Agustina, Nur Aini Amalia Dinda (2024) Studi Monitoring Konsumsi Bahan Bakar Kapal Pada Perusahaan Pelayaran Berbasis Arsitektur Big Data. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
6018221011-Master_Thesis.pdf - Accepted Version Restricted to Registered users only until 1 October 2026. Download (18MB) | Request a copy |
Abstract
Industri maritim merupakan salah satu industri tertua dalam rantai pasokan global yang telah membentuk ekosistem global dengan mengatur kebutuhannya sendiri dan saling terhubung dengan informasi. Namun, karakteristik operasional kapal yang erat kaitannya dengan konsumsi bahan bakar banyak minyak dipengarui oleh kecepatan, displacement, trim, cuaca dan lain-lain telah menimbulkan masalah serius pada sistem monitoring konsumsi bahan bakar. Selama ini data operasional yang telah terkumpul hanya dihimpun tanpa adanya pengolahan lebih lanjut untuk dapat mengambil informasi tambahan yang semestinya bisa didapatkan. Oleh karena itu, diperlukan arsitektur dan analisis big data yang dapat membantu proses monitoring. Pengumpulan dan sistem pengaturan data operasional akan memanfaatkan arsitektur big data untuk proses data input, proses dan output. Serta analisis big data digunakan untuk menggali informasi lebih banyak dari data yang telah tersedia sesuai langkah kerja data mining jenis clustering dengan metode k-means clustering. Sebelum data melewati proses clustering, pertama data akan melewati proses filtering. Filtering data guna menghapus data yang tidak akurat atau tidak valid untuk dipertanggung jawabkan. Proses ini merupakan langkah penting sehingga akan dilakukan beberapa tahap filtering untuk memastikan data yang akan diklaster merupakan data yang akurat dan valid untuk dipertanggung jawabkan. Hasil dari arsitektur dan analisis big data akan diimplementasikan pada perangkat lunak yang dikembangkan peneliti untuk mendukung proses pengumpulan data hingga penyajian data sesesuai dengan karakteristik big data
=====================================================================================================================================
The maritime industry is one of the oldest industries in the global supply chain that has formed a global ecosystem by managing its own needs and connecting with information. However, the operational characteristics of ships that are closely related to fuel consumption, many oils are affected by speed, displacement, trim, weather and others have caused serious problems in the fuel consumption monitoring system. So far, the operational data that has been collected has only been collected without further processing to be able to retrieve additional information that should have been obtained. Therefore, a big data architecture and analysis are needed that can assist the monitoring process. The collection and management system of operational data will utilize the big data architecture for input, process and output data processing. And big data analysis is used to dig up more information from the available data according to the data mining work steps of the clustering type with the k-means clustering method. Before the data goes through the clustering process, the data will first go through the filtering process. Data filtering is used to remove inaccurate or invalid data to be accounted for. This process is an important step so that several filtering stages will be carried out to ensure that the data to be clustered is accurate and valid data to be accounted for. The results of big data architecture and analysis will be implemented in software developed by researchers to support the data collection process to data presentation in accordance with the characteristics of big data.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Konsumsi Bahan Bakar, Arsitektur Big data, Clustering, Filtering Fuel oil consumption, Architecture big data, Clustering, Filtering |
Subjects: | V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM293 Shipping--Indonesia--Safety measures V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM731 Marine Engines |
Divisions: | Faculty of Marine Technology (MARTECH) > Naval Architecture and Shipbuilding Engineering > 36101-(S2) Master Thesis |
Depositing User: | Nur Aini Amalia Dinda Agustina |
Date Deposited: | 10 Aug 2024 15:11 |
Last Modified: | 26 Aug 2024 03:01 |
URI: | http://repository.its.ac.id/id/eprint/114663 |
Actions (login required)
View Item |