Prameswara, Ignatius Andika (2024) Studi Pengaruh State Of Charge, C-Rate Terhadap Karakteristik Generasi Panas Dan Phase Change Material Terhadap Disipasi Panas Pada Proses Charging Baterai Litium Ion IFR 26650. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5007201213-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (16MB) | Request a copy |
Abstract
Penelitian ini dilatarbelakangi oleh maraknya kendaraan listrik pada masa sekarang, dimana penjualannya setiap tahun terus meningkat, diiringi dengan dorongan dari pemerintah dan naiknya kesadaran masyarakat terhadap kelestarian lingkungan. Kebutuhan akan baterai litium ion pun terus naik dari tahun ke tahun. Namun, dalam operasinya baterai litium ion harus dikontrol dalam rentang temperatur yang aman dan bahkan ideal. Salah satu cara mengontrol temperatur baterai adalah dengan sistem manajemen termal baterai PCM. PCM bekerja dengan menyerap kalor sebagai kalor sensibel dan kalor laten, dengan ciri khas dapat menyerap kalor laten dalam jumlah besar di saat perubahan fase. Perbedaan laju pengisian dan State of Charge (SoC) awal pengisian menjadi dua faktor yang berpengaruh kepada temperatur dan pembangkitan panas. State of Charge (SoC) sendiri adalah energi yang terkandung pada baterai, biasa dinyatakan dalam persentase, dan laju pengisian akan dinyatakan dalam C-rate dan arus, di mana pengisian 1C adalah besar arus yang dapat mengisi baterai dari kosong hingga penuh dalam waktu 1 jam. Penelitian ini akan mempelajari pengaruh perubahan laju pengisian dan SoC pada karakteristik pembangkitan panas baterai litium ion IFR 26650, dan disipasi panas baterai pada konveksi bebas dan PCM. Metode yang digunakan untuk menganalisis pembangkitan panas baterai adalah eksperimen di mana temperatur baterai direkam dan data tersebut diolah untuk mendapatkan koefisien konveksi untuk selanjutnya dilakukan perhitungan kalor sensibel dan konveksi untuk mendapatkan pembangkitan panas baterai. Sedangkan untuk disipasi panas akan digunakan simulasi ANSYS FLUENT dengan dilakukan Grid Independency Test, Meshing Quality Test, dan pengumpulan data material untuk mendekati fenomena fisik yang terjadi. Kemudian dilakukan validasi hasil eksperimen dengan membandingkan kurva temperatur hasil eksperimen dan simulasi di variasi laju pengisian 1C rentang 0-100% SoC dengan pendekatan luas trapesium di bawah kurva. Simulasi ini dilakukan dengan input pembangkitan panas dan koefisien konveksi yang didapatkan dari eksperimen untuk mengetahui temperatur tertinggi beserta kontur temperatur apabila baterai menggunakan metode pendinginan PCM. Laju pembangkitan panas diamati meningkat seiring meningkatnya C-rate dan seiring menyempitnya rentang SoC. Temperatur permukaan baterai paling panas terukur di laju pengisian 1,5C rentang pengisian 0-100% metode pendingingan konveksi bebas yaitu senilai 36,23℃, sementara yang terdingin adalah pada laju pengisian 0,5C rentang SoC 50-100% metode pendinginan PCM yaitu senilai 27,97℃. Efektivitas pendinginan diamati meningkat pada C-rate rendah. Untuk laju pengisian 0,5C, efektivitas pendinginan bernilai rata-rata 43,03%, di laju pengisian 1C efektivitas pendinginan bernilai rata-rata 35,54%, dan di laju pengisian 1,5C efektivitas pendinginan bernilai rata-rata 33,83%.
==============================================================================================================================
This research is motivated by the current boom in electric vehicles, where sales continue to increase every year, accompanied by encouragement from the government and increasing public awareness of environmental sustainability. The need for lithium-ion batteries continues to increase from year to year. However, in its operation, lithium-ion batteries must be controlled within a safe and even ideal temperature range. One way to control battery temperature is with the PCM battery thermal management system. PCM works by absorbing heat as sensible heat and latent heat, with the characteristic of being able to absorb large amounts of latent heat during phase changes. The difference in charging rate and the initial State of Charge (SoC) of charging are two factors that affect temperature and heat generation. State of Charge (SoC) itself is the energy contained in the battery, usually expressed as a percentage, and the charging rate will be expressed in C-rate and current, where 1C charging is the amount of current that can charge the battery from empty to full in 1 hour. This study will study the effect of changes in charging rate and SoC on the heat generation characteristics of IFR 26650 lithium ion batteries, and battery heat dissipation in free convection and PCM. The method used to analyze battery heat generation is an experiment in which the battery temperature is recorded and the data is processed to obtain the convection coefficient for further calculation of sensible and convection heat to obtain battery heat generation. Meanwhile, for heat dissipation, ANSYS FLUENT simulation will be used with Grid Independence Test, Meshing Quality Test, and material data collection to approach the physical phenomena that occur. Then the validation of the experimental results is carried out by comparing the temperature curves of the experimental and simulation results at a variation of the 1C charging rate in the range of 0-100% SoC with a trapezoidal area approach under the curve. This simulation is carried out with the input of heat generation and convection coefficients obtained from the experiment to determine the highest temperature along with the temperature contour when the battery uses the PCM cooling method. The heat generation rate is observed to increase with the increasing C-rate and with the narrowing of the SoC range. The hottest battery surface temperature was measured at a charging rate of 1.5C, charging range 0-100%, free convection cooling method, which was 36.23℃, while the coldest was at a charging rate of 0.5C, SoC range 50-100%, PCM cooling method, which was 27.97℃. Cooling effectiveness was observed to increase at low C-rates. For a charging rate of 0.5C, the cooling effectiveness averaged 43.03%, at a charging rate of 1C the cooling effectiveness averaged 35.54%, and at a charging rate of 1.5C the cooling effectiveness averaged 33.83%.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | pengisian, pembangkitan panas, phase change material, disipasi panas, charging, heat generation, heat dissipation |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2921 Lithium cells. |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis |
Depositing User: | Ignatius Andika Prameswara |
Date Deposited: | 26 Aug 2024 02:59 |
Last Modified: | 26 Aug 2024 02:59 |
URI: | http://repository.its.ac.id/id/eprint/114175 |
Actions (login required)
View Item |