Amaliah, Fina Alfina Nur (2024) Estimasi Variabel Model SEIR pada Masalah Kecanduan Penggunaan Media Sosial TikTok dengan Metode Kalman Filter. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5002201069-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (2MB) | Request a copy |
Abstract
Dalam era industri 4.0, internet dan media sosial menjadi saluran utama komunikasi melalui dunia maya. Penggunaan media sosial di Indonesia berkembang pesat, termasuk salah satunya adalah media sosial TikTok. Penggunaan media sosial TikTok di kalangan masyarakat, terutama di kalangan anak muda, dapat dikhawatirkan akan menimbulkan kecanduan. Kecanduan TikTok bisa berdampak negatif pada kesehatan mental dan kesejahteraan individu. Oleh karena itu, perlu dilakukan kajian mengenai pemodelan dan estimasi variabel pada model kecanduan penggunaan media sosial TikTok, yaitu dengan membangun model penyebaran kecanduan TikTok tipe SEIR (Susceptible-Exposed-Infected-Recovered) dan mengestimasi variabel menggunakan metode Kalman Filter. Berdasarkan hasil penelitian, diperoleh titik kesetimbangan bebas kecanduan E0=(0,0,0,0) dengan bilangan reproduksi dasar R_0=0 dan titik kesetimbangan kecanduan E_1=(2.2248,-1.3106,-0.6802,-0.2257) dengan bilangan reproduksi dasar R_0=-1. Hasil simulasi menunjukkan bahwa dengan iterasi sebanyak 50 kali, estimasi variabel mendekati nilai sebenarnya, namun model SEIR kecanduan TikTok tidak stabil. Nilai MAPE diperoleh dengan persentase kurang dari 10%. Sehingga, estimasi variabel model SEIR dengan metode Kalman Filter pada masalah kecanduan media sosial TikTok memiliki akurasi yang sangat baik.
===============================================================================================
In the era of industry 4.0, the internet and social media have become the primary channels of communication through cyberspace. The use of social media in Indonesia is experiencing rapid growth, with TikTok being one of the prominent platforms. The increasing use of TikTok among the public, especially among young people, raises concerns about the potential for addiction. TikTok addiction could have adverse effects on an individual's mental health and well-being. Therefore, research is needed regarding the modeling and estimation of variables in the TikTok addiction model. This involves building a SEIR (Susceptible-Exposed-Infected-Recovered-Susceptible) type TikTok addiction spread model and estimating variables using the Kalman Filter method. Based on the research results, the addiction-free equilibrium point E0=(0,0,0,0) with basic reproduction number R0=0 is obtained and the addiction equilibrium point E1=(2.2248,-1.3106,-0.6802,-0.2257) with basic reproduction number R0=-1 is obtained. The simulation results show that with 50 iterations, the estimates of the variables approach the actual values, but the TikTok addiction SEIR model is unstable. The MAPE value is obtained with a percentage of less than 10%. Thus, the estimation of SEIR model variables with the Kalman Filter method on the TikTok social media addiction problem has very good accuracy.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Model SEIR, TikTok, Kecanduan, Kalman Filter, SEIR Model, TikTok, Addiction, Kalman Filter |
Subjects: | Q Science > QA Mathematics > QA371 Differential equations--Numerical solutions Q Science > QA Mathematics > QA401 Mathematical models. Q Science > QA Mathematics > QA402.3 Kalman filtering. |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Fina Alfina Nur Amaliah |
Date Deposited: | 06 Aug 2024 04:20 |
Last Modified: | 06 Aug 2024 04:20 |
URI: | http://repository.its.ac.id/id/eprint/113821 |
Actions (login required)
View Item |