Studi Eksperimental Tentang Pengaruh Sudut Deflektor di Depan Sudu Advancing dan Returning Terhadap Kinerja Turbin Angin Savonius “Studi Kasus untuk Deflektor dengan Kemiringan α = 0°, 10°, 20°, 30°, 45°; β = 0°; Variasi Kecepatan Angin 5 dan 7 m/s”

ZAHROYANA, MASYITHA (2024) Studi Eksperimental Tentang Pengaruh Sudut Deflektor di Depan Sudu Advancing dan Returning Terhadap Kinerja Turbin Angin Savonius “Studi Kasus untuk Deflektor dengan Kemiringan α = 0°, 10°, 20°, 30°, 45°; β = 0°; Variasi Kecepatan Angin 5 dan 7 m/s”. Diploma thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007201043-Undergraduate_Thesis.pdf] Text
5007201043-Undergraduate_Thesis.pdf

Download (4MB)

Abstract

Tercatat bahwa terjadi peningkatan potensi energi angin di Indonesia pada tahun 2021 menjadi 154, 9 GW yang membuktikan besarnya potensi pemanfaatan energi bersih di Indonesia. Dengan kecepatan rata-rata angin yang tergolong rendah, maka pengaplikasian turbin poros vertikal sangat sesuai karena memiliki cut-in speed yang rendah, salah satunya yaitu turbin angin Savonius. Namun, efisiensi yang rendah menyebabkan turbin ini jarang digunakan. Banyak modifikasi geometri dilakukan untuk meningkatkan efisiensi turbin tetapi disisi lain justru menimbulkan permasalahan lain pada bidang fabrikasi dan biaya. Maka dilakukan modifikasi aliran angin di sekitar turbin Savonius dengan berbagai instalasi pengganggu aliran, salah satunya dengan deflektor. Deflektor dapat diletakkan di depan sudu advancing dan di depan sudu returning. Studi eksperimental ini dilakukan menggunakan turbin angin Savonius dengan dimensi: diameter sudu turbin (D) 165,2 mm, tinggi turbin (H) 295 mm, dan diameter poros (d) sebesar 19 mm. Penambahan dua deflektor dengan panjang (l) 325 mm, tinggi (h) 735 mm, dengan sudut kemiringan deflektor di depan sudu advancing (α) sebesar 0°, 10°, 20°, 30°, 45° dan sudut kemiringan deflektor di depan sudu returning (β) sebesar 0°. Variasi kecepatan angin pada penelitian ini yaitu 5 & 7 m/s. s. Aliran angin yang digunakan pada penelitian ini dihasilkan oleh axial fan, diatur besarnya oleh voltage regulator, dan dijaga keseragamannya oleh honeycomb. Adapun data kecepatan aliran anginnya diukur menggunakan anemometer, data kecepatan putaran turbinnya diukur menggunakan tachometer, data torsi dinamisnya diukur menggunakan brake dynamometer, dan data torsi statisnya diukur menggunakan torquemeter.
Berdasarkan penelitian ini, diperoleh hasil bahwa instalasi deflektor di samping sudu advancing dan di depan sudu returning maningkatkan koefisien daya (CoP) dan koefisien momen (CM) turbin pada seluruh variasi kecepatan angin dan sudut α. Peningkatan CoPmax dan CMmax maksimum masing-masing sebesar 43,14% dan 37,27% pada konfigurasi α = 45° dan β
= 0°. Instalasi deflektor pada seluruh variasi kecepatan angin dan sudut α meningkatkan kemampuan self-starting turbin dengan nilai CTS positif pada seluruh sudut azimut. Lalu, peningkatan kecepatan angin meningkatkan CoP, CM, dan kemampuan self-starting turbinpada seluruh konfigurasi.
========================================================================================================================
It is recorded that there will be an increase in the potential for wind energy in Indonesia in 2021 to 154.9 GW, which proves the large potential for clean energy utilization in Indonesia. With the average wind speed being relatively low, the application of a vertical shaft turbine is very suitable because it has a low cut-in speed, one of which is the Savonius wind turbine. However, low efficiency means this turbine is rarely used. Many geometry modifications are carried out to increase turbine efficiency but on the other hand this actually causes other problems in the field of fabrication and costs. So the wind flow around the Savonius turbine was modified with various flow disturbance installations, one of which was a deflector. The deflector can be placed in front of the advancing blade and in front of the returning blade.
This experimental study was carried out using a Savonius wind turbine with dimensions: turbine blade diameter (D) 165.2 mm, turbine height (H) 295 mm, and shaft diameter (d) 19 mm. Addition of two deflectors with length (l) 331 mm, height (h) 735 mm, with deflector tilt angles in front of the advancing blade (α) of 0°, 10°, 20°, 30°, 45° and deflector tilt angles in front returning angle (β) is 0°. Variations in wind speed in this study were 5 & 7 m/s. s. The wind flow used in this research is generated by an axial fan, regulated by a voltage regulator, and maintained uniformity by a honeycomb. The wind flow speed data is measured using an anemometer, turbine rotation speed data is measured using a tachometer, dynamic torque data is measured using a brake dynamometer, and static torque data is measured using a torquemeter.
Based on this research, the results showed that installing deflectors next to the advancing blade and in front of the returning blade increased the power coefficient (CoP) and moment coefficient (CM) of the turbine at all variations in wind speed and angle α. The maximum increase in CoPmax and CMmax is 43.14% and 37.27% respectively in the α = 45° and β = 0° configurations. Installation of deflectors at all variations in wind speed and α angle increases the turbine's self-starting capability with positive CTS values at all azimuthal angles. Then, increasing the wind speed increases the CoP, CM, and self-starting capability of the turbine in all configurations.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Turbin angin Savonius, Deflektor, Koefisien Momen, Koefisien Daya,Self-Starting
Subjects: Q Science > QC Physics > QC151 Fluid dynamics
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: MASYITHA ZAHROYANA
Date Deposited: 13 Aug 2024 02:21
Last Modified: 13 Aug 2024 02:21
URI: http://repository.its.ac.id/id/eprint/109660

Actions (login required)

View Item View Item