Ashari, Achmad Fauqy (2014) Model Bayesian Network Untuk Menganalisis Faktor-Faktor Penyebab Non-Technical Losses Pada Distribusi Energi Listrik. Masters thesis, Insititut Teknologi Sepuluh Nopember.
Text
5111202911-Master_Thesis.pdf Download (7MB) |
Abstract
Tenaga listrik merupakan salah satu faktor penentu untuk mencapai sasaran pembangunan nasional dan penggerak roda perekonomian negara. Pada kenyataannya, perkembangan infrastruktur ketenagalistrikan yang terns meningk:at setiap tahunnya masih belum mampu mencukupi kebutuhan energi listrik dalam negeri. Tingginya pertumbuhan pennintaan tenaga listrik yang tidak seimbang dengan pertumbuhan penyediaan tenaga listrik telah menyebabkan timbulnya kondisi krisis penyediaan tenaga listrik di beberapa daerah. Sehubungan dengan pennasalahan tersebut, maka salah satu cara memenuhi kebutuhan akan tenaga listrik adalah dengan menekan losses serendah mungk:in, sehingga dapat meningk:atkan pasokan energi listrik. Losses merupakan energi listrik yang hilang selama proses transmisi hingga distribusi energi listrik. Losses dapat terj adi akibat masalah teknis (technical losses) dan non-teknis (non-technical losses). Non- technical losses (NTL) berkebalikan dengan technical-losses (TL) yang pasti terjadi. Oleh karenanya melalui penanganan yang tepat terhadap NTL dapat meminimalisasi atau bahkan mencegahnya. Untuk dapat menangani pennasalahan NTL pada bagian distribusi energi listrik, maka perlu adanya suatu model yang dapat menggambarkan akar pennasalahan, faktor-faktor penyebab, serta pola yang terjadi terkait dengan NTL. Penelitian ini menghasilkan model bayesian network (BN) yang reliabel dan valid yang menggambarkan faktor-faktor terkait NTL khususnya untuk kategori electricity theft dan error in accounting. Berdasarkan data serta hasil survey terhadap 30 orang terkait NTL dengan mengartikulasi tacit knowledge mereka ke dalam sebuah model BN. Studi ini menghasilkan kesimpulan bahwa berdasarkan model BN, penanganan yang paling tepat dalam mengantisipasi electricity theft adalah digital metering, pengelolaan KWh Meter dan P2TL. Sedangk:an penanganan yang paling tepat untuk mengantisipasi faktor error in accounting yang meliputi kesalahan pembacaan, pencatatan, dan input data, adalah digital metering. Lebih lanjut, faktor yang paling berpengaruh terhadap faktor electricity theft adalah faktor certain event, sementara faktor yang paling berpengaruh terhadap faktor error in accounting adalah technical factors.
=============================================================================================================================
Electricity is one of the determining factors for achieving national development goals and economy. In fact, the development of electricity infrastructure that is increased annually are still not able to meet the electrical energy needs of the country. The high growth in electricity demand that can not be offset by growth in electricity supply has led to the emergence of a crisis condition of power supply in several areas. Related with those problems, so one way to be able to meet the demand for electric power is by pressing the losses as low as possible, so as to increase the supply of electrical energy. Losses can be incurred in the form of electrical energy that is lost during the transmission and distribution of electrical energy. Losses may occur due to technical problems (technical losses) and non-technical (non-technical losses). Non- technical losses (NTL) in contrast to the technical-losses (TL) which exactly occurs. So that NTL is not only can be minimized, but also can be prevented through proper handling or control. To handle the problems NTL in the distribution of electricity, it is needed a model that can describe the root of the problem, the causing factors, and the pattern associated with NTL as well. This study resulted in a model of Bayesian network (BN) which reliable and valid describe factors related to the NTL especially electricity theft and errors in accounting. Based on the data and survey result of 30 respondents related with NTL by articulating their tacit knowledge into BN model. This study resulted the conclusion that the most appropriate controls to anticipate electricity theft are digital metering, recording meter management and routine supervision. While the most appropriate control to anticipate error in accounting that includes error reading, recording, and data input, is digital metering. Furthermore, the factors that most influence the NTL of electricity theft category is event certain factor, while the factors that most influence the NTL of error in accounting category is a te chnical factors.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTIf 621.312 4 Ash m |
Uncontrolled Keywords: | Distribusi Energi Listrik, Non-Technical Losses, Electricity Theft, Error in Accounting, Model Bayesian Network |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3226 Transients (Electricity). Electric power systems. Harmonics (Electric waves). |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55101-(S2) Master Thesis |
Depositing User: | Mr. Marsudiyana - |
Date Deposited: | 06 Nov 2023 06:36 |
Last Modified: | 06 Nov 2023 06:36 |
URI: | http://repository.its.ac.id/id/eprint/105067 |
Actions (login required)
View Item |