Local Vibration Analysis and Lightweight Design of Purifier Room Panel in Engine Room Structure

Reswari, Woro (2024) Local Vibration Analysis and Lightweight Design of Purifier Room Panel in Engine Room Structure. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5018201054-Undergraduate_Thesis.pdf] Text
5018201054-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (3MB) | Request a copy

Abstract

Panel pembersih di ruang mesin terkena kebisingan dan getaran tinggi dari mesin. Hal ini dapat menyebabkan kerusakan pada struktur, kelelahan, dan risiko keselamatan. Penelitian ini berfokus pada penggunaan perangkat lunak metode elemen hingga (FEM) untuk menganalisis getaran dan mengoptimalkan desain karena analisis getaran lokal dan desain ringan sangat penting untuk memastikan integritas dan kinerja dek. Tujuannya adalah untuk menemukan area dengan tegangan tinggi dan merekomendasikan perubahan desain untuk memastikan tegangan tetap berada di bawah batas yang diijinkan. Evaluasi frekuensi dek juga mengurangi resonansi karena mencegahnya mencocokkan frekuensi mesin utama dan baling-baling. Tiga desain, masing-masing dengan pengaku yang berbeda dalam ukuran dan ketebalan dek, dipertimbangkan. Analisis frekuensi dan statis dilakukan dengan perangkat lunak MSC Hypermesh/Nastran FEM. Analisis statis menghasilkan nilai tegangan maksimum, dan semua desain tetap berada dalam batas tegangan yang diijinkan. Faktor keamanan dek terpenuhi, dengan rentang tegangan maksimum meningkat dari 22,4 MPa menjadi 41,5 MPa. Berbeda dengan frekuensi mesin induk dan baling-baling, analisis frekuensi menunjukkan bahwa setiap desain mempunyai frekuensi yang signifikan. Untuk menghitung resonansi, diagram Campbell digunakan untuk membandingkan frekuensi dek dengan frekuensi mesin utama dan baling-baling. Hasil menunjukkan bahwa karena tidak ada frekuensi yang diamati, tidak ada desain yang menunjukkan resonansi. Kata kunci: FEM, Getaran, Stres, Resonansi, Diagram Campbell.
============================================================
Purifier panels in the engine room are exposed to high noise and vibration from the engine. This can cause damage to the structure, fatigue, and safety risks. This research focuses on using finite element method (FEM) software to analyze vibration and optimize design because local vibration analysis and lightweight design are critical to ensuring the integrity and performance of the deck. The goal is to find areas of high stress and recommend design changes to ensure stresses remain below the allowable limits. Frequency evaluation of the deck also reduces resonance as it prevents it from matching the frequency of the main engine and propeller. Three designs, each with stiffeners differing in deck size and thickness, were considered. Frequency and static analyses were performed with MSC Hypermesh/Nastran FEM software. The static analysis yielded maximum stress values, and all designs remained within the permissible stress limits. The deck safety factor is met, with the maximum stress range increasing from 22.4 MPa to 41.5 MPa. Different from the main engine and propeller frequencies, the frequency analysis shows that each design has a significant frequency. To calculate resonance, Campbell diagrams were used to compare the deck frequencies with the main engine and propeller frequencies. Results showed that since no corresponding frequencies were observed, none of the designs exhibited resonance. Keyword: FEM, Vibration, Stress, Resonance, Campbell Diagram.

Item Type: Thesis (Other)
Uncontrolled Keywords: FEM, Vibration, Stress, Resonance, Campbell Diagram.
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA355 Vibration.
Divisions: Faculty of Marine Technology (MARTECH) > Naval Architecture and Shipbuilding Engineering > 36201-(S1) Undergraduate Thesis
Depositing User: Woro Reswari
Date Deposited: 05 Aug 2024 07:30
Last Modified: 05 Aug 2024 07:30
URI: http://repository.its.ac.id/id/eprint/112861

Actions (login required)

View Item View Item