Analisa Numerik Pengaruh Slagging Pada Superheater Terhadap Laju Perpindahan Panas Dan Daya Pembangkit

Cahyani, Shofia Tiara (2024) Analisa Numerik Pengaruh Slagging Pada Superheater Terhadap Laju Perpindahan Panas Dan Daya Pembangkit. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007201028_Undergraduate_Thesis.pdf] Text
5007201028_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (6MB) | Request a copy

Abstract

Pembangkit listrik tenaga uap (PLTU) di Indonesia berupaya mengurangi biaya pokok produksi (BPP) untuk meningkatkan keuntungan dengan beralih menggunakan low-rank coal pada boiler. Low-rank coal memiliki Ash Fusion Temperature rendah, meningkatkan kemungkinan slagging pada tube boiler. Slag yang menumpuk berfungsi sebagai isolator, mengubah efisiensi perpindahan panas. Hal ini mendorong analisis pengaruh slagging terhadap daya pembangkit, terutama pada bagian tube superheater. Dengan menggunakan software simulasi ANSYS FLUENT dan Cycle Tempo, dilakukan simulasi pada Superheater Divisional Panel (SHDP). Pemodelan ini menggambarkan SHDP sebagai tube yang dilalui gas buang dengan geometri boiler di bagian atas nose. Simulasi aliran memodelkan boiler sesuai skala dan bentuk aktual bagian atas nose. Variasi penelitian meliputi ketebalan slagging (0 mm, 2 mm, 4 mm, dan 10 mm) serta konduktivitas slagging (0,4 W/m.K dan 0,7 W/m.K). Output simulasi adalah model perpindahan panas akibat perbedaan ketebalan slag dan perubahan daya pembangkit akibat slagging. Peningkatan ketebalan slagging meningkatkan resistansi termal, menurunkan laju perpindahan panas, suhu superheated steam, dan daya turbin, dengan daya turbin turun menjadi 191,94962 MW pada ketebalan 10 mm dari 193,19789 MW tanpa slag. Efisiensi pembangkit juga menurun signifikan dari 42,131% menjadi 42,035% pada ketebalan slag 10 mm dengan konduktivitas rendah. Penurunan konduktivitas termal slagging meningkatkan tahanan termal, mengurangi daya turbin dan efisiensi, dengan efisiensi turun menjadi 42,035% pada konduktivitas 0,4 W/mK dibanding 42,084% pada 0,7 W/mK. Peningkatan ketebalan dan penurunan konduktivitas termal slagging mengurangi efisiensi pembangkit yang dapat diatasi dengan maintenance yang optimal. Pengelolaan ketebalan slagging yang tepat penting untuk menjaga efisiensi dan kinerja optimal sistem boiler dan turbin pembangkit listrik.
=================================================================================================================================
Coal-fired power plants (PLTU) in Indonesia strive to reduce production costs (BPP) to increase profits by switching to low-rank coal in boilers. Low-rank coal has a low Ash Fusion Temperature, which increases the likelihood of slagging on boiler tubes. Accumulated slag acts as an insulator, altering heat transfer efficiency. This drives the analysis of the impact of slagging on power generation, particularly on the superheater tubes. Using ANSYS FLUENT and Cycle Tempo simulation software, simulations are performed on the Superheater Divisional Panel (SHDP). This modeling depicts the SHDP as tubes through which exhaust gas passes with the boiler geometry at the top of the nose. The flow simulation models the boiler according to the actual scale and shape of the top nose. Research variations include slagging thickness (0 mm, 2 mm, 4 mm, and 10 mm) and slagging conductivity (0.4 W/m.K and 0.7 W/m.K). The simulation output is a heat transfer model due to the difference in slag thickness and the change in power generation due to slagging. Increasing slagging thickness increases thermal resistance, reducing heat transfer rate, superheated steam temperature, and turbine power, with turbine power dropping to 191.94962 MW at a 10 mm thickness from 193.19789 MW without slag. Plant efficiency also significantly decreases from 42.131% to 42.035% at a slag thickness of 10 mm with low conductivity. Decreasing slagging thermal conductivity increases thermal resistance, reducing turbine power and efficiency, with efficiency dropping to 42.035% at 0.4 W/mK conductivity compared to 42.084% at 0.7 W/mK. Increased slagging thickness and decreased thermal conductivity reduce plant efficiency, which can be mitigated with optimal maintenance. Proper management of slagging thickness is essential to maintain the efficiency and optimal performance of the boiler and turbine power plant system.

Item Type: Thesis (Other)
Uncontrolled Keywords: Boiler, Daya, Panas, Slag, Superheater, Power, Thermal
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ164 Power plants--Design and construction
T Technology > TJ Mechanical engineering and machinery > TJ263.5 Boilers (general)
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Shofia Tiara Cahyani
Date Deposited: 08 Aug 2024 08:56
Last Modified: 04 Sep 2024 05:40
URI: http://repository.its.ac.id/id/eprint/113556

Actions (login required)

View Item View Item