Studi Eksperimental Pengaruh Pengaplikasian Variasi Material Filller dan Nilai Ketebalan pada Phase Change Material Komposit dengan Rasio 0.3 terhadap Peningkatan Temperatur pada Permukaan Baterai Lithium Ion selama Proses Discharging

Siregar, Michael JP (2024) Studi Eksperimental Pengaruh Pengaplikasian Variasi Material Filller dan Nilai Ketebalan pada Phase Change Material Komposit dengan Rasio 0.3 terhadap Peningkatan Temperatur pada Permukaan Baterai Lithium Ion selama Proses Discharging. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007201239-Undergraduate_Thesis.pdf] Text
5007201239-Undergraduate_Thesis.pdf

Download (7MB)

Abstract

Pengoperasian baterai lithium ion memerlukan pemeliharaan suhu yang tepat, idealnya antara 30°C - 50°C. Suhu operasional ini penting untuk memastikan efisiensi, kapasitas, dan umur baterai yang panjang. Namun, baterai lithium ion memiliki kelemahan yaitu sensitif terhadap panas. Suhu yang berlebihan dapat menyebabkan kerusakan internal dan berpotensi memicu thermal runaway. Thermal runaway merupakan fenomena di mana peningkatan suhu yang berlebihan dapat berujung pada kegagalan baterai. Karena itu, pengembangan sistem manajemen termal baterai yang efektif menjadi sangat penting. Penggunaan PCM sebagai metode pendinginan baterai muncul sebagai suatu solusi. PCM dapat menyimpan dan melepaskan energi panas saat mengalami perubahan fase (kalor laten), membuatnya ideal untuk manajemen termal baterai. Namun, PCM juga mempunyai kelemahan, yaitu konduktivitas termal yang rendah. Untuk mengatasi kelemahan ini, diperlukan penambahan material filler berkonduktivitas tinggi seperti serbuk silika, aluminium, grafit, dan tembaga untuk meningkatkan performa termal PCM. Pada penelitian tugas akhir ini dilakukan variasi penambahan material filler dan variasi ketebalan PCM dengan perbandingan komposisi paraffin wax dengan material filler sebesar 0,3. Variasi material filler terdiri dari empat material yang berbeda yaitu serbuk grafit, aluminium, silika, dan tembaga. Variasi ketebalan PCM terdiri dari 3 mm, 6 mm, dan 9 mm. Pengujian akan dilakukan secara discharging dengan 3 tingkat C-rate, yaitu 1C, 2C, dan 3C. Hasil penelitian menunjukkan bahwa sistem pendinginan PCM, baik murni maupun komposit, efektif dalam menjaga temperatur permukaan baterai. Terjadi penurunan temperatur maksimal rata-rata sebesar 14.17 % pada sistem PCM material filler silika dan 12.68 % pada PCM murni terhadap sistem natural convection. PCM komposit dengan material filler grafit menunjukkan performa pendinginan terbaik diikuti oleh aluminium, tembaga, dan silika. Performa PCM komposit berbanding lurus dengan konduktivitas PCM komposit nya, sehingga menghasilkan thermal diffusity yang lebih tinggi, dan memungkinkan transfer panas dari modul baterai yang lebih cepat. PCM material filler grafit mengalami penurunan temperatur maksimal rata - rata sebesar 2.7 % terhadap material filler aluminium, 5.64 % terhadap material filler tembaga dan 9 % terhadap material filler silika. Semakin tebal PCM komposit, maka peningkatan temperatur pada permukaan baterai juga semakin rendah. Hal ini sesuai dengan teori bahwa dengan ketebalan yang lebih tinggi dapat meningkatkan massa PCM, sehingga dapat menurunkan laju perubahan temperatur dengan nilai kalor sensible dan specific heat yang tetap. PCM ketebalan 9 mm menunjukkan performa terbaik dalam menurunkan peningkatan temperatur, diikuti oleh 6 mm, dan 3 mm. PCM ketebalan 9 mm mengalami penurunan temperatur maksimal rata-rata sebesar 1.11 % terhadap 6 mm dan 2.91 % terhadap 3 mm. Sistem pendinginan yang mempunyai performa yang terbaik untuk setiap discharging rate adalah PCM material filler grafit ketebalan 9 mm, dengan temperatur maksimal di 1C sebesar 35.75°C, di 2C sebesar 40.95°C, dan di 3C sebesar 45.45°C.
========================================================================================================================
The operation of lithium ion batteries requires maintaining in the proper temperatures, ideally between 30°C - 50°C. This operating temperature is important to ensure the efficiency, capacity, and long life of the battery. However, lithium ion batteries have the disadvantage that they are sensitive to heat. Excessive temperatures can cause internal damage and potentially trigger thermal runaway. Thermal runaway is a phenomenon where excessive temperature increases can lead to battery failure. Therefore, the development of an effective battery thermal management system is very important. The use of PCM as a battery cooling method appears as a solution. PCM can store and release heat energy when undergoing phase changes (latent heat), making it ideal for battery thermal management. However, PCM also has a weakness that they are low in thermal conductivity. To overcome this weakness, it is necessary to add high-conductivity filler materials such as silica, aluminum, graphite, and copper powders to improve the thermal performance of the PCM. In this final project research, variations in the addition of filler materials and variations in the thickness of the PCM were carried out with a ratio of paraffin wax composition to filler material of 0.3. The filler material variations consist of four different materials, which are graphite, aluminum, silica, and copper powders. The PCM thickness variations consist of 3 mm, 6 mm, and 9 mm. The test will be carried out by discharging with 3 levels of C-rate, which are 1C, 2C, and 3C. The research showed that the PCM cooling system, both pure and composite, is effective in maintaining the battery surface temperature. There was an average maximum temperature decrease of 14.17 % in the silica filler PCM system and 12.68 % in the pure PCM against the natural convection system. Composite PCM with graphite filler material showed the best cooling performance followed by aluminum, copper, and silica. The performance of the composite PCM is directly proportional to the conductivity of the composite PCM, resulting in higher thermal diffusivity, and allowing faster heat transfer from the battery module. The graphite filler PCM material experienced an average maximum temperature decrease of 2.7 % against the aluminum filler material, 5.64 % against the copper filler material and 9 % against the silica filler material. The thicker the composite PCM, the lower the temperature increase on the battery surface. This is in accordance with the theory that with a higher thickness can increase the mass of the PCM, so that it can reduce the rate of temperature change with constant sensible heat and specific heat values. PCM with a thickness of 9 mm showed the best performance in reducing the increase in temperature, followed by 6 mm, and 3 mm. PCM with a thickness of 9 mm experienced an average maximum temperature decrease of 1.11 % against 6 mm and 2.91 % against 3 mm. The cooling system that has the best performance for each discharging rate is PCM with a graphite filler material with a thickness of 9 mm, with a maximum temperature at 1C of 35.75°C, at 2C of 40.95°C, and at 3C of 45.45°C.

Item Type: Thesis (Other)
Uncontrolled Keywords: Material Filler, Lithium – ion, Phase Change Material, Material Filler, Lithium – ion, Phase Change Material.
Subjects: T Technology > T Technology (General) > T57.62 Simulation
T Technology > TJ Mechanical engineering and machinery
T Technology > TJ Mechanical engineering and machinery > TJ263 Heat exchangers
T Technology > TJ Mechanical engineering and machinery > TJ265.E23 Thermodynamics.
T Technology > TJ Mechanical engineering and machinery > TJ808 Renewable energy sources. Energy harvesting.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2921 Lithium cells.
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL220 Electric vehicles and their batteries, etc.
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Michael JP Siregar
Date Deposited: 09 Aug 2024 07:59
Last Modified: 09 Aug 2024 07:59
URI: http://repository.its.ac.id/id/eprint/113686

Actions (login required)

View Item View Item