Penilaian Risiko Operasi Pengangkatan Struktur Topside dengan Metode Fuzzy-Bayesian Inference

Salsabilla, Nazwa (2025) Penilaian Risiko Operasi Pengangkatan Struktur Topside dengan Metode Fuzzy-Bayesian Inference. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5020211048-Undergraduate_Thesis.pdf] Text
5020211048-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (4MB) | Request a copy

Abstract

Menurut World Oil Outlook, permintaan minyak global diperkirakan akan meningkat dari 99,6 mb/d di tahun 2022 menjadi 116 mb/d di tahun 2045, dan akan terus meningkat hingga tahun 2035. Ini adalah peningkatan besar dalam permintaan minyak dan gas alam. Peningkatan ini berarti ada kebutuhan untuk lebih banyak anjungan lepas pantai dan semakin banyak proses lepas pantai, termasuk instalasi di bagian atas. Salah satu operasi yang umum dilakukan namun berisiko pada instalasi topside adalah operasi pengangkatan, penelitian ini bertujuan untuk membandingkan cara-cara untuk menilai risiko operasi pengangkatan topside. Metode yang dibandingkan menggunakan Job Safety Analysis (JSA) dan kombinasi Bayesian Network (BN) dan Fuzzy Inference System (FIS). Teknik BN diterapkan untuk memodelkan interaksi antar aktivitas, sehingga memudahkan penghitungan probabilitas faktor kegagalan. Probabilitas ini kemudian berfungsi sebagai masukan untuk kerangka kerja FIS dalam model penilaian risiko, penggabungan pendekatan-pendekatan ini diimplementasikan untuk menghasilkan penilaian risiko yang lebih tepat dan dapat diandalkan. Sebagian besar risiko ditemukan dalam kategori Medium, tetapi BN-FIS menunjukkan peningkatan risiko ke kategori High pada beberapa tahap, dan metode BN-FIS dianggap lebih sensitif dalam mendeteksi kegagalan daripada JSA. Strategi mitigasi yang digunakan untuk mengurangi risiko termasuk pelaksanaan Toolbox Talks, inspeksi peralatan, penggunaan APD, penghentian operasi selama cuaca buruk, dan kepatuhan terhadap SOP.
=================================================================================================================================
According to the World Oil Outlook, global demand for oil is expected to rise from 99.6 mb/d in 2022 to 116 mb/d in 2045, with a further increase expected by 2035. This is a big increase in demand for oil and natural gas. This increase means there is a need for more offshore platforms and a growing number of offshore processes, including topside installations. One of the common but risky operations in topside installations is lifting operations.This research aims to compare ways to assess the risks of topside lifting operations. The methods compared use a Job Safety Analysis (JSA) and a combination of a Bayesian Network (BN) and a Fuzzy Inference System (FIS). The BN technique is applied to model the interplay between activities, facilitating the calculation of failure factor probabilities. These probabilities subsequently serve as inputs to the FIS framework within the risk assessment model.The amalgamation of these approaches is implemented to generate a risk assessment that is both more precise and reliable.. Most risks were found to be in the medium category, but the BN-FIS showed an increase in risk to the high category at some stages.The BN-FIS method is considered more sensitive in detecting failures than JSA. Mitigation strategies employed to mitigate risk include the implementation of Toolbox Talks, equipment inspection, the use of PPE, cessation of operations during inclement weather, and strict adherence to SOPs.

Item Type: Thesis (Other)
Uncontrolled Keywords: Penilaian risiko, Lifting, JSA, Bayesian Network, Fuzzy, Risk assessment, Lifting, JSA, Bayesian Network, Fuzzy
Subjects: T Technology > T Technology (General) > T174.5 Technology--Risk assessment.
Divisions: Faculty of Marine Technology (MARTECH) > Ocean Engineering > 38201-(S1) Undergraduate Thesis
Depositing User: Nazwa Salsabilla
Date Deposited: 22 Jan 2025 06:46
Last Modified: 22 Jan 2025 06:46
URI: http://repository.its.ac.id/id/eprint/116564

Actions (login required)

View Item View Item