Fadhilah, Helisyah Nur (2019) Desain Sentralisasi dan Desentralisasi Kontrol H_\infinity dengan Pendekatan Linear Matrix Inequality. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
06111750010005-Master_Thesis.pdf Download (1MB) |
Abstract
Teori sistem skala besar dikhususkan untuk masalah yang muncul dari kesulitan masalah kontrol pada sistem orde besar. Metode kontrol modern telah menemukan bagaimana cara untuk menyelesaikan masalah kontrol pada sistem orde besar ke dalam sub masalah kontrol, yaitu desain desentralisasi kontrol pada sistem saling berhubungan. Sentralisasi kontrol perlu didapatkan terlebih dahulu sebelum proses untuk mendapatkan desentralisasi kontrol. Sentralisasi kontrol $ H_\infty $ dihitung dengan menggunakan pendekatan \textit{Linear Matrix Inequality} (LMI) dan desentralisasi kontrol $ H_\infty $ dihitung menggunakan pendekatan \textit{Bilinear Matrix Inequality} (BMI). Belum terdapat metode yang dapat menyelesaikan BMI secara langsung, oleh karena itu BMI akan diselesaikan menggunakan \textit{double} LMI melalui metode homotopi secara efisien. Simulasi pertama pada sistem \textit{storey building} menunjukkan bahwa sistem dengan sentralisasi kontrol $ H_\infty $ memiliki performansi yang cukup bagus. Hal ini ditunjukkan oleh grafik osilasi dimana sistem lup tertutup memiliki puncak yang lebih rendah daripada sistem open lup. Selanjutnya, hasil simulasi desain desentralisasi kontrol $ H_\infty $ pada sistem \textit{storey building} menunjukkan bahwa desentralisasi kontrol $ H_\infty $ pada sistem \textit{storey building} dapat mengatasi gangguan pada sistem dengan $ \parallel T_{zw}(s) \parallel_\infty < \gamma$.
=================================================================================================================================
Large-scale system theory is devoted to problems that arise from the difficulty of control problems in large-order systems. Modern control methods have found ways to solve control problems in the large-order system into subcontrol problems, namely the design of decentralized controls on interconnected systems. Previously, it was necessary to get centralized controller first to get decentralized controller. Centralized Hinf ty controller is calculated using the Linear Matrix Inequality (LMI) approach and the decentralized H∞ controller is calculated using by Bilinear Matrix Inequality (BMI) approach. Because there is no method that can resolve BMI directly, so BMI will be solved using double LMI through the homotopy method efficiently. The first simulation on the storey building system shows that a system with centralized H∞ controller has a pretty good performance. This is indicated by the oscillation graph where the closed loop system has a lower peak than the open loop system. Furthermore, the simulation results of the decentralized H∞ controller on the storey building system indicate that of decentralized H∞ controller on storey building system have quite good performance and show that k Tzw(s) k∞ < γ.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTMa 512.5 Fad d-1 2019 |
Uncontrolled Keywords: | Sentralisasi kontrol, Desentralisasi kontrol, Linear Matrix Inequality, Sistem storey building, Centralized controller, Decentralized controller, Linear Matrix Inequality, Bilinear Matrix Inequality, Storey building systems |
Subjects: | T Technology > TJ Mechanical engineering and machinery > TJ217.6 Predictive Control |
Divisions: | Faculty of Mathematics, Computation, and Data Science > Mathematics > 44101-(S2) Master Thesis |
Depositing User: | Helisyah Nur Fadhilah |
Date Deposited: | 07 Mar 2024 02:22 |
Last Modified: | 07 Mar 2024 02:22 |
URI: | http://repository.its.ac.id/id/eprint/64232 |
Actions (login required)
View Item |