The Effect of Stress Level on Susceptibility Hydrogen Induced Charging of Pipe ASTM A210 Grade A1: Combined Experimental and Numerical Method

Rahardjo, Thomas Teguh (2024) The Effect of Stress Level on Susceptibility Hydrogen Induced Charging of Pipe ASTM A210 Grade A1: Combined Experimental and Numerical Method. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6007212016-Master_Thesis.pdf] Text
6007212016-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (12MB)

Abstract

Pipa baja karbon rendah digunakan pada industri petrochemical sebagai transport fluida. Salah satu fluida yang ditranspot ialah H2SO4. Pada saat kondisi tertentu pipa dalam aplikasi, hydrogen bisa berdifusi ke dalam pipa, selanjutnya mengakibatkan hydrogen damage [1], [2], [3], [4]. Kondisi tersebut dipengaruhi oleh beberapa faktor, diantaranya adalah stress level. Dalam penelitian ini, dipelajari transport hydrogen ke dalam lapisan logam yang pada waktunya mengakibatkan terjadinya hydrogen damage berupa hydrogen blister sebagai fungsi pengaruh stress level. Pada eksperimen ini digunakan pipa ASTM A210 Grade A1 dimana spesimen uji dibentuk berdasarkan standard ASTM G-38. Pipa dikondisikan berbeda, yaitu as-received, dan annealed. Material as-received hasil hot working [5], sedangkan annealed diberikan annealing treatment pada temperatur 600 ⁰ C [6], [7] dengan holding time 2 jam untuk mengetahui kerentanan terhadap hydrogen blister. Stress level yang digunakan adalah 89.5 MPa, 179 MPa, 268.5 MPa, dan 322.2 MPa yang merupakan fungsi displacement ujung C-Ring sebesar 0.28 mm, 0.56 mm, 0.83 mm, dan 1.00 mm. Setelah dilakukan pembembanan, benda uji dilapisi nickel dengan metode electroplating dalam usaha meningkatkan ketahanan terhadap korosi. Data primer didapatkan dari hasil eksperimen electrochemical hydrogen induced charging berdasarkan NACE TM-0177 dengan kondisi pH 0.86, temperatur 60 Celcius, waktu uji 4 jam, current density 0.7196 A. Data sekunder berupa stress distribution, yang diperoleh dari simulasi ANSYS Static Structural dengan input karakter material, digunakan untuk mengkonfirmasi data primer dengan melakukan overlay.
Hasil eksperimen menunjukkan bahwa kombinasi material, lingkungan, dan stress level kisaran 268.5 MPa hingga 322.2 MPA sensitif terhadap hydrogen damage dikedua kondisi material dengan media H2SO4. Serangan hydrogen damage paling agresif terjadi pada spesimen as-received dengan stress level 268.5 MPa. Pada spesimen annealed dengan stress level 268.5 MPa menunjukkan kerentanan yang paling rendah. Hal ini dibuktikan oleh jumlah hydrogen blister yang paling sedikit.
=================================================================================================================================
Low-carbon steel pipes are used in the petrochemical industry for fluid transport. One such fluid is H2SO4. Under certain conditions, hydrogen can occur in the pipe and diffuse into it, leading to hydrogen damage [1], [2], [3], [4]. This condition is influenced by several factors, including stress level. This study investigates the transport of hydrogen into the metal layer, which may lead to hydrogen damage such as hydrogen blistering. In this experiment, ASTM A210 Grade A1 pipes are used and test specimens are formed based on ASTM G-38 standards. The pipes are conditioned differently: as-received and annealed. The as-received material results from hot working [5], while the annealed material undergoes annealing treatment at 600°C [5] with a holding time of 2 hours to assess susceptibility to hydrogen blistering. The stress levels employed were 89.5 MPa, 179 MPa, 268.5 MPa and 322.2 MPa as functions of C-Ring tip displacement of 0.28 mm, 0.56 mm, 0.83 mm and 1.00 mm, respectively. After loading, the test specimens are coated with nickel using the electroplating method to enhance corrosion resistance. Primary data are obtained from electrochemical hydrogen-induced charging experiments based on NACE TM-0177, with conditions of pH 0.86, temperature 60°C, test time 4 hours and current density 0.7196 A. Secondary data in the form of stress distribution, obtained from ANSYS Static Structural simulation with material character input, was used to confirm the primary data by overlaying. The experimental findings reveal that the combination of material, environment, and stress level in the range of 268.5 MPa to 322.2 MPa is susceptible to hydrogen damage in both material conditions and H2SO4 media. The as-received specimen had the most extreme hydrogen damage assault, with a stress level of 268.5 MPa. The annealed specimen with a stress level of 268.5 MPa had the lowest susceptibility. This is indicated by the lowest amount of hydrogen blisters.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Annealing, Stress Level, Electrochemical Hydrogen Induced Charging, Hydrogen Blister, Stress Distribution
Subjects: Q Science > QD Chemistry > QD115 Electrochemical analysis
Q Science > QD Chemistry > QD553 Electrochemistry. Electrolysis
T Technology > T Technology (General) > T57.62 Simulation
T Technology > TA Engineering (General). Civil engineering (General) > TA169.5 Failure analysis
T Technology > TA Engineering (General). Civil engineering (General) > TA347 Finite Element Method
T Technology > TA Engineering (General). Civil engineering (General) > TA418.16 Materials--Testing.
T Technology > TA Engineering (General). Civil engineering (General) > TA418.42 Hardness properties and tests. Hardness--Testing.
T Technology > TA Engineering (General). Civil engineering (General) > TA645 Structural analysis (Engineering)
T Technology > TJ Mechanical engineering and machinery > TJ561 Surface
T Technology > TJ Mechanical engineering and machinery > TJ930 Pipelines (General). Underwater pipelines.
T Technology > TN Mining engineering. Metallurgy > TN689+ Physical metallurgy
T Technology > TN Mining engineering. Metallurgy > TN690 Metallography. Physical metallurgy
T Technology > TN Mining engineering. Metallurgy > TN752.I5 Steel--Heat treatment
T Technology > TN Mining engineering. Metallurgy > TN799.N6 Nickel--Metallurgy
T Technology > TN Mining engineering. Metallurgy > TN880.5 Natural gas pipelines
T Technology > TP Chemical technology > TP155.7 Chemical processes.
T Technology > TP Chemical technology > TP255 Electrochemistry, Industrial.
T Technology > TS Manufactures > TS320 Steel--Metallurgy.
T Technology > TS Manufactures > TS670 Electroplating
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Industrial Engineering > 26101-(S2) Master Thesis
Depositing User: Thomas Teguh Rahardjo
Date Deposited: 08 Aug 2024 03:30
Last Modified: 28 Aug 2024 04:26
URI: http://repository.its.ac.id/id/eprint/115056

Actions (login required)

View Item View Item