Lokollo, Richard Rudolf (2006) Analisis Pandu Gelombang Optik Struktur Persegi Dengan Metode Variasional Menggunakan Fungsi Cobaan Polinomial Hipergeometri-Secant Hiperbolik. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
1104201003-Master_Thesis.pdf - Accepted Version Download (16MB) |
Abstract
Konstanta propagasi efektif moda gelombang optik yang merambat dalam suatu struktur pandu gelombang merupakan parameter penting untuk menjelaskan karakteristik moda gelombang optik pada suatu struktur permandu (kanal persegi maupun slab). Formulasi tetapan propagasi efektif untuk pandu gelombang persegi (rectangular) step indeks ini tidak tersedia secara eksak. Metode pendekatan yang lazim digunakan adalah metode skalar Variasional. Beberapa fungsi cobaan (trial functions) yang diperlukan telah digunakan sebelumnya dalam menganalisa karakteristik pemanduan moda gelombang optik pada pandu gelombang ini.Dalam tesis ini dibahas prosedur perhitungan konstanta propagasi pandu gelombang berpenampang persegi step indeks modus TE (transverse electric), serta analisa selanjutnya dengan prinsip variasional menggunakan fungsi cobaan polinomial Hipergeometri-secant Hiperbolik dengan profil indeks bias yang dipilih berbentuk 1/cosh2.Kajian ini dilakukan secara semi analitik, sebagian perumusan dipecahkan langsung melalui solusi eksak dan sebagian lagi melalui analisa numerik yang dihitung secara terpogram menggunakan perangkat lunak Matlab for Windows versi 6.5. Hasil analisa berbagai orde moda menunjukkan kesesuaiannya terhadap metode indeks efektif (metode standart yang ada). Keakurasian perhitungan konstanta propagasi efektif dengan prinsip variasional menggunakan fungsi cobaan polinomial Hipergeometri-Secant Hiperbolik diperbandingkan dengan basil penelitian sebelumnya menggunakan fungsi cobaan polinomial Hermite-Gaussian.
=====================================================================================================================================
The effective propagation constants of the mode of optical wave that the propagation in the waveguide structure is a key parametric to explain the modes of optical wave characteristics for a guided structures (canal rectangular or slab). The formulation of a propagation constants to rectangular waveguide step-index are difficult to find to the exact solution. The approximations method which is used on a scalar variational method. The trial functions which is needed has been used before its into the analyzing of the guided-mode characteristics of optical wave for it. In this theses, will be presented the procedure of evaluation of the effective propagation constans of a rectangular waveguide step-index of TE modes (transverse electtic) with a variational principle is using the trial functions of Hypergeometri polynomials with refractive index profile is chosen to shaped a 1/cosh . This analysis will be done by semi-analitic, a more formulations are solved in directly pass to the exact solution and more pass to a numerical analyses are evaluated by the computation programme used a matlab software version 6.5. The analyses result to any order-modes are show to agreement to the effective index method (standart method). The accurated of evaluation of the effective propagation cons tans with the variational principles used the trial functions of polynomials Hypergeometri-secant Hyperbolic are compared with the examinated result to before it used the trial functions of the polynomials Hermite-Gaussian.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTFi 621.381 331 Lok a-1 2006 |
Uncontrolled Keywords: | konstanta propagasi efek.1if, metode variasional, polinomial Hipergeometri-Secant Hiperbolik The effective propagation constant, variational method,Hypergeometri-Secant Hyperbolic polynomial |
Subjects: | Q Science > QC Physics > QC448 Fiber optics. |
Divisions: | Faculty of Mathematics and Science > Physics > 45101-(S2) Master Thesis |
Depositing User: | Totok Setiawan |
Date Deposited: | 22 Feb 2023 01:20 |
Last Modified: | 22 Feb 2023 01:20 |
URI: | http://repository.its.ac.id/id/eprint/97639 |
Actions (login required)
View Item |