Simulasi Sistem Kendali PID pada 3-RPS Parallel Manipulator sebagai Alat Rehabilitasi Tumit

Muliono, Harvin (2023) Simulasi Sistem Kendali PID pada 3-RPS Parallel Manipulator sebagai Alat Rehabilitasi Tumit. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111940000128-Undergraduate_Thesis (2).pdf] Text
02111940000128-Undergraduate_Thesis (2).pdf - Accepted Version
Restricted to Repository staff only until 1 September 2025.

Download (8MB) | Request a copy

Abstract

3-RPS parallel manipulator sebagai alat rehabilitasi tumit merupakan alternatif pengobatan modern di bidang biomedik. Pengembangan ini dapat meningkatkan efektivitas proses rehabilitasi karena dilakukan secara otomatis dan bertahap. Simulasi model 3-RPS parallel manipulator dilakukan untuk memperoleh desain trajectory moving platform, desain kontrol PID, serta respon kinematik dan dinamik dari aktuator. Analisis dan pendekatan simulasi tidak terbatas pada pre-programmed pose tetapi juga analisis kinematik yang mendefinisikan variabel posisi dan kecepatan serta analisis dinamik yang mendefinisikan gaya aktuasi dari aktuator. Perhitungan persamaan polinomial derajat lima yang membentuk trajectory planning dilakukan untuk mendefinisikan alur gerak moving platform dan sudut tempuh platform (θ). Variabel pertambahan panjang tiap kaki manipulator dapat dihitung berdasarkan analisis persamaan trajectory planning. Nilai perubahan panjang kaki tiap waktu kemudian diolah melalui proses simulasi model 3D menggunakan sistem kendali Proportional Integral Derivative (PID). Linear motor HIWIN LAN 1-1 sebagai aktuator juga didefinisikan melalui sebuah transfer function yang mendekati cara kerja dari prototype sesungguhnya. Nilai K_P, K_I, dan K_D optimum dari PID gains untuk tiap aktuator adalah K_P=13414,2406, K_I=317573,0665, dan K_D=59,9345 berdasarkan simulasi dan tuning yang telah dilakukan. Interval gaya aktuasi yang diperlukan untuk menggerakkan moving platform agar mengikuti trajectory planning adalah (4,3〖≤F〗_act≤5,2) N.
==================================================================================================================================
3-RPS parallel manipulator as an ankle rehabilitation tool is an alternative to modern medicine in the biomedical field. This development can increase the effectiveness of the rehabilitation process because it is carried out automatically and in stages. In this study, simulation on 3-RPS parallel manipulator model were carried out to obtain the trajectory design of moving platform, PID control design, and the kinematic-dynamic responses of the actuators. Analysis and simulation approaches are not limited to pre-programmed poses but also kinematic analysis which defines the position and velocity variables as well as dynamic analysis which defines the actuation force of the actuator. The calculation of the fifth-degree polynomial equation that forms the trajectory planning is carried out to define the moving platform motion path and the platform angle (θ). The length increment of each manipulator's leg can be calculated based on the analysis of the trajectory planning equation. The value of the leg length increments every unit of time is then processed through a 3D model simulation process using the Proportional Integral Derivative (PID) control system. The HIWIN LAN 1-1 linear motor as an actuator is also defined through a transfer function which is close to how the prototype works. The optimum K_P, K_I, and K_D values of the PID gains for each actuator are K_P=1,587, K_I=5,317, and K_D=2,233 based on the simulation and tuning result. Meanwhile, the range of actuation force required to move the moving platform following the trajectory planning is (4,3〖≤F〗_act≤5,2) N.

Item Type: Thesis (Other)
Uncontrolled Keywords: 3-RPS parallel manipulator, ankle rehabilitation, linear motor, PID, trajectory planning; 3-RPS parallel manipulator, linear motor, PID, rehabilitasi tumit, trajectory planning
Subjects: R Medicine > RM Therapeutics. Pharmacology > RM950 Rehabilitation technology.
T Technology > TJ Mechanical engineering and machinery > TJ211 Robotics.
T Technology > TJ Mechanical engineering and machinery > TJ211.4 Robot motion
T Technology > TJ Mechanical engineering and machinery > TJ223 PID controllers
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Harvin Muliono
Date Deposited: 05 Sep 2023 03:28
Last Modified: 05 Sep 2023 03:28
URI: http://repository.its.ac.id/id/eprint/103500

Actions (login required)

View Item View Item