Wardantika, Tasia (2019) Diagram Kontrol X ̅ Menggunakan Pendekatan Bayesian dalam Pengendalian Kualitas pada Perusahaan. Other thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
06111440000055-Undergraduate_Theses.pdf Download (2MB) | Preview |
Abstract
Pengendalian kualitas dalam suatu perusahaan sangat diperlukan agar produk yang dihasilkan sesuai dengan standar yang telah ditetapkan dan mampu bersaing. Dalam perkembangan bisnisnya, sebuah perusahaan selalu berupaya meningkatkan kualitas khususnya dalam penanganan produk cacat yang terjadi pada setiap proses produksi. Hal ini dapat dilakukan dengan pengendalian kualitas proses statistik. Pada tugas akhir ini, suatu rancangan diagram kontrol X ̅ dianalisis menggunakan pendekatan metode Bayesian. Analisis ini dilakukan agar dapat menghasilkan diagram kontrol baru sebagai alternatif dari diagram kontrol X ̅ yang ada sebelumnya untuk mengetahui rata-rata pengukuran antar sub sampel yang diperiksa. Penerapan diagram kontrol X ̅ dan X ̅ Bayesian pada perusahaan menunjukkan bahwa data terkontrol. Kinerja diagram kontrol X ̅ Bayesian lebih sensitif dalam mendeteksi pergeseran proses daripada diagram kontrol X ̅ berdasarkan nilai ARL terkecil.
================================================================================================================================
Quality control is an important procedure at company. So that the product is suitable with established standards and able to compete. The company constantly upgrade quality control, especially to handle defective products because production process. Quality control statistic process can be used to solve this problem. In this final project, a layout for control chart X ̅ will be analyze using Bayesian method. Output this analysis is a new control chart as an alternative from X ̅ control chart. The new X ̅ control chart useful to get the average of measurement between checked sub sample. The application X ̅ control chart and X ̅ Bayesian represent controlled data. The performance of X ̅ control chart Bayesian more sensitive to detect moving process rather than X ̅ control chart based on the smallest value of ARL.
Item Type: | Thesis (Other) |
---|---|
Additional Information: | RSMa 519.542 War d-1 2019 |
Uncontrolled Keywords: | Quality Control, Bayesian Method, X ̅ Control Chart, Bayesian X ̅ Control Chart, ARL |
Subjects: | Q Science Q Science > QA Mathematics Q Science > QA Mathematics > QA279.5 Bayesian statistical decision theory. |
Divisions: | Faculty of Mathematics, Computation, and Data Science > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Tasia Wardantika |
Date Deposited: | 26 May 2023 02:46 |
Last Modified: | 26 May 2023 02:46 |
URI: | http://repository.its.ac.id/id/eprint/64210 |
Actions (login required)
View Item |