Cermat: Mengenali Pemilihan Jurusan Melalui Aplikasi Web Analitika Data bagi Pelajar SMA untuk Masuk Perguruan Tinggi Negeri di Indonesia

Wiryawan, Khairi (2024) Cermat: Mengenali Pemilihan Jurusan Melalui Aplikasi Web Analitika Data bagi Pelajar SMA untuk Masuk Perguruan Tinggi Negeri di Indonesia. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 05111942000023-Undergraduate_Thesis.pdf] Text
05111942000023-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (5MB) | Request a copy

Abstract

Proyek tugas akhir ini menangani rendahnya minat terhadap pendidikan tinggi di Indonesia dan tantangan pemilihan jurusan yang kurang tepat di kalangan mahasiswa. Tujuannya adalah mengembangkan aplikasi web yang memberikan wawasan penerimaan untuk seleksi masuk perguruan tinggi negeri di Indonesia. Aplikasi ini memanfaatkan data yang diambil dari sumber-sumber relevan, yang kemudian dibersihkan dan diolah. Alat yang dihasilkan menawarkan visualisasi, ringkasan kuantitatif, fitur perbandingan, dan rekomendasi untuk membantu calon mahasiswa membuat keputusan yang tepat tentang jurusan mereka dan memaksimalkan potensi penerimaan ke perguruan tinggi negeri yang kompetitif. Proyek ini diimplementasikan menggunakan kerangka kerja Flask, mengikuti persyaratan dan spesifikasi desain yang telah diidentifikasi.
=================================================================================================================================
This final project addresses the low enthusiasm for higher education in Indonesia and the challenge of ill-informed major selection among students. It aims to develop a web application that provides admission insights for Indonesia's nationwide state college admission process. The application utilizes data scraped from relevant sources, which is then cleaned and preprocessed. The resulting tool offers visualizations, quantitative summaries, comparison features, and recommendations to help aspiring college students make informed decisions about their majors and maximize their potential for acceptance into competitive state colleges. The project was implemented using the Flask framework, following identified requirements and design specifications.

Item Type: Thesis (Other)
Uncontrolled Keywords: State College Admission, Python, Flask, Data Scraping, Data Visualisation, Recommendation
Subjects: L Education > L Education (General)
Z Bibliography. Library Science. Information Resources > ZA Information resources > Z699.5 Information storage and retrieval systems
Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4050 Electronic information resources
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55201-(S1) Undergraduate Thesis
Depositing User: Khairi Wiryawan
Date Deposited: 06 Sep 2024 06:17
Last Modified: 06 Sep 2024 06:17
URI: http://repository.its.ac.id/id/eprint/113320

Actions (login required)

View Item View Item