Fusi Data Sinyal Phonocardiography Dan Photopletysmography Untuk Deteksi Murmur Sistolik Abnormal

Salsabila, Ayunda Nur (2024) Fusi Data Sinyal Phonocardiography Dan Photopletysmography Untuk Deteksi Murmur Sistolik Abnormal. Diploma thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5023201007-Undergraduate_Thesis.pdf] Text
5023201007-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (13MB) | Request a copy

Abstract

Baik di dunia maupun di Indonesia, penyakit jantung masih menjadi salah satu penyakit yang banyak diderita hingga meninggal dunia. Untuk itu, sebagai upaya pencegahan perlunya dilakukan deteksi dini terhadap adanya kelainan jantung. Namun, metode deteksi kelainan suara jantung masih sangat subjektif karena bergantung pada petugas medis. Oleh karena itu, pada tugas akhir ini dirancang sistem deteksi abnormalitas suara jantung berdasarkan keberadaan murmur. Proses segmentasi pada sinyal dengan murmur memerlukan bantuan dari sinyal PPG untuk membantu mengetahui mulainya fase sistolik dan diastolik dari sinyal PCG. Dengan melibatkan sinyal PPG untuk segmentasi sinyal S1 dan S2 dari sinyal PCG sehingga akan meningkatkan keakurasian dari proses segmentasi sinyal. Pada sinyal PPG, akan dideteksi titik puncak dari sinyal PPG dengan mensinkronkan sinyal PCG untuk deteksi puncak S1 dan S2. Sinyal PCG dilakukan pra pemrosesan sinyal dengan menggunakan DWT level 2 dengan wavelet Daubechies untuk mendapatkan sinyal dengan range frekuensi 0-250Hz. Ekstraksi fitur dilakukan pada domain waktu dan frekuensi dan dilanjutkan dengan klasifikasi murmur menggunakan Artificial Neural Network (ANN).
========================================================================================================================
Both globally and in Indonesia, heart disease remains a prevalent and fatal condition. Therefore, early detection of cardiac abnormalities is crucial for prevention. However, current methods for detecting heart sound abnormalities are highly subjective, relying on medical professionals. Hence, this thesis proposes a system for detecting cardiac sound abnormalities based on the presence of murmurs. The segmentation process in signals with murmurs requires the assistance of PPG signals to determine the onset of the systolic and diastolic phases of the PCG signal. Involving PPG signals in segmenting S1 and S2 signals from the PCG signal enhances the accuracy of the segmentation process. In the PPG signal, peak detection will be performed by synchronizing the PCG signal for detecting the S1 and S2 peaks. The PCG signal undergoes pre-processing using level 2 DWT with Daubechies wavelet to obtain a signal with a frequency range of 0-250 Hz. Feature extraction is performed in the time and frequency domains, followed by murmur classification using an Artificial Neural Network (ANN).

Item Type: Thesis (Diploma)
Uncontrolled Keywords: ANN, Deteksi Murmur, Multimodal, Suara Jantung ANN, Murmur Detection, Multimodal, Heart Sound
Subjects: Q Science > Q Science (General) > Q325.5 Machine learning. Support vector machines.
Q Science > QA Mathematics > QA336 Artificial Intelligence
Q Science > QA Mathematics > QA76.87 Neural networks (Computer Science)
Q Science > QA Mathematics > QA76 Computer software > QA76.8 Microprocessor
R Medicine > R Medicine (General) > R856.2 Medical instruments and apparatus.
R Medicine > R Medicine (General) > R858 Deep Learning
R Medicine > RC Internal medicine > RC76.3 Auscultation.
T Technology > T Technology (General)
T Technology > T Technology (General) > T57.5 Data Processing
T Technology > T Technology (General) > T58.62 Decision support systems
T Technology > T Technology (General) > T59.7 Human-machine systems.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5102.9 Signal processing.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7878 Electronic instruments
Divisions: Faculty of Electrical Technology > Biomedical Engineering > 11410-(S1) Undergraduate Thesis
Depositing User: Ayunda Nur Salsabila
Date Deposited: 12 Aug 2024 02:45
Last Modified: 12 Aug 2024 02:48
URI: http://repository.its.ac.id/id/eprint/112073

Actions (login required)

View Item View Item