Pengembangan Model Pengukuran Kinerja Procurement Pada Kontraktor EPC Dengan Menggunakan Bayesian Network Modelling

Suharyanti, Bimbi (2019) Pengembangan Model Pengukuran Kinerja Procurement Pada Kontraktor EPC Dengan Menggunakan Bayesian Network Modelling. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 09211650014002-TESIS.pdf] Text
09211650014002-TESIS.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (6MB) | Request a copy

Abstract

Pada proses bisnis engineering, procurement, dan construction (EPC), proses procurement adalah proses yang sangat mempengaruhi keberhasilan untuk mendapatkan proyek dan menyelesaikan proyek yang telah didapatkan disamping proses engineering, construction, dan commissioning. Untuk dapat mengetahui apakah suatu organisasi procurement pada suatu kontraktor EPC telah menjalankan fungsinya dengan baik, maka diperlukan suatu metode pengukuran kinerja dengan menetapkan Key Performance Indicator dan melakukan pengukuran kinerja atas indikator yang telah ditetapkan. Metode yang digunakan adalah Bayesian Network Modelling dengan melakukan pemilihan ahli sebagai responden kuesioner, menentukan Key Performance Indicator, melakukan pengumpulan dan perekapan data serta membentuk siklus dan tautan antar node sehingga terbentuk konstruksi Bayesian Network Modelling. Langkah selanjutnya adalah menghitung probabilitas setiap node yang kemudian dapat membentuk suatu model pengukuran kinerja, serta dilakukan uji kesesuaian model menggunakan uji chi-square.
Hasil dari pemgembangan model adalah pengukuran kinerja procurement berdasarkan Key Performance Indicator yang hasilnya baik dengan presentase 52,06% dengan pengaruh terbesar dari node Tender Support memiliki presentase 70% dalam mempengaruhi pengukuran kinerja procurement yang hasilnya baik, sedangkan keterkaitan pada sudut pandang eksternal berpengaruh pada pengukuran kinerja procurement yang hasilnya tidak baik sebesar 60,29% dengan pengaruh terbesar dari node mengenai web perusahaan dimaksimalkan untuk pengadaan terintegrasi dan mempercepat proses pengadaan memiliki presentase 60% dalam mempengaruhi pengukuran kinerja procurement yang hasilnya tidak baik. Uji kesesuaian model menggunakan uji chi-square dapat disimpulkan bahwa model Bayesian Network pada Key Performance Indicator sesuai dengan significance level 0,184 dan model Bayesian Network pada Key Result Indicator sesuai dengan significance level 0,852. Key Performance Indicator yang dimiliki oleh Biro Procurement Departemen EPC PT. X pada tahun 2016 dan 2017 yang banyak mengalami perubahan dan kelemahan, selanjutnya dapat mempertimbangkan dan bahkan menggunakan Key Performance Indicator yang baru sesuai penelitian ini dengan pendekatan model dan frame works yang teruji untuk dilakukan pengukuran kinerja procurement di PT. X pada tahun berikutnya.
================================================================================================
In engineering, procurement, and construction (EPC) business process, procurement process is a process that greatly influences the success of getting projects and completing projects that have been acquired in addition to the engineering, construction and commissioning processes. To find out whether a procurement organization in an EPC contractor has performed its function properly, a method of performance measurement is needed by establishing a Key Performance Indicator and by performing performance measurement on predetermined indicators. The method used is Bayesian Network Modeling by selecting experts as respondents for the questionnaire, determining the Key Performance Indicator, collecting and recording data and forming cycles and links between nodes so that the Bayesian Network Modelling construction is formed. The next step is calculating the probability of each node which can then form a performance measurement model, and the suitability test was done by using the chi-square test.
The result of the model development was that the procurement performance measurement based on the Key Performance Indicator which results are good with a percentage of 52.06% with the largest influence of Tender Support nodes having a percentage of 70% in influencing the procurement performance measurement, while linkages to viewpoints external influence on the procurement performance measurement which results are not good at 60.29% with the largest influence of nodes regarding the company's web maximized for integrated procurement and accelerating the procurement process has a percentage of 60% in influencing measurement of procurement performance which results are not good. The model suitability test by using the chi-square test can be concluded that Bayesian Network model on Key Performance Indicator is fit to the significance level of 0.184 and Bayesian Network model on Key Result Indicator is fit to the significance level of 0.852. Key Performance Indicator owned by the Procurement Division of EPC Department at PT. X in 2016 and 2017 has undergone many changes and weaknesses, then they could consider and even use the new Key Performance Indicator according to this study with a proven model and frame works approach to procurement performance measurement at PT. X the following year.

Item Type: Thesis (Masters)
Additional Information: RTMT 658.312 5 Suh p-1 2019
Uncontrolled Keywords: EPC, Procurement, Key Performance Indicator, Key Result Indicator, Bayesian Network Modelling
Subjects: H Social Sciences > HD Industries. Land use. Labor > HD28 Management. Industrial Management
H Social Sciences > HF Commerce > HF5549.5.P35 Performance standards
T Technology > T Technology (General) > T56.8 Project Management
Divisions: Faculty of Creative Design and Digital Business (CREABIZ) > Technology Management > 61101-(S2) Master Thesis
Depositing User: Bimbi Suharyanti
Date Deposited: 19 Sep 2021 18:26
Last Modified: 19 Sep 2021 18:26
URI: http://repository.its.ac.id/id/eprint/60522

Actions (login required)

View Item View Item