Studi Eksperimental Pengaruh Penambahan Material Filler Serbuk Silika Rasio 0.35 dan 0.4 pada Phase Change Material Komposit dengan Ketebalan 3 mm, 6 mm, dan 9 mm saat Proses Discharging

Hadi, M. Daffa Nur Rohman (2024) Studi Eksperimental Pengaruh Penambahan Material Filler Serbuk Silika Rasio 0.35 dan 0.4 pada Phase Change Material Komposit dengan Ketebalan 3 mm, 6 mm, dan 9 mm saat Proses Discharging. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007201192-Undergraduate_Thesis.pdf] Text
5007201192-Undergraduate_Thesis.pdf

Download (7MB)

Abstract

Baterai litium-ion merupakan salah satu alternatif dalam penyimpanan energi untuk mengurangi ketergantungan atas cadangan energi yang semakin hari semakin menipis. Namun, pengoperasian baterai yang berada di luar suhu operasi yang optimal akan menyebabkan overheating pada baterai. Kenaikan temperatur pada baterai litium-ion dapat menyebabkan peningkatan kinerja hingga menimbulkan risiko berbahaya sehingga dibutuhkan sistem manajemen termal pada baterai untuk mengatasi masalah tersebut. Salah satu metode dalam sistem manajemen termal pada baterai (BTMS) yaitu menggunakan PCM (Phase Change Material). Salah satu teknik untuk meningkatkan transfer panas pada PCM adalah dengan menambahkan material filler dengan konduktivitas termal yang cukup tinggi untuk membentuk PCM komposit. Sehingga pada penelitian tugas akhir ini, penulis akan menganalisis tentang pengaruh variasi rasio filler serbuk silika pada PCM komposit terhadap peningkatan temperatur pada permukaan baterai litium-ion. Pada penelitian tugas akhir ini, variasi rasio material filler serbuk silika dan komposisi paraffin wax yang digunakan adalah natural convection, PCM murni, PCM komposit dengan rasio 0.35 dan 0.4. Selanjutnya untuk variasi ketebalan PCM komposit terdapat ketebalan 3 mm, 6 mm, dan 9 mm. Berdasarkan hasil eksperimen yang telah dilakukan, didapatkan pemilihan paraffin wax dan serbuk silika dengan rasio 0.4 dan ketebalan 9 mm mampu mendinginkan baterai litium-ion pada discharging 1C hingga 5C lebih baik dibandingkan dengan variasi PCM komposit lainnya, yaitu mampu meredam temperatur sebesar 5.575oC dari temperatur maksimal pada natural convection pada discharging 1C dan mampu meredam temperatur sebesar 12.475oC dari temperatur maksimal pada natural convection pada discharging 2C. Kemudian, mampu meredam temperatur sebesar 22.425oC dari temperatur maksimal pada natural convection pada discharging 3C serta pada discharging 4C mampu meredam temperatur sebesar 28.275oC dari temperatur maksimal pada natural konveksi. Begitu juga pada discharging 5C mampu meredam temperatur sebesar 34.358oC dari temperatur maksimal pada natural convection. Sehingga pemilihan PCM komposit serbuk silika dengan rasio 0.4 merupakan metode efektif untuk meningkatkan kinerja PCM komposit dalam menurunkan temperatur permukaan baterai. Kenaikan temperatur paling rendah pada setiap variasi ketebalan dan discharging rate adalah variasi ketebalan 9 mm, yang berarti bahwa ketebalan 9 mm merupakan ketebalan dengan tingkat kelelehan yang paling rendah dan paling aman apabila penelitian dilakukan pada C-rate 1C – 5C.
========================================================================================================================
Litium-ion batteries are one of the alternatives in energy storage to reduce dependence on energy reserves that are depleting day by day. However, operating the battery beyond the optimal operating temperature will cause overheating of the battery. The increase in temperature in litium-ion batteries can cause a decrease in performance to pose a dangerous risk so that a thermal management system is needed on the battery to solve the problem. One method in the battery thermal management system (BTMS) is using PCM (Phase Change Material). One technique to improve heat transfer in PCM is to add filler material with high enough thermal conductivity to form a composite PCM. So in this final project research, the author will analyse the effect of variations in the ratio of silica powder filler in composite PCM on the increase in temperature on the surface of litium-ion batteries. In this final project research, variations in the ratio of silica powder filler material and paraffin wax composition used are natural convection, Pure PCM, composite PCM with a ratio of 0.35 and 0.4. Furthermore, for the variation of composite PCM thickness, there are thicknesses of 3 mm, 6 mm, and 9 mm. Based on the experimental results that have been carried out, it is found that the selection of paraffin wax and silica powder with a ratio of 0.4 and a thickness of 9 mm is able to cool the litium-ion battery at 1C to 5C discharging better than other variations of composite PCM, which is able to reduce the temperature by 5.575oC from the maximum temperature in natural convection at 1C discharging and able to reduce the temperature by 12.475oC from the maximum temperature in natural convection at 2C discharging. Then, it is able to reduce the temperature by 22.425oC from the maximum temperature in natural convection at 3C discharging and at 4C discharging it is able to reduce the temperature by 28.275oC from the maximum temperature in natural convection. Likewise, discharging 5C is able to reduce the temperature by 34.358oC from the maximum temperature in natural convection. So that the selection of silica powder composite PCM with a ratio of 0.4 is an effective method to improve the performance of composite PCM in reducing battery surface temperature. The lowest temperature increase in each thickness variation and discharging rate is the 9 mm thickness variation, which means that the 9 mm thickness is the thickness with the lowest and safest melting rate when the research is conducted at a C-rate of 1C - 5C.

Item Type: Thesis (Other)
Uncontrolled Keywords: Baterai Litium–Ion, Heat Generation, PCM, Serbuk Silika, Litium–Ion Battery, Heat Generation, PCM, Silica Powder
Subjects: T Technology > T Technology (General) > T57.62 Simulation
T Technology > TJ Mechanical engineering and machinery
T Technology > TJ Mechanical engineering and machinery > TJ165 Energy storage.
T Technology > TJ Mechanical engineering and machinery > TJ263 Heat exchangers
T Technology > TJ Mechanical engineering and machinery > TJ265.E23 Thermodynamics.
T Technology > TJ Mechanical engineering and machinery > TJ808 Renewable energy sources. Energy harvesting.
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: M. Daffa Nur Rohman Hadi
Date Deposited: 09 Aug 2024 08:47
Last Modified: 09 Aug 2024 08:47
URI: http://repository.its.ac.id/id/eprint/114404

Actions (login required)

View Item View Item