Investigasi Pengaruh Pre-crack pada Kapasitas Lentur Balok Engineered Cementitious Composite (ECC) Terkorosi

Oktaviani, Winda Nur (2020) Investigasi Pengaruh Pre-crack pada Kapasitas Lentur Balok Engineered Cementitious Composite (ECC) Terkorosi. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 03111750020005-Master_Theses.pdf]
Preview
Text
03111750020005-Master_Theses.pdf

Download (3MB) | Preview

Abstract

Keretakan pada beton bertulang selama masa umur layan tidak dapat dihindari dan terjadi kerena beberapa alasan seperti melebihi kapasitas beban sehingga menghasilkan retak lentur pada elemen struktur. Retak pada beton bertulang terutama saat beton bertulang digunakan di daerah laut atau pantai akan memberi jalan zat agresif untuk mencapai tulangan sehingga mempercepat terjadinya korosi pada tulangan. Untuk mengatasi permasalahan ini, dilakukan penelitian tentang Engineered Cementitious Composite (ECC) dengan membandingkan kapasitas lentur sebelum dan sesudah korosi dengan beton bertulang konvensional (NC) dan beton bertulang menggunakan supplementary material yaitu fly ash (SMFA). Benda uji yang digunakan pada penelitian ini adalah balok ukuran 100 mm X 200 mm X 2000 mm. Pengujian yang dilakukan pada penelitian ini adalah uji four point bending untuk pengujian lentur dan pre-crack. Untuk percepatan korosi menggunakan metode galvanostatik dengan balok pre-crack direndam pada larutan NaCl 5% ditambahkan arus listrik 0,3 A selama 30 hari atau 1 bulan. Semua benda uji dimoist curing terlebih dahulu selama 28 hari. Mutu beton untuk balok NC dan SMFA yang digunakan adalah 50 MPa. Sedangkan mutu beton ECC adalah 45 MPa dengan kandungan fly ash 16% dari berat total semen. Dari hasil penelitian didapatkan pre-crack pada balok korosi sangat mempengaruhi laju korosi. Pada saat korosi, retak hasil pre-crack semakin membesar pada balok sehingga mempercepat jalannya proses korosi. Laju korosi terbesar ada pada balok NC dengan 5,311 mm/year untuk tulangan utama dan 7,150 mm/year untuk sengkang, balok SMFA dengan 2,529 mm/year untuk tulangan utama dan 3,452 mm/year untuk sengkang, dan balok ECC dengan laju korosi terkecil yaitu 1,366 mm/year untuk tulangan utama dan 1,787 mm/year untuk sengkang. Semakin besar laju korosi maka akan semakin banyak pengurangan luasan tulangan beton sehingga berdampak pada berkurangnya kapasitas lentur balok. Pada penelitian ini didapatkan penurunan kapasitas lentur balok NC sebesar 8,8% dari balok kontrol (sebelum korosi), balok SMFA sebesar 4,87% dari balok control (sebelum korosi) dan balok ECC sebesar 1,69% dari balok control (sebelum korosi). Pola retak sebelum dan sesudah korosi memiliki persamaan yaitu semua benda uji dominan retak lentur. Pada balok control (sebelum korosi) dan sesudah korosi balok NC dan SMFA terdapat crushing pada sisi tekan sebelum balok mengalami keruntuhan. Sedangkan balok control (sebelum korosi) dan sesudah korosi balok ECC tidak ditemukan crushing hingga balok runtuh. Lebar retak rata-rata balok kontrol (sebelum korosi) NC adalah 0,655mm, balok kontrol (sebelum korosi) SMFA adalah 0,600 mm, balok kontrol (sebelum korosi) ECC adalah 0,208 mm. Hasil lebar retak balok kontrol (tidak korosi) mendekati lebar retak teoritis ACI 318-95 dengan nilai sebesar 0,660 mm. Lebar retak rata-rata balok korosi NC adalah 0,9054mm, balok korosi SMFA adalah 0,8762 mm, balok korosi ECC adalah 0,4076 mm.
================================================================================================================================
Cracks in reinforced concrete during the service life can occur and can not be avoided for several reasons such as exceeding load capacity so as to produce flexural cracks on structural elements. Cracks in reinforced concrete, especially for concrete exposed to marine environment will accelerate the ingress of aggressive ion such as chloride and sulphate. To overcome this problem, this research focused on application of Engineered Cementitious Composite (ECC) to enchanced the properties of concrete againts chloride penetration. This research will comparing flexural capacity of ECC beam with conventional reinforced concrete (NC) and reinforced concrete using supplementary material using fly ash (SMFA). The specimen used in this research was the beam with size of 100 mm X 200 mm X 2000 mm. The beam was pre-cracked with four point bending scheme before exposed with chloride. To accelerate corrosion process, the galvanostatic method was performed using 5% NaCl solution added electrical current 0,3 A for 30 days or 1 month. All test specimens were first cured for 28 days. The compressive strength for NC and SMFA beams used is 50 MPa. While the compressive strength of ECC with 16% fly ash content of the total weight of cement is 45 MPa. From the results of this research, it was found that the pre-crack on the corrosion beam greatly affected the corrosion rate. The width of existing crack from pre-crack increase as the exposure time increase resulting accelerated corrosion process. From experimental test it was found that the largest corrosion rate is on NC beams with 5,311 mm/year for main reinforcement and 7,150 mm/year for stirrups, SMFA beams with 2,529 mm/year for main reinforcement and 3,452 mm / year for stirrups, and ECC beams with the smallest corrosion rate of 1,366 mm / year for main reinforcement and 1,787 mm / year for stirrups. The greater the corrosion rate will reduce the area of the concrete reinforcement affect flexural capacity of beam. In this research, it was found that the NC beam's reduction capacity was 8,8% from the control beam (before corrosion), the SMFA beam by 4,87% from the control beam (before corrosion) and the ECC beam by 1,69% from the control beam (before corrosion). In the control beam (before corrosion) and after corrosion NC and SMFA beams there is crushing on the compression side before the beam has collapsed. While the control beam (before corrosion) and after corrosion of the ECC beam there was no crushing at the compression side until the beam collapsed. The average crack width for NC, SMFA and ECC before corrosion test was 0,655 mm; 0,600 mm and 0,208 respectively. The results of the crack width control beam (non-corrosion) with approach the theoretical according ACI 318-95 is 0,660 mm. This result has a good fit with the exprerimental test before corrosion. The average crack width for NC, SMFA and ECC after corrosion test was 0,9054 mm; 0,8762 mm and 0,4076 respectively.

Item Type: Thesis (Masters)
Additional Information: RTS 620.118 Okt i-1 2020
Uncontrolled Keywords: Beton Konvensional, Beton Supplementary Material, Engineered Cementitious Composite (ECC), Pre-crack, Laju korosi, Kapasitas Lentur.
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA418.74 Corrosion and anti-corrosives
T Technology > TA Engineering (General). Civil engineering (General) > TA418.75 Corrosion-resistant materials
T Technology > TA Engineering (General). Civil engineering (General) > TA418.9 Composite materials. Laminated materials.
T Technology > TA Engineering (General). Civil engineering (General) > TA440 Concrete--Cracking.
T Technology > TA Engineering (General). Civil engineering (General) > TA444 Reinforced concrete
T Technology > TA Engineering (General). Civil engineering (General) > TA681 Concrete construction
Divisions: Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Civil Engineering > 22101-(S2) Master Thesis
Depositing User: WINDA NUR OKTAVIANI
Date Deposited: 22 Jun 2023 02:37
Last Modified: 22 Jun 2023 02:37
URI: http://repository.its.ac.id/id/eprint/73020

Actions (login required)

View Item View Item