Aridiarundaya, Amruyassar (2025) Perancangan Sistem Pemetaan Gerak Traktor dengan Metode ORB-SLAM3 dan Segmentasi Grid Berbasis Penglihatan Stereo. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5009211119-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (27MB) | Request a copy |
Abstract
Penerapan teknologi traktor otonom dalam pertanian modern memerlukan sistem persepsi dan pemetaan lintasan yang andal untuk navigasi di lingkungan terbuka. Penelitian ini merancang sistem pemetaan lintasan berbasis penglihatan stereo. Sistem tersebut menggunakan kamera Intel RealSense D435i dengan metode ORB-SLAM3. Metode ini dipercepat dengan CUDA pada komponen komputasi Jetson Xavier NX. Sistem dilengkapi dengan segmentasi grid untuk membedakan antara tanah dan rintangan berdasarkan variasi ketinggian titik 3D. Proses penelitian meliputi kalibrasi kamera stereo, pengujian estimasi kedalaman, pengujian pemetaan lintasan 3D, serta pengujian klasifikasi grid. Hasil pengujian estimasi kedalaman, setelah dilakukan kalibrasi, menunjukkan nilai error di bawah 2% pada jarak 2,5–5 meter dan mempertahankan kestabilan hingga 6,5 meter. Algoritma segmentasi grid dikembangkan dan mampu membedakan permukaan tanah dan objek vertikal. Algoritma ini menimbulkan penurunan laju frame rata-rata sebesar 0,3 FPS pada sistem. Namun, algoritma segmentasi grid mampu mempertahankan error estimasi jarak rintangan di bawah 2%. Uji pemetaan pada skenario lintasan lurus dan persegi menunjukkan nilai RMSE ATE masing-masing sebesar 0,399 m dan 0,72 m, serta RMSE RPE sebesar 0,225 m dan 0,013 m. Hasil ini mengindikasikan adanya penyimpangan pada gerak rotasi traktor, sehingga diperlukan sensor tambahan.
=======================================================================================================================================
The application of autonomous tractor technology in modern agriculture demands a reliable perception and trajectory mapping system for navigation in open environments. This study designs a stereo vision-based trajectory mapping system. The system uses an Intel RealSense D435i camera with the ORB-SLAM3 method. The method accelerated with CUDA on a Jetson Xavier NX platform. The system incorporates grid segmentation to classify ground and obstacles based on variations in 3D point height. The process includes stereo camera calibration, depth estimation test, trajectory mapping test, and grid classification test. Experimental results after calibration results values of depth estimation error below 2% at 2.5–5 meters and maintains stability up to 6.5 meters. The segmentation algorithm shows a capability in identifying ground and obstacle points, with FPS drop up to 0.3. However, the algorithm maintained depth to obstacle error below 2%. Mapping tests on straight and rectangle paths yield RMSE ATE values of 0.339 m and 0.72 m, and RMSE RPE values of 0.225 m and 0.013 m, respectively. The experiment indicates that there is rotational drifts which will require additional sensor in next development.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | CUDA, ORB-SLAM3, pemetaan lintasan, penglihatan stereo, segmentasi grid CUDA, grid segmentation, ORB-SLAM3, stereo vision, trajectory mapping |
Subjects: | T Technology > TJ Mechanical engineering and machinery > TJ211 Robotics. |
Divisions: | Faculty of Industrial Technology > Physics Engineering > 30201-(S1) Undergraduate Thesis |
Depositing User: | Amruyassar Aridiarundaya |
Date Deposited: | 05 Aug 2025 12:40 |
Last Modified: | 05 Aug 2025 12:40 |
URI: | http://repository.its.ac.id/id/eprint/120302 |
Actions (login required)
![]() |
View Item |