Studi Numerik Pengaruh Sudut Bukaan Damper Dan Fluegas Temperature Terhadap Distribusi Temperatur Pada Heat Recovery Steam Generator (HRSG)

Majid, Muhammad Rohman (2024) Studi Numerik Pengaruh Sudut Bukaan Damper Dan Fluegas Temperature Terhadap Distribusi Temperatur Pada Heat Recovery Steam Generator (HRSG). Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6007221031-Master_Thesis.pdf] Text
6007221031-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (5MB) | Request a copy

Abstract

PLTGU (Pembangkit Listrik Tenaga Gas dan Uap) memanfaatkan gas buang panas dari turbin gas kemudian digunakan untuk menghasilkan uap dalam HRSG (Heat Recovery Steam Generator). Uap dari HRSG kemudian digunakan untuk menghasilkan listrik pada turbin uap. Dalam pengoperasian HRSG terdapat salah beberapa variabel yang memiliki pengaruh signifikan terhadap kinerja HRSG antara lain sudut damper dan inlet temperature. Pada PLTGU Tanjung Uncang Batam memilik standar operasional prosedur (SOP) pabrikan, suhu gas buang pada saat damper terbuka harus di bawah 400°C. Namun, gas turbin dengan beban awal 5 MW memiliki suhu gas buang 560°C - 580°C. Oleh karena itu, perlu dilakukan pelepasan beban gas turbin atau FSNL (Full Speed No Load) untuk menurunkan inlet temperature dari gas turbin. Selama FSNL terdapat SOP bukaan sudut diverter damper yaitu 51°, 68°, dan 90° . Hal tersebut melatarbelakangi diperlukannya analisis pengaruh sudut bukaan diverter damper dan inlet temperature terhadap pola aliran dan distribusi temperatur. Analisis dilakukan dengan CFD (Computational fluid dynamics) dengan software ANSYS Fluent 2020. Variasi yang digunakan yaitu nilai sudut diveter damper 51°, 68°, dan 90° yang dikombinasikan dengan inlet temperature 400°C dan 580°C. Output dari simulasi adalah kontur kecepatan, kontur temperatur, dan equivalent stress pada suerheater tube. Hasil simulasi HRSG, kontur kecepatan dan temperatur menunjukan bahwa flue gas tidak terdistribusi secara merata. Gas buang turbin hanya tersebar sepanjang 4 – 11 m. Hal ini mengakibatkan produksi steam dari superheater menjadi lebih lambat. Selain itu dari hasil kalkulasi berdasarkan kondisi operasi, pada temperatur flue gas 580°C, laju aliran uap memengaruhi temperatur dinding tube. Analisis menunjukkan bahwa pada laju aliran uap sebesar 0,0576 ton/h, temperatur dinding tabung dapat meningkat hingga 541,84°C, yang menyebabkan batas kekuatan material menurun secara signifikan menjadi 143,94 MPa. Laju aliran uap yang ideal adalah 2,484 ton/jam, yang mana batas kekuatan material tetap hampir sama dengan kondisi operasi saat ini (400°C). Dengan demikian kondisi laju aliran uap 2,484 ton/jam yang aman untuk suhu tube, terdapat potensi penghematan biaya. Penghematan dari penggunaan air demineralisasi mencapai Rp24.708.240 per start up. = CCGT (Combined Cycle Gas Turbine) utilises the hot flue gas from the gas turbine to produce steam in the HRSG (Heat Recovery Steam Generator). The steam from the HRSG is then used to generate electricity in the steam turbine. In HRSG operation, there are several variables that have a significant influence on HRSG performance, including damper angle and inlet temperature. At PLTGU Tanjung Uncang Batam has a manufacturer's standard operating procedure (SOP), the exhaust gas temperature when the damper is open must be below 400°C. However, the turbine gas with an initial load of 5 MW has an exhaust gas temperature of 560°C - 580°C. Therefore, it is necessary to remove the turbine gas load or FSNL (Full Speed No Load) to reduce the inlet temperature of the turbine gas. During FSNL, there are SOPs for diverter damper angle openings, namely 51°, 68°, and 90°. This is the reason why it is necessary to analyse the effect of diverter damper opening angle and inlet temperature on flow pattern and temperature distribution. The analysis was conducted using CFD (Computational fluid dynamics) with ANSYS Fluent 2020 software. The variations used are the diverter damper angle values of 51°, 68°, and 90° combined with inlet temperatures of 400°C and 580°C. The outputs of the simulation are velocity vectors, velocity contours, and temperature distribution contours. HRSG simulation results, velocity and temperature contours show that the flue gas is not evenly distributed. The turbine flue gas is only spread along 4 - 11 m. This results in slower steam production from the superheater. Apart from that, from the results of calculations based on operation conditions, at a flue gas temperature of 580°C, the steam flow rate affects the tube wall temperature. Analysis shows that at a steam flow rate of 0.0576 ton/h, the tube wall temperature can increase to 541.84°C, which causes the material strength limit to decrease significantly to 143.94 MPa. The ideal steam flow rate is 2,484 tons/hour, at which the material strength limits remain almost the same as the current operating conditions (400°C). Thus, if the steam flow rate is 2.484 tons/hour, which is safe for the tube temperature, there is potential for cost savings. Savings from using demineralized water reach IDR 24,708,240 per start up process.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Heat Recovery Steam Generator, Diverter Damper, Inlet Temperature, Full Speed no Load
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ164 Power plants--Design and construction
T Technology > TJ Mechanical engineering and machinery > TJ263 Heat exchangers
T Technology > TJ Mechanical engineering and machinery > TJ263.5 Boilers (general)
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21101-(S2) Master Thesis
Depositing User: Muhammad Rohman Majid
Date Deposited: 06 Aug 2024 17:57
Last Modified: 06 Aug 2024 17:57
URI: http://repository.its.ac.id/id/eprint/114277

Actions (login required)

View Item View Item