Nurkholis, Habib (2023) Sistem Pendaratan Otomatis Quadcopter dengan Front-Faced Camera Berbasis Smart Vision. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
07111940000143-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 3 October 2025. Download (2MB) | Request a copy |
Abstract
Pada beberapa dekade terakhir kendaraan udara tanpa awak (Unmanned Aerial Vehicle) berkembang dengan sangat pesat. Implementasi UAV dapat diamati baik di bidang militer seperti pengintaian, maupun bidang sipil seperti pengiriman barang, pemetaan, dan fotografi. Quadcopter merupakan salah satu jenis UAV yang memiliki empat buah baling-baling sebagai penggerak. Quadcopter bergerak dengan memanfaatkan gaya angkat (thrust) yang didapatkan dari perputaran keempat motornya yang dapat dikendalikan dari jarak jauh serta dapat terbang secara autonomous. Agar dapat terbang secara autonomous diperlukan sistem navigasi yang presisi dengan memanfaatkan sensor-sensor pada quadcopter seperti Global Positioning System (GPS), Inertial Measurement Unit (IMU), Inertial Navigation System (INS), dan Camera Vision. Quadcopter yang berada di pasaran umumnya hanya memiliki beberapa sensor saja sehingga dibutuhkan sistem localization yang baik. Penelitian tugas akhir ini berhasil melakukan implementasi sistem pendaratan otomatis pada quadcopter yang hanya menggunakan kamera depan (Front-faced Camera) dan IMU sebagai navigasi utama. Pengujian dilakukan dengan menempatkan quadcopter dalam keadaan terbang pada ruang uji untuk selanjutnya diharapkan quadcopter dapat terbang dan mendarat pada helipad yang telah ditentukan. Algoritma Smart Vision dapat digunakan untuk memandu quadcopter melakukan pendaratan otomatis. Metode ini terdiri dari rancangan algoritma normalisasi gambar, algoritma deteksi dengan Augmented Reality, algoritma filtering, dan estimasi pose quadcopter. Selain itu digunakan juga complementary filter untuk mengestimasi lokasi helipad dengan nilai α_KH yang memiliki error RMSE pendaratan terkecil bernilai 0.9.
=============================================================================================================================
For the last decades Unmanned Aerial Vehicles (UAV) has been undergone massive development. The Implementation of UAV ranging from military purposes such as reconnaisance and surveilance to civil purposes such as package delivery, mapping, and photography. Quadcopter is one kind of UAV that have four rotary wing to generate required thrust to fly remotely and automatically. In order to fly autonomously the precise navigation system required to effectively use quadcopter sensors such as Global Positioning System (GPS), Inertial Measurement Unit (IMU), Inertial Navigation System (INS), and Camera Vision. Good localization system also required such mannufactured quadcopter usually having only few sensors. In this thesis the implementation of autonomous landing only based on the front-faced built-in camera and IMU as the main navigations. Testing is being carried by placing the quadcopter in a flying condition in a test area with the aim of having the quadcopter fly and land on a predetermined helipad. The Smart Vision algorithm can be used to guide the quadcopter in performing automatic landing. This method consists of designing a image normalization algorithm, detection algorithm with Augmented Reality, filtering algorithm and quadcopter pose estimation. Additionally, a complementary filter is also used to estimate the helipad's location using α_KH value that results in the smallest RMSE landing error, which is 0.9.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Autonomous Landing, Quadcopter, Localization, Smart Vision |
Subjects: | T Technology > TJ Mechanical engineering and machinery > TJ211 Robotics. T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL776 .N67 Quadrotor helicopters--Automatic control U Military Science > UG1242 Drone aircraft--Control systems. (unmanned vehicle) |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis |
Depositing User: | Habib Nurkholis |
Date Deposited: | 02 Aug 2023 03:06 |
Last Modified: | 02 Aug 2023 03:06 |
URI: | http://repository.its.ac.id/id/eprint/100109 |
Actions (login required)
View Item |