Pengembangan Metode Operasional Thruster Kapal Dynamic Positioning Dengan Sistem Kelistrikan Closed Bus

Sarwito, Sardono (2020) Pengembangan Metode Operasional Thruster Kapal Dynamic Positioning Dengan Sistem Kelistrikan Closed Bus. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 04111760010020-Disertation.pdf] Text
04111760010020-Disertation.pdf - Accepted Version
Restricted to Repository staff only

Download (7MB) | Request a copy

Abstract

Sistem kelistrikan kapal saat mode operasi Dynamic Positioning System (DPS), umumnya beroperasi dengan konfigurasi open/splitted bus. Hal ini dilakukan dalam rangka memaksimalkan redundansi kapal. International Convention for the Prevention of Pollution from Ships (MARPOL) mengamanatkan diperlukannya regulasi operasi kapal diwaktu mode DPS dengan konfigurasi closed bus dalam rangka meningkatkan kualitas operasi kapal dan meningkatkan efisiensi kinerja kapal.
Oleh karena itu, riset ini diperuntukkan untuk menginvestigasi rasionalitas operasi DPS dengan konfigurasi closed bus, yang mana tentunya menjadi tantangan baru. Mengingat, meski DPS dengan konfigurasi closed bus menguntungkan dari segi kualitas pengoperasian elektris kapal, namun mengundang spekulasi kegagalan komponen sistem kelistrikan kapal, yang apabila terjadi, dampak yang ditimbulkan lebih merugikan dibandingkan dengan operasi DPS dengan konfigurasi open bus.
Adapun kontribusi disertasi ini adalah studi mendalam tentang pengoperasian DPS dengan sistem kelistrikan closed bus dan pengembangan strategi untuk mengatasi masalah yang dimungkinkan muncul dari jenis pengoperasian ini.
Metode yang diterapkan dalam riset ini adalah dengan melakukan uji simulasi dan uji lab pada system kelistrikan kapal AHTS dengan system kelistrikan closed bus, dengan uji gangguan sbb: transient response, under voltage fault, harmonisa, short circuit fault dan analisa load flow.
Adapun hasil riset ini menghasilkan output sebagai berikut: Hasil uji simulasi dan uji experiment membuktikan bahwa gangguan transient response pada DPS dengan konfiguasi closed bus dapat dimungkinkan terjadi dan melewati batas aman ganggun transient sistem kelistrikan kapal. Adapun gangguan ini bisa diatasi dengan menambahkan kapasitor berikut setting dan ukuran yang benar. kondisi gangguan yang yang melewati standar rule adalah pada scenario 3 (supply 1 generator thruster beban 2 Bow thruster) dan scenario 6 (supplay 1 GT dan 2 DG bebannya 2 BT dan semua beban kapal) selanjutnya dengan uji experiment dilab terbukti bahwa dengan menambahkan kapasitor14 mikro farad maka gangguan tegangan transient 30 % yang melewati standar ini bisa diatasi Hal ini menunjukkan pengoperasian DPS dengan konfiguasi closed bus dengan pemasangan kapasitor dengan benar dapat mengatasi masalah transient response
Hasil uji simulasi dan uji experiment dilab membuktikan bahwa gangguan tegangan jatuh pada DPS dengan konfiguasi closed bus dapat dimungkinkan terjadi dan melewati batas aman ganggun tegangan jatuh sistem kelistrikan kapal. Namun, pembuktian uji lab membuktikan DPS dengan konfiguasi closed bus dengan pemasangan kapasitor dengan benar dapat mengatasi masalah tegangan jatuh sistem. Hal ini dibuktikan di uji simulasi, pada scenario 3 (supplay 1 generator thruster beban 2 Bow thruster) dan scenario 6 (supplay 1 GT dan 2 DG bebannya 2 BT dan semua beban kapal). Hal ini juga dibuktikan dengan uji experiment dilab juga. Adapun dari hasil uji lab dan simulasi, terbukti bahwa dengan menambahkan kapasitor maka gangguan yang melewati standar ini bisa dikurangi. Artinya pembuktian uji lab membuktikan DPS dengan konfiguasi closed bus dengan gangguan drop voltage , skenario 6 pada nilai 5,65% untuk BT1 dan 5,28% untuk BT2 diturunkan dg kapasitor 703 KVAR atau 12.998,04 mikro farad yang dipasang pada masing masing Bow Thruster menjadi 3,42% dan 3,2% Hasil uji simulasi dan uji experiment dilab membuktikan bahwa gangguan harmonisa pada DPS dengan konfiguasi closed bus dapat dimungkinkan terjadi dan melewati batas aman ganggun harmonisa sistem kelistrikan kapal. Namun, dengan menambahkan filter harmonic pasif, hasil uji simulasi menunjukkan gangguan yang melewati standar tersebut ini bisa diatasi. Hal yg sama terjadi saat uji experiment di lab. untuk menurunkan harmonisa 5 dipasang kapasitor untuk dg spesifikasi 107 KVAR, 1970 mF dan inductor 0,0698 H, sedangkan untuk harmonisa 7 dg kapasitor 107 KVAR , 1970 mF dan inductor 0.0357 H , Hasil uji simulasi dan uji experiment dilab membuktikan bahwa gangguan harmonisa pada DPS dengan konfiguasi closed bus dimungkinkan terjadi dan melewati batas aman ganggun harmonisa sistem kelistrikan kapal. Namun, dengan menambahkan filter harmonic pasif, hasil uji simulasi menunjukkan gangguan yang melewati standar tersebut ini bisa diatasi. Oleh karena itu, DPS dengan konfiguasi closed bus dengan pemasangan filter harmonic pasif dengan benar dapat mengatasi masalah gangguan harmonisa.
Aliran daya DPS dengan konfigurasi closed bus dapat terjadi pula kondisi drop tegangan yang tidak memenuhi standar rule yg ada. Hal yang sama terjadi pada dan dibuktikan saat dilakukan uji experiment di lab. Dari hasil uji lab dan uji simulasi, penambahan kapasitor dengan size and setting yang benar dapat mencegah penurunan tegangan melebihi batas ambang yang diijinkan standar sistem kelistrikan kapal. Dari hasil uji simulasi, penambahan kapasitor 65,405kVAR atau 1209,442 pF dapat mencegah penurunan tegangan melebihi batas ambang dari 6,26% menjadi 3,39 % yang diijinkan standar sistem kelistrikan kapal. Short circuit pada DPS dengan konfigurasi closed bus dapat membahayakan sistem dan memungkinkan gangguan tersebut melebihi standar rule maximum short circuit yang ada. Hal ini dibuktikan pada uji simulasi dan uji lab. Adapun solusi dari permasalahn ini adalah dengan dengan memperbaiki isolasi, misal penggantian kabel yang mana maka gangguan yang melewati standar ini dapat dicegah. Hal ini dibuktikan pada uji simulasi pada scenario 6, dimana sistem dilengkapi dengan 1 generator thruster dan 2 demand generator berbeban 2 bow thruster (60 % BTdan semua beban kapal), yang mana saat terjadi arus short circuit, gangguan tersebut melebihi standar maximum short circuit yang mana dapat merusak system isolasi yang ada. Dari uji lab dan uji simulasi dilakukan penurunannya dg cara mengoperasikan bow thruster pada pembebanan maximal 60 % sehingga arus hubung singkat maximal 8,82 KA masih dibawah standar arus hubung singkat 9 KA maka gangguan yang melewati standar ini dapat dicegah.Secara umum dapat dikatakan bahwa untuk mengoperasikan Bow Thruster kapal DPS dengnn sistem kelistrikan closed bus maka harus dengan ketentuan memenuhi syarat syarat sebagai berikut :Pertama sistem kelistrikan harus dilengkapi derngan filter pengaman harmonisa. Kedua sistem ini hanya boleh dioperasikan pada skenario 1, 2, 4, 5 dan skenario 7. ( scenario dapat dilihat pada table 4.1.)
Kata Kunci : closed bus, dynamic positioning, fault-ride-through, harmonisa, load flow analysis.

=========================================================

The ship's electrical system during the Dynamic Positioning System (DPS) operating mode, generally operates with an open / splitted bus configuration. This was done in order to maximize ship redundancy. The International Convention for the Prevention of Pollution from Ships (MARPOL) mandates the need for regulation of vessel operations during DPS mode with closed bus configurations in order to improve the quality of ship operations and improve the efficiency of ship performance.
Therefore, this research is intended to investigate the rationality of DPS operations with the closed bus configuration, which is certainly a new challenge. Considering, although DPS with closed bus configuration is advantageous in terms of the quality of the ship's electrical operation, it invites speculation on the failure of the ship's electrical system components, which if it occurs, the impact will be more detrimental compared to DPS operations with open bus configuration.
The contribution of the dissertation is an in-depth study of the operation of DPS with a closed bus electrical system and the development of strategies to overcome the problems that might arise from this type of operation.
The method applied in this research is to do a simulation test and lab test on the AHTS ship electrical system with a closed bus electrical system, with the following disturbance tests: transient response, voltage disturbance, harmonics, short circuit fault and load flow analysis.
The results of this research produce the following output:
The results of simulation tests and experimental tests prove that the transient response disturbance in DPS with closed bus configuation can be possible and exceed the safe limits of the transient electrical system of the ship. The interference can be overcome by adding the following capacitors and the correct size and settings. disturbance conditions that pass the standard rule are in scenario 3 (supply 1 generator thruster load 2 Bow thruster) and scenario 6 (supplay 1 GT and 2 DG load 2 BT and all ship loads) subsequently with the dilab experiment test it is proven that by adding micro capacitors14 farad, then the 30% transient voltage disturbance that passes this standard can be overcome. This shows the operation of DPS with closed bus configuration by properly installing capacitors can overcome transient response problems.
The results of the simulation test and the dilab experiment test prove that the disturbance of the voltage drop on the DPS with the closed bus configuration can be possible and exceed the safe limit of the voltage drop in the ship's electrical system. However, the proof of lab test proves that DPS with closed bus configuration with the correct installation of capacitors can overcome the problem of system voltage drop. This was proven in the simulation test, in scenario 3 (supply 1 generator thruster load 2 Bow thruster) and scenario 6 (supply 1 GT and 2 DG load 2 BT and all ship loads). This is also evidenced by the Lab test experiment as well. As for the results of lab tests and simulations, it is evident that by adding capacitors the interference passing through this standard can be reduced. This means that proof of lab test proves that DPS with closed bus configuration with a drop voltage disturbance, scenario 6 at 5.65% for BT1 and 5.28% for BT2 is reduced by a 703 KVAR capacitor or 12,998.04 micro farads mounted on each Bow Thruster to 3.42% and 3.2%
The results of the simulation test and the dilab experiment test prove that harmonic disturbance on DPS with closed bus configuation can be possible and exceed the safe limits of the ship's electrical system harmonics. However, by adding a passive harmonic filter, the simulation test results show that interference that passes through these standards can be overcome. The same thing happened when testing experiments in the lab. to reduce harmonics 5 installed capacitors for the specifications of 107 KVAR, 1970 mF and inductor 0.0698 H, while for harmonics 7 with capacitors 107 KVAR, 1970 mF and inductor 0.0357 H, the results of simulation tests and experimental tests prove that harmonic interference in DPS with closed bus configuration, it is possible to occur and cross the safe limits of the ship's electrical system harmonics. However, by adding a passive harmonic filter, the simulation test results show that interference that passes through these standards can be overcome. Therefore, DPS with closed bus configuration with passive harmonic filter installation can correctly overcome the harmonic interference problem.
DPS power flow with closed bus configuration can also occur voltage drop conditions that do not meet the existing rule standards. The same thing happened to and proven when an experimental test was conducted in the lab. From the results of lab tests and simulation tests, the addition of capacitors with the correct size and setting can prevent the voltage drop from exceeding the allowable threshold of the ship's electrical system standards. From the simulation test results, the addition of 65,405kVAR or 1209,442 pF capacitors can prevent the voltage drop from exceeding the threshold from 6.26% to 3.39% which is allowed by the ship's electrical system standard.
Short circuits in DPS with closed bus configurations can endanger the system and allow the disturbance to exceed the existing maximum short circuit rules. This is evidenced in the simulation test and lab test. The solution to this problem is to improve insulation, for example cable replacement where interference passing through this standard can be prevented. This is proven in the simulation test in scenario 6, where the system is equipped with 1 thruster generator and 2 demand generators with 2 bow thruster loads (60% BT and all ship loads), which when short circuit currents occur, the interference exceeds the maximum short circuit standard which can damage the existing isolation system. From the lab test and simulation test the reduction is done by operating the bow thruster at a maximum load of 60% so that the maximum shortcircuit current of 8.82 KA is still below the 9-rail short-circuit current standard, so interference that passes through this standard can be prevented.
In general, it can be said that to operate a Bow Thruster DPS vessel with a closed bus electrical system, it must comply with the following conditions: First, the electrical system must be equipped with a harmonic safety filter. Both of these systems should only be operated in scenarios 1, 2, 4, 5 and scenario 7. (the scenario can be seen in table 4.1.).

Keyword : closed bus, dynamic positioning, fault-ride-through, harmonics, load flow analysis.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: Kata Kunci : closed bus, dynamic positioning, fault-ride-through, harmonisa, load flow analysis. Keyword : closed bus, dynamic positioning, fault-ride-through, harmonics, load flow analysis.
Subjects: V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > Marine gas-turbines
V Naval Science > VK
V Naval Science > VK > VK200 Merchant marine--Safety measures
V Naval Science > VK > VK358 Marine terminals
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM731 Marine Engines
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM740 Marine turbines
Divisions: Faculty of Marine Technology (MARTECH) > Ocean Engineering > 38001-(S3) PhD Thesis
Depositing User: Sardono Sarwito
Date Deposited: 29 Aug 2020 03:51
Last Modified: 29 Aug 2020 03:51
URI: http://repository.its.ac.id/id/eprint/81522

Actions (login required)

View Item View Item