Penerapan Metode Branching dalam Masalah Transportasi untuk Meminimalkan Biaya agar Persediaan Optimal (Studi Kasus PT. XYZ)

Wahyuni, Tri (2018) Penerapan Metode Branching dalam Masalah Transportasi untuk Meminimalkan Biaya agar Persediaan Optimal (Studi Kasus PT. XYZ). Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 06111440000014 - Undergraduate Theses.pdf]
Preview
Text
06111440000014 - Undergraduate Theses.pdf - Accepted Version

Download (2MB) | Preview

Abstract

Strategi logistik yang efektif dalam pendistribusian barang dan jasa perlu memperhatikan karakteristik perilaku biaya transportasi. Salah satu perilaku biaya transportasi yang menjadi masalah yaitu biaya tetap (fixed-costs). Masalah transportasi biaya tetap merupakan kasus khusus dari masalah biaya tetap umum. Masalah tersebut melibatkan distribusi dari m supplier (pemasok) ke sejumlah n customer (pelanggan) sehingga permintaan di setiap tujuan pendistribusian dapat terpenuhi dan dapat mencegah adanya pasokan dari kompetitor lain yang sejenis. Tujuan dari penelitian ini adalah untuk meminimalkan biaya transportasi dengan skema distribusi yang dapat mengoptimalkan pemuatan produk. Berdasarkan penerapan pendekatan linier Balinski maka masalah transportasi biaya tetap dapat diselesaikan dengan metode branching. Metode branching secara bertahap menghasilkan cabang - cabang penyelesaian masalah baru dengan nilai Z(P) dan Z(PB) yang berbeda, kemudian dua nilai tersebut dibandingkan untuk mendapatkan solusi optimal nilai Z^* (P). Solusi optimal diperoleh melalui simulasi data persediaan dan permintaan produk PT. XYZ saat periode maksimum dan minimum. Pada tugas akhir ini solusi optimal yang didapatkan berupa biaya transportasi yang minimal. Biaya minimal untuk periode permintaan maksimum dan minimum masing -masing sebesar Rp.421.244.600.000,- dan Rp.239.924.100.000,- per bulan. Sedangkan biaya minimal untuk masalah transportasi biaya tetap berskala kecil sebesar Rp.125.000.000,- per bulan.

==================================================================================================================

An effective logistics strategy in the distribution of commodities and services need to understand characteristics that drive transportation cost. One of the characteristics that drive transportation costs into problem is fixed costs. Fixed-cost transportation problem is a special case of the fixed-general costs problem. The fixed-costs transportation problem involves the distribution of m suppliers to n customers so that demand in each destination of distribution can be fulfilled and it can prevent the supply from other competitors. The purpose of this research is to minimize transportation costs with a distribution scheme that can optimize product loading. Based on Balinski linier approximation, fixed-costs transportation problem can be solved by branching method. The branching method gradually generates branches of new problem solving with different Z(P) and Z(PB), then two values are compared to obtain the optimal solution Z^* (P). The optimal solution obtained by the simulation of inventories data and product demand of PT. XYZ on the maximum and minimum period. In this research, the optimal solution is minimal transportation costs. Minimal transportation cost for maximum and minimum demand periods are Rp.421.244.600.000,- and Rp.239.924.100.000,- per month. While the minimum cost for small-scale fixed-cost transportation problem is Rp.125.000.000,- per month.

Item Type: Thesis (Undergraduate)
Additional Information: RSMa 519.6 Tri p
Uncontrolled Keywords: biaya tetap, masalah transportasi, metode branching fixed cost, transportation problem, branching method
Subjects: Q Science > QA Mathematics > QA276 Mathematical statistics. Time-series analysis. Failure time data analysis. Survival analysis (Biometry)
Divisions: Faculty of Mathematics, Computation, and Data Science > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Tri Wahyuni
Date Deposited: 22 Jan 2021 07:35
Last Modified: 22 Jan 2021 07:35
URI: http://repository.its.ac.id/id/eprint/59001

Actions (login required)

View Item View Item