Zubaidi, Faisal (2024) Pemodelan Inflasi Bulanan Provinsi Jawa Timur Menggunakan Autoregressive Distributed Lag (ARDL). Other thesis, Institut Teknologi Sepuluh Nopember.
| ![[thumbnail of 5003201096-Undergraduate_Thesis.pdf]](http://repository.its.ac.id/style/images/fileicons/text.png) | Text 5003201096-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (1MB) | Request a copy | 
Abstract
Inflasi merupakan indikator penting dalam ekonomi yang mempengaruhi stabilitas dan 
pertumbuhan ekonomi suatu negara. Untuk mengelola inflasi dengan efektif, diperlukan pemahaman 
mendalam tentang faktor-faktor yang memengaruhinya, seperti jumlah uang beredar, BI rate, dan 
nilai tukar rupiah terhadap USD. Di Jawa Timur, penelitian mengenai hubungan antara inflasi dan 
variabel-variabel tersebut sangat relevan untuk pembuatan kebijakan ekonomi. Penelitian ini 
bertujuan untuk menganalisis hubungan jangka pendek dan jangka panjang antara inflasi dengan 
jumlah uang beredar, BI rate, dan nilai tukar rupiah terhadap USD di Jawa Timur menggunakan 
pendekatan Autoregressive Distributed Lag (ARDL). Data bulanan dari Januari 2015 hingga 
Desember 2023 digunakan dalam analisis ini. Hasil pengujian kointegrasi menunjukkan adanya 
hubungan jangka panjang antara variabel-variabel tersebut. Model ARDL(1,2,1,2) terpilih 
berdasarkan nilai Akaike Information Criterion (AIC), menunjukkan kemampuan yang baik dalam 
memodelkan dinamika hubungan antara variabel-variabel tersebut. Pengujian signifikansi parameter 
simultan menunjukkan bahwa semua variabel berpengaruh secara serentak, dengan variabel inflasi 
periode sebelumnya, perubahan relatif jumlah uang beredar saat ini dan dua periode sebelumnya, 
perubahan relatif BI rate periode saat ini dan periode sebelumnya, dan perubahan relatif nilai tukar 
periode sebelumnya berpengaruh secara parsial terhadap inflasi. Dari analisis uji autokorelasi, dan uji 
heteroskedastisitas menunjukkan bahwa model regresi yang digunakan tidak memiliki masalah 
autokorelasi dan heteroskedastisitas yang signifikan.
========================================================================================================================
Inflation is a crucial economic indicator that affects the stability and growth of a country's 
economy. Effectively managing inflation requires a deep understanding of the factors that influence 
it, such as the money supply, BI rate, and the exchange rate of the rupiah against the USD. In East 
Java, research on the relationship between inflation and these variables is highly relevant for 
economic policymaking. This study aims to analyze the short-term and long-term relationships 
between inflation, money supply, BI rate, and the exchange rate of the rupiah against the USD in 
East Java using the Autoregressive Distributed Lag (ARDL) approach. Monthly data from January 
2015 to December 2023 are used in this analysis. The cointegration test results indicate a long-term 
relationship between these variables. The ARDL(1,2,1,2) model was selected based on the Akaike 
Information Criterion (AIC), demonstrating a good capability in modeling the dynamics of the 
relationships between these variables. The simultaneous parameter significance test shows that all 
variables simultaneously influence inflation, with the previous period's inflation, the current and two 
previous periods' relative changes in the money supply, the current and previous period's relative 
changes in the BI rate, and the previous period's relative changes in the exchange rate partially 
affecting inflation. Analysis of the autocorrelation and heteroskedasticity tests indicates that the 
regression model used does not have significant autocorrelation and heteroskedasticity issues.
| Item Type: | Thesis (Other) | 
|---|---|
| Uncontrolled Keywords: | ARDL, BI rate, Inflasi, Jumlah Uang Beredar, Nilai Tukar Rupiah. ARDL, BI Rate, Broad Money Supply, Inflation, Rupiah Exchange Rate. | 
| Subjects: | H Social Sciences > HC Economic History and Conditions > HC441 Macroeconomics. | 
| Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis | 
| Depositing User: | Faisal Zubaidi | 
| Date Deposited: | 08 Aug 2024 11:56 | 
| Last Modified: | 08 Aug 2024 11:56 | 
| URI: | http://repository.its.ac.id/id/eprint/114899 | 
Actions (login required)
|  | View Item |