Studi Experimental Crashworthiness Pada Crashbox Berbasis Struktur Sandwich Aluminium dan Auxetic Anti-tetrachiral Melalui Uji Quasi-static

Febriansyah, Muhammad Irfan (2026) Studi Experimental Crashworthiness Pada Crashbox Berbasis Struktur Sandwich Aluminium dan Auxetic Anti-tetrachiral Melalui Uji Quasi-static. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007211115_Undergraduate_Thesis.pdf] Text
5007211115_Undergraduate_Thesis.pdf - Accepted Version

Download (6MB)

Abstract

Crashbox merupakan komponen keselamatan pasif kendaraan yang berfungsi menyerap energi benturan untuk meminimalkan cedera penumpang. Penelitian ini bertujuan untuk meningkatkan kinerja crashworthiness melalui pengembangan struktur hybrid berbasis sandwich yang menggabungkan tabung aluminium dan struktur auxetic polimer (PLA+) dengan topologi anti-tetrachiral. Metode penelitian dilakukan secara eksperimental menggunakan uji tekan quasi-static dengan kecepatan 5mm/menit untuk mengevaluasi pengaruh penggabungan material dan variasi susunan lapisan terhadap parameter Initial Peak Force (IPF), Mean Crushing Force (MCF), Crushing Force Efficiency (CFE), dan Specific Energy Absorption (SEA). Spesimen uji terdiri dari konfigurasi baseline (komponen tunggal) aluminium tube dan auxetic tube beserta konfigurasi hybrid sandwich tiga lapis, yaitu Dual Auxetic (Auxetic-Aluminium-Auxetic) dan Dual Aluminium (Aluminium-Auxetic-Aluminium). Berdasarkan analisis komparatif, konfigurasi Dual Aluminium ditetapkan sebagai desain terbaik yang menghasilkan nilai SEA tertinggi sebesar 4,76 J/g dengan efisiensi gaya (CFE) sebesar 43,82%. Keunggulan konfigurasi ini disebabkan oleh terbentuknya formasi sandwich ideal (Face-Core-Face), di mana lapisan aluminium sebagai kulit (face) memberikan kekakuan tinggi dan menahan struktur inti (core) auxetic agar bekerja maksimal dalam menyerap energi melalui densifikasi material tanpa mengalami kegagalan dini. Penelitian ini membuktikan bahwa aplikasi struktur sandwich hybrid dengan susunan yang tepat dapat meningkatkan efisiensi penyerapan energi pada crashbox kendaraan.
=================================================================================================================================
Specific Energy Absorption (SEA). Test specimens consisted of baseline configurations (single component) of aluminium and auxetic tubes, as well as three-layer hybrid sandwich configurations, namely Dual Auxetic (Auxetic-Aluminium-Auxetic) and Dual Aluminium (Aluminium-Auxetic-Aluminium). Based on comparative analysis, the Dual Aluminium configuration was identified as the optimal design, yielding the highest SEA of 4.76 J/g with a Crushing Force Efficiency (CFE) of 43.82%. The superiority of this configuration is attributed to the formation of an ideal sandwich structure (Face-Core-Face), where the aluminium layers act as faces providing high stiffness and confining the auxetic core, forcing it to maximize energy absorption through material densification without premature failure. This study demonstrates that the application of hybrid sandwich structures with the appropriate stacking sequence can effectively improve the energy absorption efficiency of vehicle crashboxes. Keywords: Anti-tetrachiral Auxetic, Crashbox, Crashworthiness, Quasi-static Test, Sandwich Structure.

Item Type: Thesis (Other)
Uncontrolled Keywords: Auxetic anti-tetrachiral, Crashbox, Crashworthiness, Struktur Sandwich, Uji Quasi-static. Anti-tetrachiral Auxetic, Crashbox, Crashworthiness, Quasi-static Test, Sandwich Structure.
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TL Motor vehicles. Aeronautics. Astronautics
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL240.5 Composite materials
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Muhammad Irfan Febriansyah
Date Deposited: 03 Feb 2026 01:09
Last Modified: 03 Feb 2026 01:09
URI: http://repository.its.ac.id/id/eprint/131708

Actions (login required)

View Item View Item