Wulandhani, Nurlita Catur (2009) Analisa Stabilitas Model Predator-Prey Di Dalam Kemostat Dengan Fungsi Respon Umum. Other thesis, Institut Teknologi Sepuluh Nopember Surabaya.
Text
1204100054-Undergraduate_Thesis.pdf - Accepted Version Download (3MB) |
Abstract
Ruang pertumbuhan dalam kemostat memungkinkan terjadinya interaksi mangsa-pemangsa yang bisa dimodelkan secara matematis. Dengan adanya laju perpindahan dan fungsi respon dalam model matematis yang digambarkan, maka mengakibatkan sistem tidak konservatif (tidak memenuhi hukum kekekalan energi). Sehingga untuk mengetahui stabilitas sistem, dilakukan melalui dua tahapan yaitu stabilitas lokal terlebih dahulu kemudian stabilitas global. Dalam menganalisa stabilitas lokal digunakan kriteria Routh-Hurwitz, dan stabilitas global dengan kondisi steady state yang bebas dari predator melalui konstruksi fungsi Liapunov. Analisa persistensi melengkapi analisa stabilitas yang dilakukan terhadap model interaksi mangsa pemangsa di dalam kemostat dengan fungsi respon umum, sehingga bisa diidentifikasi kesetimbangan sistem dalam keadaan sebenarnya
====================================================================================================================================
The growth space in the chemostat allows for prey-predator interactions that can be modeled mathematically. With the rate of movement and response function in the mathematical model described, it results in a non-conservative system (does not fulfill the law of conservation of energy). So to determine the stability of the system, it is done through two stages, namely local stability first and then global stability. In analyzing local stability, the Routh-Hurwitz criterion is used, and global stability with steady state conditions free from predators through the construction of the Liapunov function. Persistence analysis complements the stability analysis carried out on the predator-prey interaction model in the chemostat with a general response function, so that the equilibrium of the system in its actual state can be identified
Item Type: | Thesis (Other) |
---|---|
Additional Information: | RSMa 515.35 Wul a-1 2009 |
Uncontrolled Keywords: | kemostat, mangsa-pemangsa, stabilitas; chemostat, predator-prey, stability |
Subjects: | Q Science > QA Mathematics > QA401 Mathematical models. |
Divisions: | Faculty of Mathematics and Science > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | EKO BUDI RAHARJO |
Date Deposited: | 02 Oct 2024 01:53 |
Last Modified: | 02 Oct 2024 01:53 |
URI: | http://repository.its.ac.id/id/eprint/115721 |
Actions (login required)
View Item |