Aplikasi Simulasi Monte Carlo untuk Prediksi dan Optimalisasi Pembagian Bidang PKL bagi Peserta PKL PPSDM Migas

Aqila, Muhammad Haekhal (2024) Aplikasi Simulasi Monte Carlo untuk Prediksi dan Optimalisasi Pembagian Bidang PKL bagi Peserta PKL PPSDM Migas. Project Report. [s.n.], [s.l.]. (Unpublished)

[thumbnail of 5006211032-Project_Report.pdf] Text
5006211032-Project_Report.pdf - Accepted Version
Restricted to Repository staff only

Download (1MB) | Request a copy

Abstract

Laporan kerja praktik ini mengkaji penggunaan Simulasi Monte Carlo untuk memprediksi dan mengoptimalkan pembagian peserta PKL di PPSDM Migas. Data peserta tahun 2023 dianalisis menggunakan statistik deskriptif dan simulasi Monte Carlo dengan dua metode pembangkitan angka acak: Linear Congruential Generator (LCG) dan RANDBETWEEN Excel. Hasil menunjukkan tren peningkatan jumlah peserta, dengan LCG menghasilkan variabilitas lebih tinggi dan fleksibilitas dalam simulasi, sedangkan RANDBETWEEN memberikan proyeksi stabil. Prediksi tahun pertama memperkirakan 1.861 peserta menggunakan LCG dan 1.648 menggunakan RANDBETWEEN, sementara angka tahun kedua meningkat menjadi 1.943 dan 1.861. Analisis menunjukkan mayoritas peserta adalah mahasiswa dibandingkan siswa SMA, dengan rasio sekitar 0,64:0,36 (LCG) dan 0,68:0,32 (RANDBETWEEN). Temuan ini membantu PPSDM Migas merencanakan sumber daya, fasilitas, dan jadwal secara lebih efektif untuk memastikan persiapan optimal dalam periode PKL mendatang.
============================================================================================================================
This internship report explores the use of Monte Carlo Simulation to predict and optimize the allocation of internship participants at PPSDM Migas. The study analyzes data from 2023 participants using descriptive statistics and Monte Carlo simulation with two random number generation methods: Linear Congruential Generator (LCG) and Excel’s RANDBETWEEN. Results show an increasing trend in participant numbers, with LCG producing greater variability and flexibility in simulations, while RANDBETWEEN offers stable projections. The first-year predictions estimate 1,861 participants using LCG and 1,648 using RANDBETWEEN, while second-year figures rise to 1,943 and 1,861, respectively. The analysis identifies a consistent majority of university students over high school participants, with ratios of approximately 0.64:0.36 (LCG) and 0.68:0.32 (RANDBETWEEN). These findings enable PPSDM Migas to plan resources, facilities, and schedules more effectively, ensuring optimal preparation for future internship periods.

Item Type: Monograph (Project Report)
Uncontrolled Keywords: Linear Congruential Generator, Prediksi, RANDBETWEEN, Simulasi Monte Carlo,Linear Congruential Generator, Monte Carlo Simulation, Prediction, RANDBETWEEN
Subjects: Q Science > QA Mathematics
Q Science > QA Mathematics > QA273.5 Stochastic geometry
Q Science > QA Mathematics > QA274.2 Stochastic analysis
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Actuaria > 94203-(S1) Undergraduate Thesis
Depositing User: Muhammad Haekhal Aqila
Date Deposited: 03 Jan 2025 06:39
Last Modified: 03 Jan 2025 06:39
URI: http://repository.its.ac.id/id/eprint/116106

Actions (login required)

View Item View Item