Perancangan Antarmuka Dan Sistem Integrasi Deteksi Penyakit Pada Tanaman Bawang Merah Berbasis Aplikasi Mobile

Fauzi, Haffif Rasya (2024) Perancangan Antarmuka Dan Sistem Integrasi Deteksi Penyakit Pada Tanaman Bawang Merah Berbasis Aplikasi Mobile. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5027201002_Haffif_Rasya_Fauzi_BukuTA.pdf] Text
5027201002_Haffif_Rasya_Fauzi_BukuTA.pdf - Accepted Version
Restricted to Repository staff only until 1 September 2026.

Download (6MB) | Request a copy

Abstract

Dalam era perkembangan teknologi yang pesat, dampaknya tidak terkecuali pada berbagai sektor, termasuk pertanian. Pertanian merupakan salah satu sektor vital yang berperan dalam perekonomian suatu negara. Kemajuan teknologi telah membawa inovasi baru dalam bidang pertanian, salah satunya adalah pengembangan sistem untuk mendukung pertumbuhan tanaman, seperti tanaman bawang merah yang memiliki nilai ekonomi tinggi namun rentan terhadap kegagalan panen. Dalam rangka mengurangi risiko tersebut, penelitian ini ingin membuat sebuah sistem yang mampu mendeteksi kondisi tanaman bawang merah secara otomatis, pengairan cerdas, dan pemantauan pemupukan. Sistem ini didukung oleh perangkat Internet of Things (IoT) yang mampu merekam gambar daun bawang merah secara berkala. Data gambar berupa potongan base64 yang kemudian akan digabungkan dan didekode oleh sistem serta dianalisis oleh machine learning untuk memperoleh kondisi daun tanaman bawang merah. Sistem akan melakukan integrasi secara keseluruhan untuk fitur pengairan otomatis, pemupukan, dan deteksi penyakit pada tanaman bawang merah yang disimpan pada basis data. Untuk pengujian kelayakan aplikasi melakukan serangkaian uji coba seperti user acceptance, cross device compatibility, dan integrasi sistem. Dari pengujian tersebut diperoleh user acceptance sebesar 77.78% dan untuk uji fungsional sistem sebesar 94.73%, untuk pengujian cross device compatibility sebesar 95.31%, serta pengujian integrasi sistem sebesar 100%. Dengan demikian, aplikasi ini dapat membantu petani bawang merah dalam melakukan pemantauan pada tanaman bawang merah.
===================================================================================================================================
In this era of rapid technological advancement, its impact is also felt across various sectors, including agriculture. Agriculture is a vital sector that plays a significant role in a country's economy. Technological progress has brought new innovations to agriculture, one of which is the development of systems to support the growth of crops like shallots, which have high economic value but are susceptible to crop failure. To reduce this risk, this research aims to create a system capable of automatically detecting the condition of shallot plants, intelligent irrigation, and fertilization monitoring. This system is supported by Internet of Things (IoT) devices that can periodically capture images of shallot leaves. The image data, in the form of base64 fragments, are then combined and decoded by the system and analyzed using machine learning to determine the condition of the shallot leaves. The system will integrate features for automatic irrigation, fertilization, and disease detection in shallot plants, which are stored in a database. To test the feasibility of the application, a series of tests were conducted, including user acceptance, cross-device compatibility, and system integration tests. From these tests, the user acceptance for system functionality was 94.73% and 77.78% for application feasibility. The cross-device compatibility testing was 95.31%, and the system integration testing was 100%. Thus, this application can assist shallot farmers in monitoring their shallot crops.

Item Type: Thesis (Other)
Uncontrolled Keywords: Bawang Merah, Aplikasi Mobile, Integrasi, Pertanian Cerdas ============================================================ Shallots, Mobile Application, Integration, Smart Agriculture
Subjects: Q Science > QA Mathematics > QA76.585 Cloud computing. Mobile computing.
Q Science > QA Mathematics > QA9.58 Algorithms
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information Technology > 59201-(S1) Undergraduate Thesis
Depositing User: Haffif Rasya Fauzi
Date Deposited: 29 Jul 2024 02:41
Last Modified: 29 Jul 2024 02:42
URI: http://repository.its.ac.id/id/eprint/109597

Actions (login required)

View Item View Item