tipe *Dimple Inline* Plat *V-Corrugated Absorber*. Tugas Akhir, Teknik Mesin, Institut Teknologi Sepuluh Nopember. Surabaya.
- Md Azharul Karimm N.N.A Hawlader, (2006) "Performance Investigation of Flat plate, v-corrugated and finned air collectors. Energy 31 (2006) 452-470.

- Nat Vorayos a, Nopparat Katkhaw a,n , Tanongkiat Kiatsiriroat a , Atipoang Nuntaphan. Heat Transfer Behavior of flat plate having spherical dimpled surfaces. Departement of mechanical engineering, Chiang Mai University. (2016)
- Nopparat Katkhawa, Nat Vorayos, Trogkiat Kiatsiriroat, Yottana Khunatorn, Heat transfer behavior of flat plate having 451 ellipsoidal dimpled surfaces. Departement of mechanical engineering, Chiang Mai University. (2014)
- OEI. (2017). Outlook Energi Indonesia 2017
- R.P. Saini, Jitendra Verma,. (2008) "Heat Transfer and Friction Factor Correlations For a Duct Having Dimple-Shape Artificial Roughness For Solar Air Heaters"Indian Institute Of Technology Roorkee, Uttarakhand, India.
- Tao, L., Wen, X.L., Wen, F.G., & Chan, X.L (2007). A Parametric Study On The Thermal Performance Of A Solar Air Collector With A V- Groove Absorber. International Journal Of Green Energy, 4, 601-622.

DAFTAR LAMPIRAN

Daftar lampiran kolektor surya v-corrugated absorber plate tipe dimple staggered Lampiran 1. Sumber Daya Energi Baru dan Energi Terbarukan Lampiran 2. Konduktivitas Termal Berbagai Bahan Pada 0 °C Lampiran 3. Data Hasil Eksperimen Data Hasil Eksperimen Kolektor Surya, Diameter Dimple 5 mm Data Hasil Eksperimen Kolektor Surya, Diameter Dimple 7 mm Data Hasil Eksperimen Kolektor Surya, Diameter Dimple 9 mm Lampiran 4. Data Hasil Perhitungan Data Hasil Perhitungan Kolektor Surya, Diameter Dimple 5 mm Data Hasil Perhitungan Kolektor Surya, Diameter Dimple 7 mm Data Hasil Perhitungan Kolektor Surya, Diameter Dimple 9 mm Lampiran 5. Data Properties Fluida Kerja Data Kolektor Surya, Diameter Dimple 5 mm Data Properties Fluida Base Tabel Properties (Tfcg-abs) Tabel Properties (Abs - Fluida) Data Kolektor Surya, Diameter Dimple 7 mm Data Properties Fluida Base Tabel Properties (Tfcg-abs) Tabel Properties (Abs - Fluida) Data Kolektor Surya, Diameter Dimple 9 mm Data Properties Fluida Base Tabel Properties (Tfcg-abs) Tabel Properties (Abs - Fluida) Lampiran 6. Data penunjang

No	Jenis energi / Energy type	Sumber Daya / Resources	Cadangan / Reserves	Potensi / Potential	Kapasitas terpasang/ Installed capacity
1	Panas bumi/ Geothermal			29,544 MW	1,438.5MW
2	Hidro/ Hydro	75,091 MW		45,379 MW (Sumberdaya teridentifikasi / Identified resources)**	8,671 MW**
3	Mini-mikrohidro/ Mini- micro hydro			19.385 MW	2,600.76 KW*
4	Biomassa / Biomass	32,654 MWe*			1,626 MW (Off Grid)*
5	Energi surya/ Solar enerav	4.80 kWh/m²/day***			14,006.5 KW***
6	Energi angin/ Wind energy	970 MW**			1.96 MW***
7	Uranium/ Uranium	3,000 MW****			30 MW****
8	Shale gas	574 TSCF****			
9	Gas metana batubara / Coal bed methane	456.7 TSCF****			
10	Gelombang Laut Wave energy	17.989 MW (Potensi Praktis / Practical Potential)			
11	Energi Panas Laut OTEC (Ocean Thermal	41,012 MW (Potensi Praktis /			
12	Energy Conversion) Pasang Surut Tide and tidal power	Practical Potential)** 4,800 MW (Potensi Praktis / Practical Potential)**			

Lampiran 1 : Sumber Daya Energi Baru dan Energi Terbarukan

Sumber (Indonesia Energy Outlook 2017)

	Konduktivitas Termal								
	k								
Bahan	W/m. °C	Btu/h.ft. °F							
Logam									
Perak (murni)	410	237							
Tembaga (murni)	385	223							
Aluminium (murni)	202	117							
Nikel (murni)	93	54							
Besi (murni)	73	42							
Baja Karbon, 1% C	43	25							
Timbal (murni)	35	20,3							
Baja krom-nikel	16,3	9,4							
(18% Cr, 8% Ni)									
Bukan Logam									
Kuarsa (sejajar sumbu)	41,6	24							
Magnesit	4,15	2,4							
Marmar	2,08 - 2,94	1,2 - 1,7							
Batu pasir	1,83	1,06							
Kaca, Jendela	0,78	0,45							
Kayu mapel atau ek	0,17	0,096							
Serbu k Gergaji	0,059	0,034							
Wol Kaca	0,038	0,022							
Zat Cair									
Air-Raksa	8,21	4,74							
Air	0,556	0,327							
Amonia	0,540	0,312							
Minyak Lumas, SAE 50	0,147	0,085							
Freon 12, $CC1_2F_2$	0,0743	0,042							
Gas									
Hidrogen	0,175	0,101							
Helium	0,141	0,081							
Udara	0,024	0,0139							
Uap Air (Jenuh)	0,0,026	0,0119							
Karbon dioksida	0,0146 0,0008								

Lampiran 2 : Konduktivitas Termal Berbagai Bahan Pada 0 $^{\rm o}{\rm C}$

Sumber : Buku Perpindahan Kalor, J.P Holman, Halaman 7.

Lampiran 3. Data Hasil Eksperimen

Diameter	m dot	I	ntensitas	Vw		T Cove	er Glass			Tabso	orber			T Ba	se		Fluida	Fluida	ΤF	TIm	Temp	ΔΡ
Dimple	(kg/s)	mV	W/m2	(m/s)	Tcg 1	Tcg 2	Tcg 3	avg	Tabs 1	Tabs 2	Tabs 3	avg	Tbase 1	Tbase 2	Tbase 3	avg	Input	Output	avg	1 180	Amb	(Kpa)
	0.001	3.3	431.373	0.64	54.7	55.4	54.5	54.9	40.1	49.1	49.8	46.3	34.8	36.1	39.5	36.8	32.5	44.3	38.4	36.6	30	0.01
	0.002	3.3	431.373	1.28	55.5	56.1	57.1	56.2	39.3	45.9	48.3	44.5	34.4	35.9	38.4	36.2	32.6	39.4	36.0	36.3	30	0.02
	0.004	3.3	431.373	2.56	55.9	57.3	56.1	56.4	36.8	41.8	44.3	41.0	33.6	34.8	37.7	35.4	32.4	37.9	35.2	36.1	30	0.02
	0.006	3.3	431.373	3.84	54.9	56.3	56.8	56.0	36.5	40.2	43.5	40.1	33.2	34.3	37.3	34.9	32.4	36.5	34.5	35.3	30	0.03
	0.001	4.4	575.163	0.64	68.7	71	71.5	70.4	44.5	57.1	60.3	54.0	35.9	39.9	43.1	39.6	32.6	48.5	40.6	38.5	30	0.02
5	0.002	4.4	575.163	1.28	68.1	71.2	71.6	70.3	42.9	51.2	56.6	50.2	35.8	38.3	43.8	39.3	32.7	41.0	36.9	37.8	30	0.01
5 mm	0.004	4.4	575.163	2.56	71.2	70.6	70.1	70.6	39.1	45.9	50.6	45.2	34.4	38.0	40.9	37.8	32.5	40.0	36.3	37.7	30	0.03
	0.006	4.4	575.163	3.84	68.2	71.9	71.6	70.6	37.9	42.5	47.4	42.6	34.0	36.2	40.8	37.0	32.5	37.5	35.0	37.4	30	0.03
	0.001	5.5	718.954	0.64	76.6	83.9	82.6	81.0	48.9	65.2	70.3	61.5	37.5	41.1	47.8	42.1	32.8	50.6	41.7	40.0	30	0.02
	0.002	5.5	718.954	1.28	76.5	85.3	83.1	81.6	45.4	55.9	62.7	54.7	37.0	39.7	47.1	41.3	32.6	42.5	37.6	39.9	30	0.03
	0.004	5.5	718.954	2.56	77.6	85.3	83.3	82.1	40.3	48.9	55.1	48.1	35.0	37.6	43.6	38.7	32.5	41.3	36.9	39.1	30	0.03
	0.006	5.5	718.954	3.84	82.7	82.9	82	82.5	39.2	44.9	51.2	45.1	34.7	36.8	42.1	37.9	32.5	38.5	35.5	38.9	30	0.03

Data Hasil Eksperimen Kolektor Surya, Diameter Dimple 5 mm

Data Hasil Eksperimen Kolektor Surya, Diameter Dimple 7 mm

Diameter	m dot	In	tensitas	Vw		T Cove	r Glass			Tabso	rber			T Ba	ise		Fluida	Fluida	ΤF	TIGO	Temp	ΔP
Dimple	(kg/s)	mV	W/m2	(m/s)	Tcg 1	Tcg 2	Tcg 3	avg	Tabs 1	Tabs 2	Tabs 3	avg	Tbase 1	Tbase 2	Tbase 3	avg	Input	Output	avg	1 180	Amb	(Kpa)
	0.001	3.3	431.373	0.64	57.2	59.6	61.2	59.3	48.1	49.5	49.3	49.0	37.1	38.4	41.5	39.0	31.8	45.9	38.9	35.5	30	0.02
	0.002	3.3	431.373	1.28	58.4	60.1	61.1	59.9	45.9	48	47.4	47.1	36.7	38.2	40.4	38.4	31.3	42.7	37.0	34.6	30	0.01
	0.004	3.3	431.373	2.56	58.2	58.6	61.8	59.5	39.9	43.8	42.8	42.2	35.9	37.1	39.7	37.6	31.5	40.7	36.1	34.5	30	0.02
	0.006	3.3	431.373	3.84	59.6	59.3	59.4	59.4	38.5	42.2	44.9	41.9	35.5	36.6	39.3	37.1	31.9	38.8	35.4	33.7	30	0.03
	0.001	4.4	575.163	0.64	71.4	72.4	73.1	72.3	55.9	56.8	58.9	57.2	38.2	42.2	45.1	41.8	31.6	51.8	41.7	37.3	30	0.02
7 mm	0.002	4.4	575.163	1.28	70.8	72.8	72.9	72.2	52.8	55.1	55.3	54.4	38.1	40.6	45.8	41.5	31.3	45.0	38.2	36.8	30	0.01
/ 111111	0.004	4.4	575.163	2.56	71.5	72.4	73.8	72.6	39.9	55.9	47.2	47.7	36.7	40.3	42.9	40.0	31.8	42.8	37.3	36.5	30	0.02
	0.006	4.4	575.163	3.84	72	72.3	73.6	72.6	38.9	49.5	44.6	44.3	36.3	38.5	42.8	39.2	31.5	39.4	35.5	35.5	30	0.03
	0.001	5.5	718.954	0.64	83.4	84.5	85.3	84.4	60.9	63.2	65.0	63.0	39.8	43.4	49.8	44.3	31.7	56.9	44.3	40.1	30	0.01
	0.002	5.5	718.954	1.28	83.6	84.1	84.5	84.1	58.9	58.9	57.1	58.3	39.3	42.0	49.1	43.5	31.3	49.5	40.4	38.7	30	0.02
	0.004	5.5	718.954	2.56	81.8	83.8	85.8	83.8	50.5	50.2	49.9	50.2	37.3	39.9	45.6	40.9	31.5	44.1	37.8	37.2	30	0.03
	0.006	5.5	718.954	3.84	83.9	84.8	85.2	84.6	49.3	50.9	48.2	49.5	37.0	39.1	44.1	40.1	32.2	41.4	36.8	36.8	30	0.03

Data Hasil Eksperimen Kolektor Surya, Diameter Dimple	9 mm
---	------

Diameter	m dot	In	tensitas	Vw		T Cove	er Glass			Tabso	orber			T Ba	ase		Fluida	Fluida	ΤF	TIGO	Temp	ΔP
Dimple	(kg/s)	mV	W/m2	(m⁄s)	Tcg 1	Tcg 2	Tcg 3	avg	Tabs 1	Tabs 2	Tabs 3	avg	Tbase 1	Tbase 2	Tbase 3	avg	Input	Output	avg	1 180	Amb	Kpa
	0.001	3.3	431.373	0.64	62.4	61.2	62.3	62.0	50.6	55.6	53.1	53.1	30.7	31.8	36.3	32.9	30.7	48.6	39.7	33.4	30	0.01
	0.002	3.3	431.373	1.28	61.1	61.9	61.6	61.5	46.9	57.2	48.7	50.9	30.2	31.6	35.6	32.5	30.4	45.7	38.1	32.9	30	0.02
	0.004	3.3	431.373	2.56	61.6	60.6	61.1	61.1	46.1	42.6	43.7	44.1	29.9	31.5	35.7	32.4	30.5	42.3	36.4	32.3	30	0.02
	0.006	3.3	431.373	3.84	62.5	62.5	61.2	62.1	45.1	42.3	42.2	43.2	29.1	32.2	35.3	32.2	30.8	39.0	34.9	31.4	30	0.02
	0.001	4.4	575.163	0.64	74.8	74.1	73.8	74.2	59.5	60.9	57.2	59.2	31.8	34.0	40.0	35.3	30.6	55.5	43.1	35.5	30	0.01
0	0.002	4.4	575.163	1.28	74.6	75.2	73.6	74.5	55.9	58.9	53.6	56.1	31.2	33.8	40.1	35.0	30.4	47.8	39.1	35.1	30	0.01
9 mm	0.004	4.4	575.163	2.56	73.8	74.2	74	74.0	46.9	48.6	50.9	48.8	31.2	33.7	39.1	34.7	30.3	44.4	37.4	34.7	30	0.01
	0.006	4.4	575.163	3.84	73.7	74.8	74.9	74.5	44.8	49.9	44.7	46.5	30.6	33.2	38.4	34.1	30.5	41.0	35.8	33.5	30	0.01
	0.001	5.5	718.954	0.64	88.4	88.6	87.3	88.1	69.5	60.9	67.2	65.9	32.9	36.1	44.7	37.9	30.6	60.5	45.6	37.4	30	0.01
-	0.002	5.5	718.954	1.28	87.6	88.8	88.2	88.2	59.9	67.9	59.6	62.5	34.4	36.3	42.8	37.8	30.5	52.8	41.7	37.3	30	0.02
	0.004	5.5	718.954	2.56	88.9	88.1	88.5	88.5	56.9	55.6	50.9	54.5	32.8	35.3	43.6	37.2	30.4	46.6	38.5	37.2	30	0.01
	0.006	5.5	718.954	3.84	87.9	87.2	88.3	87.8	50.8	55.9	54.7	53.8	32.1	32.0	41.7	35.3	30.3	41.8	36.1	36.1	30	0.02

Lampiran 4. Data Hasil Perhitungan

Data Hasil Perhitungan Kolektor Surya, Diameter Dimple 5 mm

	Data Hasil Perhitungan															hconv, cg-abs					
Diameter	mdot	Int	ensitas	Vw	Temp	eratur (K	elvin)]	Γ Fluida ((K)	۸T	TIGO	TAmb	ΔP	Tavg, cg-	ßı	Po	Nu	hconv, cg-		
Dimple	(kg/s)	mV	W/m2	(m/s)	CG	Abs	Base	Input	Output	T F.avg		1 180	1 And	Kpa	abs (K)	Р	Ка	INU	(W/m2.K)		
	0.001	3.3	431.373	0.64	327.9	319.3	309.8	305.5	317.3	311.4	11.8	309.6	303	0.01	323.60	0.00309	37268.6	4.4916	3.0794		
	0.002	3.3	431.373	1.28	329.2	317.5	309.2	305.6	312.4	309.0	6.8	309.3	303	0.02	323.37	0.00309	51415.6	5.1251	3.5115		
	0.004	3.3	431.373	2.56	329.4	314.0	308.4	305.4	310.9	308.2	5.5	309.1	303	0.02	321.70	0.00311	69417.9	5.7963	3.9539		
	0.006	3.3	431.373	3.84	329.0	313.1	307.9	305.4	309.5	307.5	4.1	308.3	303	0.03	321.03	0.00311	72204.9	5.8907	4.0112		
	0.001	4.4	575.163	0.64	343.4	327.0	312.6	305.6	321.5	313.6	15.9	311.5	303	0.02	335.18	0.00298	61105.0	5.5010	3.8866		
5	0.002	4.4	575.163	1.28	343.3	323.2	312.3	305.7	314.0	309.9	8.3	310.8	303	0.01	333.27	0.00300	76580.4	6.0345	4.2426		
5 11111	0.004	4.4	575.163	2.56	343.6	318.2	310.8	305.5	313.0	309.3	7.5	310.7	303	0.03	330.92	0.00302	100238.0	6.7387	4.7091		
	0.006	4.4	575.163	3.84	343.6	315.6	310.0	305.5	310.5	308.0	5.0	310.4	303	0.03	329.58	0.00303	112273.4	7.0594	4.9161		
	0.001	5.5	718.954	0.64	354.0	334.5	315.1	305.8	323.6	314.7	17.8	313.0	303	0.02	344.25	0.00290	64537.7	5.6257	4.0670		
	0.002	5.5	718.954	1.28	354.6	327.7	314.3	305.6	315.5	310.6	9.9	312.9	303	0.03	341.15	0.00293	92613.9	6.5236	4.6796		
	0.004	5.5	718.954	2.56	355.1	321.1	311.7	305.5	314.3	309.9	8.8	312.1	303	0.03	338.08	0.00296	121482.7	7.2913	5.1897		
	0.006	5.5	718.954	3.84	355.5	318.1	310.9	305.5	311.5	308.5	6.0	311.9	303	0.03	336.82	0.00297	136166.0	7.6405	5.4208		

	hconv,	abs-fluida			hrad, Cg-	1 10 1					
Tavg, abs- fluida (K)	Redh	NuD	hconv, abs- fluida (W/m2.K)	Tsky (K)	amb (W/m2.K)	(W/m2.K)	hrad, base-abs (W/m2.K)	Rtot, upper	UT	UB	UL
311.40	894.93	4.5976	5.27765	292.829	5.7030	0.9160	4.4487	1.5918	0.6282	17.7778	18.4060
309.00	1813.40	8.0906	9.22648	292.829	5.7412	0.9142	4.3977	1.5528	0.6440	17.7778	18.4218
308.15	3643.60	14.140	16.08724	292.829	5.7468	0.9003	4.3054	1.5376	0.6504	17.7778	18.4281
307.45	5491.96	19.635	22.29594	292.829	5.7346	0.8948	4.2777	1.5413	0.6488	17.7778	18.4266
313.55	884.50	4.5540	5.25816	292.829	6.1492	1.0184	4.6757	1.4019	0.7133	17.7778	18.4911
309.85	1805.03	8.0602	9.21322	292.829	6.1462	1.0013	4.5862	1.3971	0.7158	17.7778	18.4936
309.25	3621.86	14.071	16.05745	292.829	6.1561	0.9808	4.4448	1.3943	0.7172	17.7778	18.4950
308.00	5475.56	19.587	22.27540	292.829	6.1541	0.9693	4.3735	1.3975	0.7155	17.7778	18.4933
314.70	878.97	4.5308	5.24767	292.829	6.4713	1.1035	4.9004	1.3066	0.7653	17.7778	18.5431
310.55	1798.16	8.0352	9.20227	292.829	6.4899	1.0748	4.7268	1.2982	0.7703	17.7778	18.5481
309.90	3609.07	14.030	16.03979	292.829	6.5034	1.0471	4.5276	1.3015	0.7683	17.7778	18.5461
308.50	5460.69	19.543	22.25669	292.829	6.5179	1.0359	4.4447	1.3032	0.7673	17.7778	18.5451

					Q	u	1	η	
F'	ø	F"	FR	S	Aktual	Desain	Aktual	Desain	ΔP
					(W	att)	(x 10)0 %)	
0.6610	0.5223	0.4453	0.294364	325.893	11.89	13.06	17.38	19.10	1000
0.7726	0.8929	0.6015	0.464753	325.893	13.70	20.48	20.03	29.95	2000
0.8553	1.6124	0.7452	0.637391	325.893	22.16	28.46	32.40	41.62	2000
0.8912	2.3215	0.8125	0.724079	325.893	24.78	32.33	36.23	47.28	3000
0.6591	0.5214	0.4448	0.293190	434.524	16.02	17.96	17.57	19.70	2000
0.7716	0.8906	0.6008	0.463619	434.524	16.72	28.27	18.34	31.00	1000
0.8547	1.6080	0.7446	0.636387	434.524	30.22	39.17	33.14	42.96	3000
0.8908	2.3143	0.8120	0.723270	434.524	30.22	44.52	33.14	48.83	3000
0.6580	0.5209	0.4445	0.292481	543.156	17.94	22.78	15.74	19.98	2000
0.7709	0.8888	0.6003	0.462757	543.156	19.95	36.31	17.50	31.86	3000
0.8542	1.6045	0.7442	0.635641	543.156	35.46	50.06	31.11	43.92	3000
0.8904	2.3088	0.8116	0.722636	543.156	36.26	56.91	31.82	49.93	3000

	Data Hasil Perhitungan														hc	onv, cg-ab	s		
Diameter	mdot	Int	tensitas	Vw	Ten	peratur (H	Kelvin)		T Fluida (I	K)	AT	TIng	TAm	ΔP	Tavg, cg-	Q1	Da	Nu	hconv, cg-
Dimple	(kg/s)	mV	W/m2	(m/s)	CG	Abs	Base	Input	Output	T F.avg		1 180	IAI	Кра	abs (K)	р	Ка	INU	(W/m2.K)
	0.001	3.3	431.373	0.64	332.3	322.0	312.0	304.8	318.9	311.9	14.1	308.5	303	0.02	327.15	0.00306	43055.0	4.7654	3.2977
	0.002	3.3	431.373	1.28	332.9	320.1	311.4	304.3	315.7	310.0	11.4	307.6	303	0.01	326.48	0.00306	53522.2	5.2102	3.5991
	0.004	3.3	431.373	2.56	332.5	315.2	310.6	304.5	313.7	309.1	9.2	307.5	303	0.02	323.85	0.00309	75577.1	6.0019	4.1175
	0.006	3.3	431.373	3.84	332.4	314.9	310.1	304.9	311.8	308.4	6.9	306.7	303	0.03	323.65	0.00309	76666.1	6.0372	4.1396
	0.001	4.4	575.163	0.64	345.3	330.2	314.8	304.6	324.8	314.7	20.2	310.3	303	0.02	337.75	0.00296	54246.0	5.2389	3.7258
7	0.002	4.4	575.163	1.28	345.2	327.4	314.5	304.3	318.0	311.2	13.7	309.8	303	0.01	336.28	0.00297	65091.4	5.6454	3.9999
/ 11111	0.004	4.4	575.163	2.56	345.6	320.7	313.0	304.8	315.8	310.3	11.0	309.5	303	0.02	333.12	0.00300	95220.4	6.5983	4.6372
	0.006	4.4	575.163	3.84	345.6	317.3	312.2	304.5	312.4	308.5	7.9	308.5	303	0.03	331.48	0.00302	110669.6	7.0178	4.9113
	0.001	5.5	718.954	0.64	357.4	336.0	317.3	304.7	329.9	317.3	25.2	313.1	303	0.01	346.72	0.00288	68272.0	5.7569	4.1876
	0.002	5.5	718.954	1.28	357.1	331.3	316.5	304.3	322.5	313.4	18.2	311.7	303	0.02	344.18	0.00291	85060.8	6.3000	4.5537
	0.004	5.5	718.954	2.56	356.8	323.2	313.9	304.5	317.1	310.8	12.6	310.2	303	0.03	340.00	0.00294	117155.7	7.1836	5.1381
	0.006	5.5	718.954	3.84	357.6	322.5	313.1	305.2	314.4	309.8	9.2	309.8	303	0.03	340.05	0.00294	122537.4	7.3171	5.2342
			hconv, al	bs-fluic	ła			h	rad, Cg-	hrad C	g- h	rad, ba	se-						
	Tavg, fluida	abs- (K)	Redh	Nul		conv, abs- fluida W/m2 K)	Tsky	(K) (V	amb V/m2.K)	abs (W/m2.	K) (abs W/m2.	K)	tot, uppe	r UT	UB	UL	F'	
	fluida (K)					z a a a a	-			0.000	-	4 - 4 - 4 - 4	-	1 1 0	0.444			1 0 6 6	

Data Hasil Perhitungan Kolektor Surya, Diameter Dimple 7 mm

		hconv, abs-fluida				hrad, Cg-	hrad Cg-	hrad, base-					
]	Tavg, abs- fluida (K)	Redh	NuD	hconv, abs- fluida (W/m2 K)	Tsky (K)	amb (W/m2.K)	abs (W/m2.K)	abs (W/m2.K)	Rtot, upper	UT	UB	UL	F'
	311.9	867.61	4.485	5.3038	292.83	5.8284	0.9289	4.5199	1.5513	0.6446	17.778	18.4224	0.6619
	310.0	1752.78	7.873	9.2636	292.83	5.8435	0.9234	4.4678	1.5320	0.6528	17.778	18.4305	0.7732
	309.1	3522.77	13.762	16.1535	292.83	5.8341	0.9015	4.3452	1.5235	0.6564	17.778	18.4342	0.8558
	308.4	5311.29	19.115	22.3898	292.83	5.8312	0.8999	4.3300	1.5243	0.6560	17.778	18.4338	0.8916
	314.7	854.23	4.428	5.2777	292.83	6.2057	1.0224	4.7623	1.4076	0.7104	17.778	18.4882	0.6600
	311.2	1741.84	7.833	9.2455	292.83	6.2018	1.0094	4.6925	1.4020	0.7133	17.778	18.4911	0.7723
	310.3	3499.84	13.689	16.1207	292.83	6.2137	0.9818	4.5123	1.3951	0.7168	17.778	18.4946	0.8551
	308.5	5308.40	19.106	22.3861	292.83	6.2157	0.9678	4.4249	1.3977	0.7155	17.778	18.4932	0.8912
	317.3	842.19	4.378	5.2537	292.83	6.5762	1.1065	4.9505	1.2946	0.7724	17.778	18.5502	0.6581
	313.4	1720.62	7.755	9.2098	292.83	6.5658	1.0829	4.8229	1.2953	0.7720	17.778	18.5498	0.7710
	310.8	3490.33	13.659	16.1070	292.83	6.5574	1.0450	4.5878	1.3040	0.7668	17.778	18.5446	0.8547
	309.8	5269.55	18.992	22.3351	292.83	6.5836	1.0457	4.5534	1.2992	0.7697	17.778	18.5475	0.8907

				()u	1	l	
ø	F"	FR	S	Aktual	Desain	Aktual	Desain	ΔP
				(W	'att)	(x 10	0 %)	
0.4847	0.4231	0.2801	325.893	13.47	13.25	19.32	19.01	2000
0.8268	0.5801	0.4486	325.893	21.71	21.89	31.14	31.40	1000
1.4977	0.7295	0.6243	325.893	35.12	30.09	50.39	43.17	2000
2.1583	0.8003	0.7135	325.893	39.55	33.54	56.74	48.11	3000
0.4845	0.4230	0.2791	434.524	19.29	18.27	20.76	19.65	2000
0.8252	0.5796	0.4476	434.524	26.09	29.69	28.07	31.94	1000
1.4940	0.7290	0.6234	434.524	42.00	40.42	45.19	43.49	2000
2.1521	0.7998	0.7128	434.524	45.28	46.86	48.72	50.42	3000
0.4842	0.4228	0.2783	543.156	24.07	23.01	20.72	19.80	1000
0.8240	0.5792	0.4465	543.156	34.66	37.45	29.83	32.24	2000
1.4908	0.7285	0.6227	543.156	48.11	51.85	41.41	44.63	3000
2.1472	0.7994	0.7121	543.156	52.73	57.80	45.39	49.75	3000

Data Hasil Perhitungan Kolektor Surya, Diameter Dimple 9 mm

	Data Hasil Perhitungan														hconv, cg-abs				
Diameter	m dot	In	tensitas	Vw	Temp	eratur (l	Kelvin)	,	T Fluida ((K)	۸T	TIGO	TAmb	ΔP	Tf, cg-	ßı	Do	Nu	hconv,
Dimple	(kg/s)	mV	W/m2	(m/s)	CG	Abs	Base	Input	Output	T F.avg	$\Delta 1$	1 180	I AIID	Kpa	abs (K)	р	Ка	INU	cg-abs
	0.001	3.3	431.373	0.64	335.0	326.1	305.9	303.7	321.6	312.7	17.9	306.4	303	0.01	330.5	0.00303	35130.66	4.3841	3.0606
	0.002	3.3	431.373	1.28	334.5	323.9	305.5	303.4	318.7	311.1	15.3	305.9	303	0.02	329.2	0.00304	42761.47	4.7521	3.3063
	0.004	3.3	431.373	2.56	334.1	317.1	305.4	303.5	315.3	309.4	11.8	305.3	303	0.02	325.6	0.00307	72005.68	5.8840	4.0554
	0.006	3.3	431.373	3.84	335.1	316.2	305.2	303.8	312.0	307.9	8.2	304.4	303	0.02	325.6	0.00307	80050.3	6.1451	4.2356
	0.001	4.4	575.163	0.64	347.2	332.2	308.3	303.6	328.5	316.1	24.9	308.5	303	0.01	339.7	0.00294	52614.42	5.1737	3.6978
0 mm	0.002	4.4	575.163	1.28	347.5	329.1	308.0	303.4	320.8	312.1	17.4	308.1	303	0.01	338.3	0.00296	65380.78	5.6557	4.0278
9 11111	0.004	4.4	575.163	2.56	347.0	321.8	307.7	303.3	317.4	310.4	14.1	307.7	303	0.01	334.4	0.00299	94700.86	6.5835	4.6421
	0.006	4.4	575.163	3.84	347.5	319.5	307.1	303.5	314.0	308.8	10.50	306.5	303	0.01	333.5	0.00300	106565.7	6.9099	4.8606
	0.001	5.5	718.954	0.64	361.1	338.9	310.9	303.6	333.5	318.6	29.9	310.4	303	0.01	350.0	0.00286	68152.3	5.7528	4.2185
	0.002	5.5	718.954	1.28	361.2	335.5	310.8	303.5	325.8	314.7	22.3	310.3	303	0.02	348.3	0.00287	80546.4	6.1607	4.4993
	0.004	5.5	718.954	2.56	361.5	327.5	310.2	303.4	319.6	311.5	16.2	310.2	303	0.01	344.5	0.00290	111915.4	7.0501	5.0997
	0.006	5.5	718.954	3.84	360.8	326.8	308.3	303.3	314.8	309.1	11.5	309.1	303	0.02	343.8	0.00291	112799.7	7.0729	5.1075

	hconv,	abs-fluida	a		hand Co amp	head Ca aba	hrad, abs-						
Tavg, abs-	Redh	NuD	hconv, abs- fluida	Tsky (K)	(W/m2.K)	(W/m2.K)	base (W/m2.K)	Rtot, upper	UT	UB	UL	F'	φ
312.65	837.72	4.3605	5.3291	292.829	5.9037	0.9601	4.4405	1.5377	0.6503	17.7778	18.4281	0.6629	0.472
311.05	1690.10	7.6462	9.3040	292.829	5.8913	0.9489	4.3845	1.5261	0.6553	17.7778	18.4331	0.7740	0.806
309.40	3410.70	13.4105	16.2448	292.829	5.8789	0.9183	4.2398	1.5056	0.6642	17.7778	18.4420	0.8565	1.459
307.90	5163.34	18.6882	22.5447	292.829	5.9066	0.9186	4.2172	1.4940	0.6693	17.7778	18.4471	0.8922	2.1023
316.05	822.32	4.2951	5.2977	292.829	6.2641	1.0427	4.6224	1.3891	0.7199	17.7778	18.4976	0.6607	0.472
312.10	1680.46	7.6106	9.2873	292.829	6.2711	1.0299	4.5499	1.3787	0.7253	17.7778	18.5031	0.7730	0.804
310.35	3393.11	13.3542	16.2186	292.829	6.2570	0.9954	4.3844	1.3799	0.7247	17.7778	18.5025	0.8558	1.455
308.75	5139.52	18.6180	22.5125	292.829	6.2711	0.9874	4.3229	1.3779	0.7257	17.7778	18.5035	0.8917	2.097
318.55	811.17	4.2476	5.2744	292.829	6.6935	1.1407	4.8289	1.2631	0.7917	17.7778	18.5695	0.6588	0.471
314.65	1657.26	7.5249	9.2465	292.829	6.6967	1.1250	4.7501	1.2605	0.7934	17.7778	18.5711	0.7715	0.802
311.50	3371.92	13.2862	16.1868	292.829	6.7063	1.0893	4.5597	1.2632	0.7916	17.7778	18.5694	0.8551	1.451
309.05	5131.14	18.5932	22.5012	292.829	6.6840	1.0828	4.5040	1.2689	0.7881	17.7778	18.5659	0.8913	2.091

F"	FR		Q	u	η	
F"	FR	S	Aktual	Desain	Aktual	Desain
			(W	att)	(x 10	00 %)
0.415	0.275	325.893	17.10	14.27	23.92	19.97
0.573	0.443	325.893	29.13	23.39	40.77	32.73
0.724	0.620	325.893	45.05	32.52	63.04	45.51
0.796	0.70997	325.893	46.999	36.59	65.77	51.21
0.415	0.274	434.524	23.79	19.24	24.96	20.19
0.572	0.442	434.524	33.13	31.29	34.77	32.84
0.723	0.619	434.524	53.84	43.99	56.50	46.17
0.795	0.709	434.524	60.18	49.97	63.16	52.44
0.415	0.273	543.156	28.56	24.09	23.98	20.23
0.572	0.441	543.156	42.47	39.00	35.66	32.75
0.723	0.618	543.156	61.86	54.85	51.94	46.05
0.795	0.708	543.156	65.92	63.09	55.35	52.97

Lampiran 5. Data Properties Fluida Kerja Data Kolektor Surya, Diameter Dimple 5 mm Data Properties Fluida Base

Tavg,	ρ	Ср	μ	V	k	α	Dr
fluida-Base	kg/m3	J/kg.K	N.s/m2	m2/s	W/m.K	m2/s	11
310.60	1.1261	1007.4	2E-05	1.6956E-05	0.02708	2.41E-05	0.706
309.12	1.1311	1007.4	2E-05	1.6807E-05	0.02697	2.38E-05	0.706
308.26	1.1339	1007.3	2E-05	1.6721E-05	0.02691	2.37E-05	0.706
307.69	1.1358	1007.3	2E-05	1.6664E-05	0.02687	2.36E-05	0.706
313.09	1.1178	1007.5	2E-05	1.7207E-05	0.02727	2.44E-05	0.705
311.08	1.1245	1007.4	2E-05	1.7004E-05	0.02712	2.41E-05	0.705
310.01	1.1281	1007.4	2E-05	1.6897E-05	0.02704	2.40E-05	0.706
309.00	1.1314	1007.4	2E-05	1.6795E-05	0.02697	2.38E-05	0.706
314.92	1.1118	1007.6	2E-05	1.7391E-05	0.02740	2.47E-05	0.705
312.41	1.1201	1007.5	2E-05	1.7138E-05	0.02722	2.43E-05	0.705
310.82	1.1254	1007.4	2E-05	1.6978E-05	0.02710	2.41E-05	0.705
309.68	1.1292	1007.4	2E-05	1.6864E-05	0.02702	2.39E-05	0.706

Tabel Properties (Tfcg-abs)

Tavg,	ρ	Ср	μ	v	k	α	Pr
cg-abs	kg/m3	J/kg.K	N.s/m2	m2/s	W/m.K	m2/s	11
323.60	1.08286	1007.94	2.0E-05	1.826E-05	0.02805	0.000026	0.70370
323.37	1.08364	1007.93	2.0E-05	1.824E-05	0.02803	0.000026	0.70373
321.70	1.08918	1007.87	1.9E-05	1.807E-05	0.02791	0.000026	0.70396
321.03	1.09140	1007.84	1.9E-05	1.801E-05	0.02786	0.000026	0.70406
335.18	1.04431	1008.41	2.0E-05	1.943E-05	0.02890	0.000028	0.70207
333.27	1.05069	1008.33	2.0E-05	1.924E-05	0.02876	0.000027	0.70234
330.92	1.05851	1008.24	2.0E-05	1.900E-05	0.02859	0.000027	0.70267
329.58	1.06295	1008.18	2.0E-05	1.887E-05	0.02849	0.000027	0.70286
344.25	1.01414	1008.77	2.1E-05	2.034E-05	0.02957	0.000029	0.70081
341.15	1.02445	1008.65	2.0E-05	2.003E-05	0.02935	0.000029	0.70124
338.08	1.03466	1008.52	2.0E-05	1.972E-05	0.02912	0.000028	0.70167
336.82	1.03887	1008.47	2.0E-05	1.959E-05	0.02902	0.000028	0.70185

Tabel Properties (Abs - Fluida)

Tavg,	ρ	Ср	μ	V	k	α	Dr
abs-	kg/m3	J/kg.K	N.s/m2	m2/s	W/m.K	m2/s	17
311.40	1.12346	1007.46	0.00002	1.70E-05	0.02714	2.42E-05	0.70540
309.00	1.13145	1007.36	0.00002	1.68E-05	0.02697	2.38E-05	0.70574
308.15	1.13428	1007.33	0.00002	1.67E-05	0.02690	2.37E-05	0.70586
307.45	1.13661	1007.30	0.00002	1.66E-05	0.02685	2.36E-05	0.70596
313.55	1.11631	1007.54	0.00002	1.73E-05	0.02730	2.45E-05	0.70510
309.85	1.12862	1007.39	0.00002	1.69E-05	0.02703	2.40E-05	0.70562
309.25	1.13062	1007.37	0.00002	1.68E-05	0.02698	2.39E-05	0.70571
308.00	1.13478	1007.32	0.00002	1.67E-05	0.02689	2.37E-05	0.70588
314.70	1.11248	1007.59	0.00002	1.74E-05	0.02739	2.47E-05	0.70494
310.55	1.12629	1007.42	0.00002	1.70E-05	0.02708	2.41E-05	0.70552
309.90	1.12845	1007.40	0.00002	1.69E-05	0.02703	2.40E-05	0.70561
308.50	1.13311	1007.34	0.00002	1.67E-05	0.02693	2.38E-05	0.70581

Data Kolektor Surya, Diameter Dimple 7 mm Data Properties Fluida Base

Tavg, fluida- Base (K)	<mark>р</mark> kg/m3	Cp J/kg.K	μ N.s/m2	v m2/s	k W/m.K	α m2/s	Pr
311.93	1.12171	1007	0.00002	1.71E-05	0.02718	2.4E-05	0.7053
310.72	1.12573	1007	0.00002	1.70E-05	0.02709	2.4E-05	0.7055
309.83	1.12867	1007	0.00002	1.69E-05	0.02703	2.4E-05	0.7056
309.24	1.13064	1007	0.00002	1.68E-05	0.02698	2.4E-05	0.7057
314.77	1.11226	1008	0.00002	1.74E-05	0.02739	2.5E-05	0.7049
312.83	1.11872	1008	0.00002	1.72E-05	0.02725	2.4E-05	0.7052
311.63	1.12268	1007	0.00002	1.71E-05	0.02716	2.4E-05	0.7054
310.33	1.12704	1007	0.00002	1.69E-05	0.02706	2.4E-05	0.7056
317.32	1.10377	1008	0.00002	1.76E-05	0.02758	2.5E-05	0.7046
314.93	1.11170	1008	0.00002	1.74E-05	0.02741	2.5E-05	0.7049
312.37	1.12024	1007	0.00002	1.71E-05	0.02722	2.4E-05	0.7053
311.43	1.12335	1007	0.00002	1.70E-05	0.02715	2.4E-05	0.7054

Tabel Properties (Tfcg-abs)

Tavg,	ρ	Ср	μ	V	k	α	D _r
cg-abs	kg/m3	J/kg.K	N.s/m2	m2/s	W/m.K	m2/s	17
327.15	1.07104	1008.09	0.0000197	1.86E-05	0.02831	2.65E-05	0.70320
326.48	1.07326	1008.06	0.0000197	1.86E-05	0.02826	2.64E-05	0.70329
323.85	1.08203	1007.95	0.0000196	1.83E-05	0.02806	2.60E-05	0.70366
323.65	1.08269	1007.95	0.0000196	1.83E-05	0.02805	2.60E-05	0.70369
337.75	1.03577	1008.51	0.0000202	1.97E-05	0.02909	2.81E-05	0.70172
336.28	1.04065	1008.45	0.0000202	1.95E-05	0.02898	2.79E-05	0.70192
333.12	1.05119	1008.32	0.0000200	1.92E-05	0.02875	2.74E-05	0.70236
331.48	1.05662	1008.26	0.0000199	1.91E-05	0.02863	2.72E-05	0.70259
346.72	1.00593	1008.87	0.0000207	2.06E-05	0.02976	2.94E-05	0.70046
344.18	1.01436	1008.77	0.0000205	2.03E-05	0.02957	2.90E-05	0.70081
340.00	1.02828	1008.60	0.0000203	1.99E-05	0.02926	2.84E-05	0.70140
340.05	1.02811	1008.60	0.0000204	1.99E-05	0.02926	2.84E-05	0.70139

Tabel Properties (Abs - Fluida)

Tavg, abs-	ρ	Ср	μ	V	k	α	D _r ,
fluida (K)	kg/m3	J/kg.K	N.s/m2	m2/s	W/m.K	m2/s	11
311.85	1.12196	1007.47	0.00002	1.71E-05	0.02718	2.425E-05	0.70534
310.00	1.12812	1007.40	0.00002	1.69E-05	0.02704	2.398E-05	0.70560
309.10	1.13112	1007.36	0.00002	1.68E-05	0.02697	2.385E-05	0.70573
308.35	1.13361	1007.33	0.00002	1.67E-05	0.02692	2.374E-05	0.70583
314.70	1.11248	1007.59	0.00002	1.74E-05	0.02739	2.468E-05	0.70494
311.15	1.12429	1007.45	0.00002	1.70E-05	0.02713	2.415E-05	0.70544
310.30	1.12712	1007.41	0.00002	1.69E-05	0.02706	2.402E-05	0.70556
308.45	1.13328	1007.34	0.00002	1.67E-05	0.02693	2.375E-05	0.70582
317.30	1.10383	1007.69	0.00002	1.76E-05	0.02758	2.506E-05	0.70458
313.40	1.11680	1007.54	0.00002	1.72E-05	0.02729	2.448E-05	0.70512
310.80	1.12546	1007.43	0.00002	1.70E-05	0.02710	2.410E-05	0.70549
309.80	1.12879	1007.39	0.00002	1.69E-05	0.02703	2.395E-05	0.70563

Data Kolektor Surya, Diameter Dimple 9 mm

Data Properties Fluida Base

Tavg, fluida-	ρ	Ср	μ	V	k	α	Pr
Base (K)	kg/m3	J/kg.K	N.s/m2	m2/s	W/m.K	m2/s	
309.29	1.1305	1007.4	0.00002	1.68E-05	0.0270	2.39E-05	0.7057
308.26	1.1339	1007.3	0.00002	1.67E-05	0.0269	2.37E-05	0.7058
307.38	1.1368	1007.3	0.00002	1.66E-05	0.0268	2.36E-05	0.7060
306.55	1.1396	1007.3	0.00002	1.65E-05	0.0268	2.35E-05	0.7061
312.16	1.1209	1007.5	0.00002	1.71E-05	0.0272	2.43E-05	0.7053
310.07	1.1279	1007.4	0.00002	1.69E-05	0.0270	2.40E-05	0.7056
309.01	1.1314	1007.4	0.00002	1.68E-05	0.0270	2.38E-05	0.7057
307.91	1.1351	1007.3	0.00002	1.67E-05	0.0269	2.37E-05	0.7059
314.73	1.1124	1007.6	0.00002	1.74E-05	0.0274	2.47E-05	0.7049
312.74	1.1190	1007.5	0.00002	1.72E-05	0.0272	2.44E-05	0.7052
310.87	1.1252	1007.4	0.00002	1.70E-05	0.0271	2.41E-05	0.7055
308.66	1.1326	1007.3	0.00002	1.68E-05	0.0269	2.38E-05	0.7058

Tabel Properties (Tfcg-abs)

Tf, cg-	ρ	Ср	μ	V	k	α	Pr
abs (K)	kg/m3	J/kg.K	N.s/m2	m2/s	W/m.K	m2/s	
330.5	1.0598	1008.2	1.99E-05	1.90E-05	0.028559	2.7E-05	0.70273
329.2	1.0641	1008.2	1.98E-05	1.88E-05	0.028463	2.7E-05	0.70291
325.6	1.0761	1008.0	1.97E-05	1.85E-05	0.028196	2.6E-05	0.70341
325.6	1.0761	1008.0	1.97E-05	1.85E-05	0.028197	2.6E-05	0.70341
339.7	1.0292	1008.6	2.03E-05	1.99E-05	0.029239	2.8E-05	0.70144
338.3	1.0339	1008.5	2.03E-05	1.97E-05	0.029134	2.8E-05	0.70164
334.4	1.0469	1008.4	2.01E-05	1.94E-05	0.028846	2.8E-05	0.70218
333.5	1.050	1008.3	2.00E-05	1.93E-05	0.028777	2.7E-05	0.70231
350.0	0.9951	1009.0	2.08E-05	2.09E-05	0.029999	3.0E-05	0.70000
348.3	1.0005	1008.9	2.07E-05	2.08E-05	0.029877	3.0E-05	0.70023
344.5	1.0134	1008.8	2.06E-05	2.04E-05	0.029592	2.9E-05	0.70077
343.8	1.0156	1008.8	2.05E-05	2.03E-05	0.029541	2.9E-05	0.70087

Tavg, abs-	ρ	Ср	μ	v	k	α	P _r
fluida (K)	kg/m3	J/kg.K	N.s/m2	m2/s	W/m.K	m2/s	17
312.65	1.11930	1007.5	2E-05	2E-05	0.0272361	2.4E-05	0.705229
311.05	1.12463	1007.4	2E-05	2E-05	0.0271177	2.4E-05	0.705453
309.40	1.13012	1007.4	2E-05	2E-05	0.0269956	2.4E-05	0.705684
307.90	1.13511	1007.3	2E-05	2E-05	0.0268846	2.4E-05	0.705894
316.05	1.10799	1007.6	2E-05	2E-05	0.0274877	2.5E-05	0.704753
312.10	1.12113	1007.5	2E-05	2E-05	0.0271954	2.4E-05	0.705306
310.35	1.12696	1007.4	2E-05	2E-05	0.0270659	2.4E-05	0.705551
308.75	1.13228	1007.4	2E-05	2E-05	0.0269475	2.4E-05	0.705775
318.55	1.09967	1007.7	2E-05	2E-05	0.0276727	2.5E-05	0.704403
314.65	1.11264	1007.6	2E-05	2E-05	0.0273841	2.5E-05	0.704949
311.50	1.12313	1007.5	2E-05	2E-05	0.0271510	2.4E-05	0.70539
309.05	1.13128	1007.4	2E-05	2E-05	0.0269697	2.4E-05	0.705733

Tabel Properties (Abs - Fluida)

Lampiran 6 Data Penunjang

Parameter	Nilai Dan Satuan				
L cg (As/P)	0.0409090 m				
Acg	0.027 m2				
A Base	0.027 m2				
Data Diameter Dimple 5 mm					
A abs	0.15853725 m ²				
Data Diameter Dimple 7 mm					
A abs	0.16158933 m ²				
Data Diameter Dimple 9 mm					
A abs	0.16565877 m ²				

Parameter	Nilai Dan Satuan
Data Diameter	r Dimple 5 mm
Η'	0.08631 m
H"	0.09201 m
Ac1	0.00123575 m ²
Ac2	0.00129462 m ²
Ac Rata-Rata	0.0012651875 m ²
Р	0.21402 mm
Dh	0.023646155
Data Diameter	r Dimple 7 mm
H"	0.09429 m
Ac1	0.00119807 m ²
Ac2	0.001313465 m ²
Ac Rata-Rata	0.0012557675 m ²
Р	0.21858 mm
Dh	0.022980465
Data Diameter	r Dimple 9 mm
H"	0.09657 m
Ac1	0.00114783 m ²
Ac2	0.001338585 m ²
Ac Rata-Rata	0.0012432075 m ²
Р	0.22314 mm
Dh	0.022285695

Parameter	Nilai			
σ (boltzman)	5.6697E-08			
τ_cg	0.85			
α_abs	0.88			
εcg	0.8			
εabs	0.9			
Tebal				
Styrofoam	0.02 m			
Tebal Triplek	0.01 m			
g	9.8 m/s2			
Data Diameter Dimple 5 mm				
F1-3	0.826351822			
F12-3	0.070983277			
Data Diameter	Dimple 7 mm			
F1-3	0.826351822			
F12-3	0.047783955			
Data Diameter	Dimple 9 mm			
F1-3	0.826351822			
F12-3	0.03328105			

BIODATA PENULIS

Stefanus Neno, lahir di Kota Kupang pada tanggal 30 Agustus 1990, merupakan anak dari pasangan Bapak Kansel Neno dan Ibu Agustina D Baria. Penulis mengawali pendidikan pada taman kanak-kanan (TK) Kaisarea BTN Kolhua pada tahun 1995 – 1996, dan melanjutkan pendidikan dasar di SD Impres Maulafa pada tahun 1996 sampai 2002. Kemudian melanjutkan

pendidikan menengah di SMP Negeri 9 Kupang pada tahun 2002 sampai 2005. Dan kemudian melanjutkan pendidikan sekolah menengah atas di SMK Negeri 2 Kupang, Jurusan Teknik Elektronika Komonikasi pada tahun 2005 sampai 2008. Dan kemudian melanjutkan pendidikan S1 jurusan Teknik mesin dengan bidang keilmuan konversi energi pada kampus Negeri Universitas Nusa Cendana pada tahun 2008 sampai 2014. Pada tahun 2017 dengan program beasiswa dari pemerintah penulis melanjutkan studi S2 pada kampus ITS (Institut Teknologi Supuluh Nopember) dan mengambil bidang keilmuan Teknik mesin, peminatan rekayasa konversi energi, Penulis angkatan 2017 (RKE) dengan NRP 02111750020010. Untuk informasi dan saran serta kepentingan penelitian, Penulis dapat dihubungi melalui email : even.neno@gmail.com.