Farhan, Muhammad (2024) Identifikasi Pola Perujukan Pada Fasilitas Kesehatan Tingkat Pertama Di Indonesia. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
6010221052_Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (3MB) | Request a copy |
Abstract
Penerapan program jaminan kesehatan nasional oleh BPJS Kesehatan telah meningkatkan akses layanan kesehatan, namun juga menyebabkan defisit anggaran akibat peningkatan rujukan pada Fasilitas Kesehatan Tingkat Pertama (FKTP). Penelitian ini mengeksplorasi pola perujukan pada FKTP di Indonesia menggunakan metode data mining dengan algoritma Naive Bayes, Decision Tree, dan Random Forest. Tujuan penelitian ini adalah mengidentifikasi karakteristik pasien yang dirujuk dan membangun model klasifikasi untuk memprediksi perujukan pasien. Analisis data BPJS Kesehatan tahun 2022 menunjukkan bahwa pasien lanjut usia (>60 tahun) dan penyakit neoplasma ganas memiliki persentase perujukan tertinggi. Decision Tree menunjukkan performa terbaik dalam memprediksi perujukan, diikuti oleh Random Forest dan Naive Bayes. Usia, jenis penyakit, dan lokasi adalah faktor utama yang mempengaruhi keputusan perujukan. Hasil penelitian ini dapat digunakan untuk merancang strategi optimalisasi layanan di FKTP, mengurangi perujukan yang tidak diperlukan, serta mengembangkan sistem pendukung keputusan berbasis algoritma. Implementasi kebijakan berbasis data diharapkan meningkatkan efisiensi dan efektivitas pelayanan kesehatan. Penelitian ini memberikan kontribusi signifikan dalam memanfaatkan data BPJS Kesehatan untuk meningkatkan sistem pelayanan kesehatan di Indonesia.
====================================================================================================
The implementation of the national health insurance program by BPJS Kesehatan has increased access to health services but has also caused a budget deficit due to increased referrals from primary healthcare facilities. This research explores referral patterns at primary healthcare facilities in Indonesia using data mining techniques with Naive Bayes, Decision Tree, and Random Forest algorithms. This research aims to identify the characteristics of referred patients and build a classification model to predict patient referrals. Analysis of BPJS Kesehatan sample data for 2022 shows that elderly patients (>60 years) and malignant diseases have the highest percentage of referrals. Decision Tree shows the best performance in predicting referrals, followed by Random Forest and Naive Bayes. Age, type of disease, and location are the main factors influencing the referral decision. The results of this research can be used to design service optimization strategies at primary healthcare facilities, reduce unnecessary referrals, and develop algorithm-based decision support systems. Implementation of data-driven policies is expected to increase the efficiency and effectiveness of health services. This research makes a significant contribution to utilizing BPJS Health data to improve the health service system in Indonesia.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | pola perujukan, fasilitas kesehatan tingkat pertama, naive bayes, decision tree, random forest, referral pattern, primary healthcare facilities, naive bayes, decision tree, random forest |
Subjects: | Q Science > QA Mathematics > QA279.5 Bayesian statistical decision theory. R Medicine > RA Public aspects of medicine > RA971 Health services administration. T Technology > T Technology (General) T Technology > T Technology (General) > T57.5 Data Processing T Technology > T Technology (General) > T58.62 Decision support systems |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Industrial Engineering > 26101-(S2) Master Thesis |
Depositing User: | Muhammad Farhan |
Date Deposited: | 02 Aug 2024 01:27 |
Last Modified: | 02 Aug 2024 01:28 |
URI: | http://repository.its.ac.id/id/eprint/109344 |
Actions (login required)
View Item |