Analisis Kestabilan dan Simulasi Numerik Penyebaran Penyakit Covid-19 Antar Kota Surabaya dan Gresik

Djaya, Yonatan Asadi (2021) Analisis Kestabilan dan Simulasi Numerik Penyebaran Penyakit Covid-19 Antar Kota Surabaya dan Gresik. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 06111640000068-Undergraduate_Thesis.pdf]
Preview
Text
06111640000068-Undergraduate_Thesis.pdf

Download (1MB) | Preview

Abstract

Covid-19 adalah penyakit menular yang disebabkan oleh Coronavirus. Kasus Covid-19 di Indonesia pertama kali diumumkan pada Maret 2020. Penularan virus Covid-19 terjadi ketika penderita melakukan kontak fisik dengan orang lain dalam jarak kurang dari satu meter. Penelitian ini membahas penyebaran Covid-19 antara kota Surabaya dan Gresik. Model matematika penyebaran penyakit yang digunakan dalam penelitian ini terdiri dari Susceptible, Infected, dan Recovered. Tujuan dari penelitian ini yaitu membahas kestabilan dari model matematika penyebaran penyakit Covid-19, dimana analisis kestabilan yang dilakukan menggunakan kriteria kestabilan Routh-Hurwitz. Kemudian dilakukan penghitungan solusi numerik menggunakan metode Runge-Kutta orde empat, serta dilakukan simulasi numerik dengan menggunakan MATLAB. Hasilnya, dalam model matematika penyebaran Covid-19 yang digunakan, terdapat kestabilan dengan syarat tertentu dan dengan simulasi numerik didapat bahwa semakin kecil faktor perpindahan individu antar kota Surabaya dan Gresik, maka penyebaran penyakit Covid-19 akan semakin tidak bergantung antara satu kota dengan yang lain.
===================================================================================================================================
Covid-19 is an infectious disease caused by the Coronavirus. The first case of Covid-19 in Indonesia was announced in March 2020. Transmission of the Covid-19 virus occurs when sufferers make physical contact with other people within a distance of less than one meter. This study discusses the spread of Covid-19 between the cities of Surabaya and Gresik. The mathematical model of the spread of disease used in this study consists of Susceptible, Infected, and Recovered. The purpose of this study is to discuss the stability of the mathematical distribution model of the Covid-19 disease, where the stability analysis is carried out using the Routh-Hurwitz stability. Then numerical calculations were carried out using the Runge-Kutta method of order 4, and numerical simulations were carried out using MATLAB. As a result, in the mathematical model of the spread of Covid-19 used, there is stability under certain conditions and with numerical simulations it is obtained that the smaller the individual displacement factor between the cities of Surabaya and Gresik, the spread of Covid-19 disease will be less between one another.

Item Type: Thesis (Other)
Uncontrolled Keywords: Model Covid-19, Antar Kota, Kestabilan, Routh-Hurwitz, Runge-Kutta. Covid-19 Model, Between Cities, Stability, Routh-Hurwitz, Runge-Kutta .
Subjects: Q Science > QA Mathematics > QA372.B9 Differential equations--Numerical solutions. Runge-Kutta formulas--Data processing.
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Yonatan Asadi Djaya
Date Deposited: 27 Aug 2021 05:44
Last Modified: 13 Mar 2024 06:04
URI: http://repository.its.ac.id/id/eprint/90062

Actions (login required)

View Item View Item