Klasifikasi Tingkat Risiko Keparahan Pasien COVID-19 di Rumah Sakit Islam Sultan Agung Semarang Menggunakan Naïve Bayes

Pratiwi, Debby Ayu (2023) Klasifikasi Tingkat Risiko Keparahan Pasien COVID-19 di Rumah Sakit Islam Sultan Agung Semarang Menggunakan Naïve Bayes. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 06211640000097-Undergraduate_Thesis.pdf] Text
06211640000097-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2025.

Download (2MB) | Request a copy

Abstract

Coronavirus Disease 2019 yang kemudian disingkat menjadi COVID-19 adalah penyakit menular yang disebabkan oleh Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), yaitu coronavirus jenis baru yang belum pernah diidentifikasi sebelumnya pada manusia. Awal kemunculan virus COVID-19 berasal dari kasus pneumonia yang tidak diketahui penyebabnya pertama kali di Wuhan, Provinsi Hubei, China. Indonesia mengalami pandemi gelombang pertama saat virus relatif belum bermutasi pada November 2020, gelombang kedua yang disebabkan virus varian Delta pada Mei 2021, dan gelombang ketiga yang disebabkan virus varian Omicron pada Februari 2022. Penelitian akan difokuskan pada pasien COVID-19 gelombang pertama sebagai langkah awal untuk penelitian berikutnya. Provinsi Jawa Tengah sebagai provinsi dengan urutan ketiga paling terpapar di Indonesia dengan kasus terbanyak di Kota Semarang. Peneliti ingin melakukan klasifikasi tingkat risiko keparahan pasien COVID-19 di Rumah Sakit Islam Sultan Agung Semarang menggunakan variabel usia, jenis kelamin, saturasi oksigen, laju respirasi, tekanan darah, laju jantung, tingkat kesadaran, dan temperatur yang diduga berpengaruh terhadap tingkat risiko keparahan pasien COVID-19 dengan mengggunakan metode Naïve Bayes Classifier sebagai Early Warning Score (EWS). Hasil dari penelitian ini adalah klasifikasi tingkat risiko keparahan dengan nilai ketepatan accuracy 95%, sensitivity 83%, precision 92%, f1-score 84%, dan AUC 98%.
=================================================================================================================================
Coronavirus Disease 2019, which was later shortened to COVID-19, is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which is a new type of coronavirus that has never been previously identified in humans. The initial emergence of the COVID-19 virus came from a case of pneumonia with an unknown cause for the first time in Wuhan, Hubei Province, China. Indonesia experienced the first wave of the pandemic when the virus had relatively not mutated in November 2020, the second wave was caused by the Delta variant virus in May 2021, and the third wave was caused by the Omicron variant virus in February 2022. Research will focus on the first wave of COVID-19 patients as an initial step for further research. Central Java Province is the third most exposed province in Indonesia with the most cases in Semarang City. Research will classify the risk level of severity of the COVID-19 patients at Rumah Sakit Islam Sultan Agung Semarang using the variables age, gender, oxygen saturation, respiration rate, blood pressure, heart rate, level of consciousness, and temperature which are thought to influence the severity of the COVID-19 patients risk using Naïve Bayes Classifier method as the Early Warning Score (EWS). The results of this study are the risk level classification with accuracy values of 95%, sensitivity 83%, precision 92%, f1-score 84%, and AUC 98%.

Item Type: Thesis (Other)
Uncontrolled Keywords: COVID-19, Early Warning Score, Keparahan, Naïve Bayes Classifier, Tingkat Risiko, Risk Level, Severity
Subjects: R Medicine > RA Public aspects of medicine > RA644.C67 COVID-19 (Disease)
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: Debby Ayu Pratiwi
Date Deposited: 01 Dec 2023 02:49
Last Modified: 01 Dec 2023 02:49
URI: http://repository.its.ac.id/id/eprint/104660

Actions (login required)

View Item View Item