Analisis Delayed Onset Muscle Soreness (DOMS) Dari Sinyal Emg Pada Leg Workout

Yuwono, Dhiannisa Shabrina (2023) Analisis Delayed Onset Muscle Soreness (DOMS) Dari Sinyal Emg Pada Leg Workout. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 07311940000066-Undergraduate_Thesis.pdf] Text
07311940000066-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 September 2025.

Download (7MB) | Request a copy

Abstract

Aktivitas fisik digambarkan sebagai setiap gerakan fisik yang dihasilkan oleh massa otot rangka yang membutuhkan pengeluaran energi. Menurut World Health Organization (WHO), aktivitas fisik secara teratur dapat menimbulkan rasa nyaman dan dengan demikian olahraga memiliki manfaat yang signifikan bagi Kesehatan. Namun, bila aktivitas fisik atau olahraga dilakukan dengan intensitas yang berlebihan maka dapat muncul rasa lelah berlebihan setelah melakukan olahraga. Latihan rutin seperti leg workout dapat dilakukan untuk meminimalisir rasa lelah berlebihan, namun tidak lepas dari itu, delayed onset muscle soreness (DOMS) umumnya terjadi pasca pelatihan. Delayed onset muscle soreness (DOMS) juga dikenal sebagai ‘demam otot’, dimana muncul perasaan sakit dan nyeri pada otot setelah latihan intens yang tidak biasa. DOMS terjadi karena kerusakan otot sementara dan peradangan yang pemicu paling umum tampaknya adalah latihan eksentrik. Pada penilitian ini akan dirancang sebuah sistem analisis dengan mengintegrasikan sensor elektromiografi click (EMG click) dengan menggunakan Mikromedia 7 for STM32F7 FPI Capacitive. Analisis Discrete Wavelet Transform (DWT) digunakan dengan dekomposisi level 1 hingga 5 untuk melihat kondisi kelelahan, dibutuhkan empat fitur ekstraksi, yaitu mean, root mean square (RMS), mean power amplitude (P), dan standar deviation (SD). Fitur ekstraksi dibutuhkan untuk mendapatkan parameter corelation coefficient (CC) dan slope (kemiringan) untuk perkiraan DOMS. Didapatkan hasil slope yang paling baik pada rentang frekuensi D2 (125 Hz – 250 Hz).
===============================================================================================================================
Physical activity is defined as any bodily movement produced by skeletal muscle that requires energy expenditure. According to the World Health Organization (WHO), regular physical activity can promote well-being and thus, exercise has significant benefits for health. However, excessive intensity during physical activity or exercise can lead to excessive fatigue afterward. Routine exercises such as leg workouts can be performed to minimize excessive fatigue, but nonetheless, delayed onset muscle soreness (DOMS) commonly occurs after training. DOMS, also known as "muscle fever," refers to the sensation of pain and discomfort in the muscles following intense and unusual exercise. DOMS occurs due to temporary muscle damage and inflammation, with eccentric exercise being the most common trigger. In this study, a system analysis will be designed by integrating the electromyography click (EMG click) sensor using Mikromedia 7 for STM32F7 FPI Capacitive. Discrete Wavelet Transform (DWT) analysis will be utilized with level 1 to 5 decompositions to assess fatigue conditions. Four feature extractions, namely mean, root mean square (RMS), mean power amplitude (P), and standard deviation (SD), are required to examine fatigue levels. These feature extractions are necessary to obtain the parameters of correlation coefficient (CC) and slope for DOMS estimation. The best slope results were obtained in the frequency range of D2 (125 Hz - 250 Hz).

Item Type: Thesis (Other)
Uncontrolled Keywords: Delayed Onset Muscle Soreness, leg workout, Discrete Wavelet Transform, sensor elektromiografi, Delayed Onset Muscle Soreness, leg workout, Discrete Wavelet Transform, electromyography sensor
Subjects: Q Science > QA Mathematics > QA76.758 Software engineering
Q Science > QM Human anatomy
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Biomedical Engineering > 11410-(S1) Undergraduate Thesis
Depositing User: Dhiannisa Shabrina Yuwono
Date Deposited: 04 Aug 2023 08:34
Last Modified: 04 Aug 2023 08:34
URI: http://repository.its.ac.id/id/eprint/101560

Actions (login required)

View Item View Item