Rizqi, Akmal (2024) Sistem Kontrol Kecepatan Hospital Mobile Robot Menggunakan PID Controller Pada Bidang Miring. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
2040201089-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (5MB) | Request a copy |
Abstract
Hospital Mobile Robot (HMR) berperan penting dalam logistik otomatis rumah sakit. Namun, robot ini menghadapi masalah dengan kecepatan linear saat melewati medan miring 10 derajat, menyebabkan deviasi dari titik tujuan. Untuk mengatasi masalah ini, metode kontrol tertutup Proportional Integral Derivatif (PID ) diterapkan guna memastikan kestabilan kecepatan linear dan meningkatkan akurasi. PID dirancang untuk menangani gangguan yang mempengaruhi kecepatan akibat beban dan gravitasi. Penelitian ini menggunakan PID Tuner Matlab untuk tuning dan fine tuning guna mendapatkan parameter PID optimal. Kontrol PID diterapkan pada motor DC magnet permanen tipe PG45 dengan spesifikasi 24 VDC, torsi maksimal 25 KgFCm, dan kecepatan angular yang dikonversi ke kecepatan linear. Dengan setpoint 0,314 m/s dan parameter PID kp = 0,25, ki = 1, kd = 0,001 untuk motor kanan serta kp = 0,275, ki = 1, kd = 0,001 untuk motor kiri, sistem berhasil mempertahankan error kecepatan robot sebesar 1,5% pada kemiringan hingga 10 derajat dengan beban maksimal 10 kg. Parameter kontrol seperti settling time, rise time, dan overshoot pada kemiringan 10 derajat masing-masing adalah 2,6 detik, 0,8 detik, dan 16,24%. Akurasi pencapaian titik tujuan HMR mencapai lebih dari 90%. Hasil penelitian menunjukkan bahwa kontrol PID efektif dalam menjaga kecepatan linear dan meningkatkan akurasi robot pada medan miring dengan mempertimbangkan spesifikasi komponen.
=====================================================================================================================================
Hospital Mobile Robot (HMR) plays an important role in automated hospital logistics. However, this robot faces problems with linear speed when passing through 10 degree inclined plane, causing deviation from the aiming point. To overcome this problem, a closed Proportional Integral Derivative (PID) control method is applied to ensure the stability of the linear speed and improve the accuracy. PID is designed to handle disturbances that affect speed due to load and gravity. This research uses Matlab's PID Tuner for tuning and fine tuning to obtain optimal PID parameters. PID control is applied to a PG45 type permanent magnet DC motor with specifications of 24 VDC, maximum torque of 25 KgFCm, and angular speed converted to linear speed. With a setpoint of 0.314 m/s and PID parameters kp = 0.25, ki = 1, kd = 0.001 for the right motor and kp = 0.275, ki = 1, kd = 0.001 for the left motor, the system succeeded in maintaining a robot speed error of 1, 5% on slopes up to 10 degrees with a maximum load of 10 kg. Control parameters such as settling time, rise time, and overshoot at a slope of 10 degrees are 2.6 seconds, 0.8 seconds, and 16.24%, respectively. The accuracy of achieving the HMR goal point reaches more than 90%. The research results show that PID control is effective in maintaining linear speed and increasing robot accuracy on inclined plane by considering component specifications.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | akurasi, bidang miring, kecepatan linear, robot, PID, accuracy, inclined plane, linear speed, robot, PID |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2681.B47 Electric motors, Direct current. T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL152.8 Vehicles, Remotely piloted. Autonomous vehicles. T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL521.3 Automatic Control |
Divisions: | Faculty of Vocational > 36304-Automation Electronic Engineering |
Depositing User: | Akmal Rizqi |
Date Deposited: | 16 Aug 2024 06:16 |
Last Modified: | 16 Aug 2024 06:16 |
URI: | http://repository.its.ac.id/id/eprint/113682 |
Actions (login required)
View Item |