Pemodelan Zero-Inflated Poisson Inverse Gaussian Regression dan Zero-Inflated Generalized Poisson Regression terhadap Jumlah Kejadian Campak di Kabupaten Pamekasan dan Sumenep

Royyanah, Atika Nur (2024) Pemodelan Zero-Inflated Poisson Inverse Gaussian Regression dan Zero-Inflated Generalized Poisson Regression terhadap Jumlah Kejadian Campak di Kabupaten Pamekasan dan Sumenep. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5003201140-Undergraduate_Thesis.pdf] Text
5003201140-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (1MB) | Request a copy

Abstract

Penyakit campak merupakan satu dari penyakit infeksi yang menjadi penyebab kematian bayi di seluruh dunia dan meningkat setiap tahun. Campak diakibatkan oleh virus dan komplikasi penyakit campak antara lain radang selaput otak (meningitis), radang paru – paru, infeksi telinga . Pada tahun 2022 di Indonesia terjadi 3.341 kasus campak, sedangkan di Jawa Timur terjadi 443 kasus campak. Umunya campak bisa dicegah dan diatasi dengan pemberian imunisasi dasar lengkap (IDL) yang biasanya diberikan pada anak namun juga bisa diberikan pada orang dewasa. Pada penelitian ini akan dilakukan pemodelan faktor-faktor yang diduga mempengaruhi jumlah kejadian penyakit campak di Kabupaten Pamekasan dan Sumenep Tahun 2022 menggunakan Zero-Inflated Generalized Poisson Regression (ZIGPR) dan Zero-Inflated Poisson Invers Gaussian Regression (ZIPIGR) Faktor-faktor yang diduga mempengaruhi penyakit campak baik pada model tipe satu dan dua adalah adalah rasio jumlah fasilitas kesehatan, kepadatan penduduk, rasio jumlah anak usia <12 bulan yang mendapat imunisasi dasar lengkap, rasio pemberian vitamin A pada anak usia <12 bulan, dan rasio jumlah tenaga medis. Berdasarkan kedua metode, didapatkan model terbaik untuk tipe satu adalah ZIGPR dengan exposure sedangkan model terbaik tipe dua adalah ZIPIGR dengan exposure. Dari hasil penelitian ini diharapkan dapat menjadi bahan pertimbangan bagi pemerintah agar dapat menurunkan jumlah penderita penyakit campak di Kabupaten Pamekasan dan Kabupaten Sumenep.
=====================================================================================================================================================
Measles is one of the infectious diseases that causes infant mortality throughout the world and increases every year. Measles is caused by a virus and complications of measles include inflammation of the lining of the brain (meningitis), inflammation of the lungs, ear infections. In 2022 in Indonesia there will be 3,341 cases of measles, while in East Java there will be 443 cases of measles. In general, measles can be prevented and treated by providing complete basic immunization (IDL), which is usually given to children but can also be given to adults. In this research, we will model the factors that are thought to influence the number of measles cases in Pamekasan and Sumenep Regencies in 2022 using Zero-Inflated Generalized Poisson Regression and Zero-Inflated Poisson Inverse Gaussian Regression. Factors thought to influence measles in both type one and type two models are the ratio of the number of health workers, population density, the ratio of the number of children aged <12 months who receive complete basic immunization, the ratio of vitamin A administration to children aged <12 months, and ratio of the number of medical personnel. Based on both methods, the best model for type one is ZIGPR with exposure, while the best model for type two is ZIPIGR with exposure. It is hoped that the results of this research can be used as consideration for the government to reduce the number of measles sufferers in Pamekasan Regency and Sumenep Regency.

Item Type: Thesis (Other)
Uncontrolled Keywords: Measles, Zero-Inflated Generalized Poisson Regression, Zero-Inflated Poisson Invers Gaussian Regression, Campak, Regresi Zero-Inflated Generalized Poisson, Regresi Zero-Inflated Poisson Invers Gaussian.
Subjects: H Social Sciences > HA Statistics > HA29 Theory and method of social science statistics
H Social Sciences > HA Statistics > HA31.3 Regression. Correlation
H Social Sciences > HA Statistics > HA31.7 Estimation
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: Atika Nur Royyanah
Date Deposited: 08 Aug 2024 07:25
Last Modified: 08 Aug 2024 07:25
URI: http://repository.its.ac.id/id/eprint/114931

Actions (login required)

View Item View Item