Optimasi Automatic Transfer Switch Dari Sumber Permanent Magnet Generator Dan Grid Menggunakan Metode Particle Swarm Optimization (PSO)

Putri, Aurelya Nabila (2024) Optimasi Automatic Transfer Switch Dari Sumber Permanent Magnet Generator Dan Grid Menggunakan Metode Particle Swarm Optimization (PSO). Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 2040201141-Undergraduate-Thesin for D4 Program.pdf] Text
2040201141-Undergraduate-Thesin for D4 Program.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (7MB) | Request a copy

Abstract

Energi listrik memainkan peranan penting dalam mendukung teknologi telekomunikasi modern seperti jaringan 5G, Internet of Things (IoT), dan komunikasi data berkecepatan tinggi. Kebutuhan akan pasokan energi yang stabil dan optimal sangat penting untuk memastikan kelancaran operasional teknologi ini. Sumber energi fosil yang masih dominan memiliki sifat tidak terbarukan, sehingga memerlukan solusi alternatif yang berkelanjutan. Salah satu teknologi yang dapat digunakan adalah pemanfaatan energi kinetik dari putaran flywheel yang digerakan oleh motor penggerak untuk diubah menjadi energi listrik melalui Permanent Magnet Generator (PMG). Penelitian ini mengkaji penggunaan PMG sebagai sumber utama energi listrik untuk menara Base Transceiver Station (BTS). Kestabilan operasional BTS sangat penting untuk menjaga kinerja optimalnya. Namun, daya PMG tidak selalu efisien dan dapat mengalami rugi-rugi daya. Oleh karena itu dirancang dan diimplementasikan sistem Automatic Transfer Switch (ATS) yang secara otomatis mengalihkan suplai listrik dari PMG ke sumber alternatif jika rugi-rugi daya PMG melebihi nilai optimal. Analisis karakteristik PMG dilakukan dengan menggunakan metode Particle Swarm Optimization (PSO) untuk menentukan nilai rugi-rugi daya optimumnya berdasarkan data pembebanan yaitu. Proses meliputi akusisi data arus, tegangan dan frekuensi motor penggerak dan PMG serta penentuan parameter PSO. Pengujian ini mengevaluasi kinerja PMG dengan menguji lima jenis beban berbeda: 180Watt, 550Watt, 1050Watt, 3500Watt, dan 5050Watt. Hasil penelitian menunjukkan bahwa pada beban 180Watt pada frekuensi 50,90Hz dan tegangan 264,04Volt, kerugian daya aktif maksimum mencapai 518,11Watt. Sementara itu, pada beban 550Watt dengan frekuensi 50,83 Hz dan tegangan 683,52Volt, kerugian daya aktif maksimum tercatat sebesar 179,96Watt. PMG tidak mengalami rugi-rugi daya aktif ketika PMG dibebani 1300Watt, 2050Watt dan 5050Watt, hal ini dikarenakan PMG menghasilkan daya aktif yang lebih besar dari pada daya aktif motor penggerak, dengan nilai daya aktif maksimum yang dihasilkan PMG sebesar 1696,70Watt sedangkan untuk nilai daya aktif motor penggerak sebesar 1028,67Watt. Dengan demikian, PMG mengalami rugi-rugi daya aktif ketika beban 180Watt sampai 550watt dan tidak mengalami rugi-rugi daya aktif ketika beban 1300Watt hingga 5050 Watt
=====================================================================================================================================
Electrical energy plays an important role in supporting modern telecommunication technologies such as 5G networks, the Internet of Things (IoT), and high-speed data communications. The need for a stable and optimal energy supply is essential to ensure the smooth operation of this technology. Fossil energy sources that are still dominant are non-renewable, so they require sustainable alternative solutions. One technology that can be used is the utilization of kinetic energy from the rotation of the flywheel driven by the drive motor to be converted into electrical energy through a Permanent Magnet Generator (PMG). This study examines the use of PMG as the main source of electrical energy for Base Transceiver Station (BTS) towers. The operational stability of BTS is very important to maintain its optimal performance. However, PMG power is not always efficient and can experience power losses. Therefore, an Automatic Transfer Switch (ATS) system was designed and implemented which automatically switches the electricity supply from PMG to alternative sources if PMG power losses exceed the optimal value. Analysis of PMG characteristics was carried out using the Particle Swarm Optimization (PSO) method to determine the optimum power loss value based on loading data, namely. The process includes the acquisition of current, voltage and frequency data of the drive motor and PMG and the determination of PSO parameters. This test evaluates the performance of the PMG by testing five different types of loads: 180Watt, 550Watt, 1050Watt, 3500Watt, and 5050Watt. The results showed that at a load of 180Watt at a frequency of 50.90Hz and a voltage of 264.04Volt, the maximum active power loss reached 518.11Watt. Meanwhile, at a load of 550Watt with a frequency of 50.83 Hz and a voltage of 683.52Volt, the maximum active power loss was recorded at 179.96Watt. PMG does not experience active power losses when PMG is loaded with 1300Watt, 2050Watt and 5050Watt, this is because PMG produces more active power than the active power of the driving motor, with the maximum active power value produced by PMG of 1696.70Watt while the active power value of the driving motor is 1028.67Watt. Thus, PMG experiences active power losses when the load is 180Watt to 550Watt and does not experience active power losses when the load is 1300Watt to 5050Wat

Item Type: Thesis (Other)
Uncontrolled Keywords: Automatic Transfer Switch (ATS), Base Transceiver Station (BTS), Permanent; Magnet Generator (PMG), Rugi-Rugi Daya Aktif.
Subjects: Q Science > QA Mathematics > QA336 Artificial Intelligence
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1001 Production of electric energy or power
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control
Divisions: Faculty of Vocational > 36304-Automation Electronic Engineering
Depositing User: Aurelya Nabila Putri
Date Deposited: 28 Aug 2024 01:03
Last Modified: 28 Aug 2024 01:03
URI: http://repository.its.ac.id/id/eprint/115547

Actions (login required)

View Item View Item