Daniel, Daniel (2026) Analisis Pengaruh Komposisi rGO DAN Waktu Hidrotermal Terhadap Sifat Kapasitif rGO/α-MnO2/Activated Carbon Untuk Aplikasi Superkapasitor Hybrid. Masters thesis, Institut Teknologi Sepuluh Nopember.
|
Text
6011242011_Master_Thesis.pdf Download (10MB) |
Abstract
Superkapasitor merupakan teknologi penyimpanan energi yang menggabungkan karakteristik Electrical Double Layer Capacitor (EDLC) dan pseudokapasitor. Salah satu material elektroda potensial adalah reduced graphene oxide yang memiliki konduktivitas listrik tinggi dan luas permukaan spesifik besar. Penelitian ini menggunakan komposit reduced graphene oxide/α-MnO2/activated carbon sebagai material elektroda superkapasitor. Penelitian ini bertujuan menganalisis pengaruh variasi komposisi dan waktu hidrotermal terhadap struktur, morfologi, serta sifat kapasitif komposit tersebut. Reduced graphene oxide dipilih karena luas permukaan dan konduktivitasnya yang tinggi, sedangkan α-MnO₂ dipilih karena sifat pseudokapasitansinya yang baik. Reduced graphene oxide disintesis menggunakan metode Hummers, sementara komposit dibuat melalui metode hidrotermal dengan variasi komposisi dan waktu reaksi. Karakterisasi struktur dan morfologi dilakukan menggunakan X-ray Diffraction, Scanning Electron Microscopy–Energy Dispersive X-ray, dan Fourier Transform Infrared Spectroscopy. Sifat elektrokimia dianalisis menggunakan Cyclic Voltammetry, Electrochemical Impedance Spectroscopy, dan pengujian charge–discharge galvanostatik dengan elektrolit KOH. Kinerja kapasitansi spesifik terbaik diperoleh sebesar 630.23 F/g (scan rate 5 mV/s), 425.8 F/g (kerapatan arus 0.5 A/g), dan 652.39 F/g (frekuensi 0.01 Hz) pada komposisi 0.25:1:1 dengan waktu hidrotermal 10 jam. Perbedaan kondisi pengujian digunakan untuk merepresentasikan respon elektroda terhadap variasi laju reaksi, transport ion, dan resistansi internal. Uji retensi kapasitansi setelah 5000 siklus dilakukan untuk mengevaluasi kestabilan jangka panjang dan ketahanan struktur elektroda selama operasi berulang. Elektroda mempertahankan 95.96% kapasitansi awal, menunjukkan potensi tinggi untuk aplikasi superkapasitor.
======================================================================================================================================
Supercapacitors are energy storage technologies that combine the characteristics of Electrical Double Layer Capacitors (EDLCs) and pseudocapacitors. One potential electrode material is reduced graphene oxide which has high electrical conductivity and a large specific surface area. This study uses reduced graphene oxide/α-MnO2/activated carbon composite as the supercapacitor electrode material. This study aims to analyze the influence of variations in composition and hydrothermal time on the structure, morphology, and capacitive properties of the composite. Reduced graphene oxide was chosen for its surface area and high conductivity, while α-MnO₂ was chosen for its good pseudocapacitance properties. Reduced graphene oxide is synthesized using the Hummers method, while composites are made using hydrothermal methods with variations in composition and reaction time. Structural and morphological characterization was carried out using X-ray Diffraction, Scanning Electron Microscopy–Energy Dispersive X-ray, and Fourier Transform Infrared Spectroscopy. The electrochemical properties were analyzed using Cyclic Voltammetry, Electrochemical Impedance Spectroscopy, and galvanostatic charge–discharge testing with KOH electrolyte. The best specific capacitance performance was obtained at 630.23 F/g (scan rate 5 mV/s), 425.8 F/g (current density 0.5 A/g), and 652.39 F/g (frequency 0.01 Hz) at a composition of 0.25:1:1 with a hydrothermal time of 10 hours. Different test conditions are used to represent the response of the electrode to variations in reaction rate, ion transport, and internal resistance. Capacitance retention tests after 5000 cycles are performed to evaluate the long-term stability and structural durability of the electrode during repeated operation. The electrode retains 95.96% initial capacitance, indicating high potential for supercapacitor applications.
| Item Type: | Thesis (Masters) |
|---|---|
| Uncontrolled Keywords: | α-MnO2, Hidrotermal, Karbon Aktif, reduced graphene oxide, Superkapasitor hybrid α-MnO2, Activated Carbon, Hybrid Supercapacitor, Hydrothermal, Reduced Graphene Oxide |
| Subjects: | Q Science > QD Chemistry > QD115 Electrochemical analysis Q Science > QD Chemistry > QD341.H9 Graphene Q Science > QD Chemistry > QD553 Electrochemistry. Electrolysis |
| Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Material & Metallurgical Engineering > 27101-(S2) Master Thesis |
| Depositing User: | Daniel Daniel |
| Date Deposited: | 27 Jan 2026 07:05 |
| Last Modified: | 27 Jan 2026 07:05 |
| URI: | http://repository.its.ac.id/id/eprint/130501 |
Actions (login required)
![]() |
View Item |
