Aplikasi Black Widow Optimization Algorithm (BWOA) Melalui Pengaturan Power System Stabilizer dan Inersia Virtual pada Single Machine Infinite Bus (SMIB) Terintegrasi Photovoltaic

Hidayat, M. Taufik Imam (2025) Aplikasi Black Widow Optimization Algorithm (BWOA) Melalui Pengaturan Power System Stabilizer dan Inersia Virtual pada Single Machine Infinite Bus (SMIB) Terintegrasi Photovoltaic. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6022222016-Master_Thesis.pdf] Text
6022222016-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (5MB) | Request a copy

Abstract

Integrasi energi baru terbarukan (EBT) khususnya Photovoltaic (PV) ke dalam sistem tenaga listrik semakin meningkat dan menghadirkan berbagai tantangan teknis. Salah satu tantangan utama adalah total inersia dan damping sistem yang lebih rendah dibandingkan dengan sistem yang hanya terdiri dari generator konvensional. Hal ini karena PV merupakan pembangkit berbasis elektronika daya yang tidak memiliki inersia dan peredaman alami. Penurunan inersia ini memiliki dampak pada kestabilan dinamik, membuat sistem lebih rentan dalam menghadapi Low Frequency Oscillation (LFO), penurunan frekuensi nadir, dan tinggi nya Rate of Change of Frequency (RoCoF). Oleh karena itu, penelitian ini mengusulkan kombinasi Power System Stabilizer (PSS) dan Virtual Inertia Control (VIC) berbasis Supercapacitor Energy Storage (SCES) dengan parameter yang dioptimasi menggunakan Black Widow Optimization Algorithm (BWOA) untuk meningkatkan kestabilan dinamik. Hasil simulasi menunjukkan bahwa PSS dan VIC yang ditala dengan BWOA secara konsisten mampu meningkatkan kestabilan dinamik sistem dengan memperbaiki overshoot, undershoot, dan nilai RoCoF pada berbagai skenario perubahan beban serta penetrasi PV. Pada skenario pertama, kombinasi PSS-VIC dengan fungsi objektif ITAE berhasil memperbaiki overshoot sebesar 100%, undershoot sebesar 83,22%, dan RoCoF sebesar 68,18%. Pada skenario kedua PSS-VIC mampu memperbaiki overshoot sebesar 99,69%, undershoot 74,34%, dan RoCoF sebesar 68,18%. Pada skenario ketiga PSS-VIC mampu memperbaiki overshoot sebesar 97,1%, undershoot 74,34%, dan RoCoF 83,08%. Selain itu BWOA juga terbukti lebih efektif dibandingkan algoritma GSA dan BA berdasarkan hasil data statistik serta respon sistem. BWOA mampu mencapai nilai fitness paling minimum meskipun dengan konvergensi yang lebih lambat.
====================================================================================================================================
The integration of renewable energy sources (RES), particularly Photovoltaic (PV), into power systems is rapidly increasing, presenting various technical challenges. One of the primary challenges is the reduction in total system inertia and damping compared to systems dominated by conventional generators. This is due to the nature of PV, which is based on power electronics and inherently lacks natural inertia and damping. The reduction in system inertia significantly impacts dynamic stability, making the system more susceptible to Low-Frequency Oscillations (LFO), lower frequency nadir, and higher Rates of Change of Frequency (RoCoF). To address these challenges, this study proposes a combination of Power System Stabilizer (PSS) and Virtual Inertia Control (VIC) based on Supercapacitor Energy Storage System (SCES), with parameters optimized using the Black Widow Optimization Algorithm (BWOA). Simulation results demonstrate that the BWOA-tuned PSS-VIC combination consistently enhances dynamic stability of system by mitigating overshoot, undershoot, and RoCoF across various scenarios of load changes and PV penetration. In the first scenario, the PSS-VIC combination with an ITAE objective function improved overshoot by 100%, undershoot by 83.22%, and RoCoF by 68.18%. In the second scenario, it improved overshoot by 99.69%, undershoot by 74.34%, and RoCoF by 68.18%. In the third scenario, the improvements were 97.1% in overshoot, 74.34% in undershoot, and 83.08% in RoCoF. Furthermore, BWOA proved to be more effective compared to GSA and BA algorithms, as evidenced by statistical results and system responses. BWOA achieved the lowest fitness value, despite exhibiting slower convergence.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Power System Stabilizer, Virtual Inertia Control, Black Widow Optimization Algorithm
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1010 Electric power system stability. Electric filters, Passive.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3226 Transients (Electricity). Electric power systems. Harmonics (Electric waves).
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20101-(S2) Master Thesis
Depositing User: M. Taufik Imam Hidayat
Date Deposited: 22 Jan 2025 03:25
Last Modified: 22 Jan 2025 03:25
URI: http://repository.its.ac.id/id/eprint/116574

Actions (login required)

View Item View Item