Analisis Kekeringan Di Provinsi Jawa Timur Menggunakan Regional Frequency Analysis

Saputra, Chiko Hongli (2024) Analisis Kekeringan Di Provinsi Jawa Timur Menggunakan Regional Frequency Analysis. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5003201074-Undergraduate_Thesis.pdf] Text
5003201074-Undergraduate_Thesis.pdf
Restricted to Repository staff only until 1 October 2026.

Download (2MB) | Request a copy

Abstract

Kekeringan merupakan kondisi kekurangan air yang mengakibatkan kerugian pada kegiatan ekonomi. Hal tersebut dapat terjadi dikarenakan beberapa faktor, seperti curah hujan rendah, kondisi iklim El Nino, dan luasnya lahan kritis akibat kerusakan hutan. Dalam konteks hidrologi, kekeringan menunjukkan air di sungai, danau, waduk, dan tempat serupa berada di bawah normal. Badan Nasional Penanggulangan Bencana (BNPB) mencatat hingga 27 Agustus 2023, kekeringan melanda lima dari enam provinsi yang ada di Pulau Jawa, salah satunya Provinsi Jawa Timur. Oleh karena itu, penelitian ini mengkaji kekeringan di Provinsi Jawa Timur menggunakan Regional Frequency Analysis (RFA). Data curah hujan harian sejak tahun 2018-2023 digunakan dalam analisis. Tahap awal analisis yaitu clustering, yang menghasilkan 4 region homogen dan 1 region heterogen dari 11 stasiun pengamatan. Setiap region dicari distribusi regional yang sesuai dengan pendekatan L-moment dan didapatkan hasil distribusi Pearson type III (PE3) sesuai dengan kelima region. Distribusi ini digunakan untuk menghitung regional growth curve yang digunakan dalam analisis kekeringan. Analisis return period kekeringan dengan kondisi curah hujan 40% dari keadaan normal menghasilkan kesimpulan bahwa region 1 (Stasiun Pengamatan Banyuwangi dan Trunojoyo) merupakan region dengan risiko kekeringan paling tinggi ditunjukkan dengan estimasi return period paling cepat yaitu 2 tahun 2 bulan. Sedangkan, analisis kekeringan ekstrem menunjukkan hasil bahwa region 1 dan 5 berpotensi mengalami kekeringan ekstrem hingga 20% normal dalam kurun waktu kurang dari 4 tahun.
========================================================================================================================
Drought is a condition of water shortage that results in losses in economic activities. This can occur due to several factors, such as low rainfall, El Nino climate conditions, and the extent of critical land due to forest damage. In the context of hydrology, drought indicates that water in rivers, lakes, reservoirs, and similar places is below normal. The National Disaster Management Agency (BNPB) noted that until 27 August 2023, drought hit five of the six provinces on the island of Java, one of which was East Java Province. Therefore, this research examines the drought in East Java Province using Regional Frequency Analysis (RFA) . Daily rainfall data from 2018-2023 is used in the analysis. The initial stage of analysis is clustering, which produces 4 homogeneous regions and 1 heterogeneous region from 11 observation stations. For each region, the regional distribution was searched for in accordance with the L-moment approach and the Pearson type III (PE3) distribution results were obtained according to the five regions. This distribution is used to calculate the regional growth curve used in drought analysis. Analysis of the return period of drought with rainfall conditions of 40% of normal conditions resulted in the conclusion that region 1 (Banyuwangi and Trunojoyo Observation Stations) is the region with the highest risk of drought as indicated by the fastest estimated return period, namely 2 years and 2 months. Meanwhile, analysis of extreme drought shows that regions 1 and 5 have the potential to experience extreme drought of up to 20% of normal in less than 4 years

Item Type: Thesis (Other)
Uncontrolled Keywords: Kekeringan, Curah Hujan, RFA, Return Period, Drought, Rainfall, RFA, Return Period
Subjects: H Social Sciences > HA Statistics > HA31.7 Estimation
Q Science > QA Mathematics > QA278.55 Cluster analysis
S Agriculture > S Agriculture (General) > S600.7.R35 Rain and rainfall
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: Chiko Hongli Saputra
Date Deposited: 08 Aug 2024 03:33
Last Modified: 08 Aug 2024 03:33
URI: http://repository.its.ac.id/id/eprint/114808

Actions (login required)

View Item View Item