Izzi, Mamba`ul (2025) Rekonstruksi Model 3D dari Citra DICOM untuk Kebutuhan Perencanaan Bedah Mandibula dan Fibula di Realitas Virtual. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
6025231074-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2027. Download (5MB) | Request a copy |
Abstract
Rekonstruksi model 3D dari citra DICOM merupakan langkah penting dalam perencanaan bedah rekonstruktif rahang dan fibula. Dalam penelitian ini, citra DICOM pasien dikonversi ke format Neuroimaging Informatics Technology Initiative (NIfTI) sebagai representasi 3D, dengan metadata citra DICOM diubah menjadi header NIfTI tanpa mengubah citra slice-nya sehingga citra tidak dapat di-resample. Masalah utama dalam penelitian ini adalah kualitas citra DICOM yang rendah atau mengandung noise, yang memengaruhi akurasi segmentasi dan rekonstruksi. Sebagai solusinya, penelitian ini mengusulkan pendekatan terintegrasi yang menggabungkan teknologi deep learning berbasis U-Net, Res U-Net, dan Dense U-Net untuk segmentasi otomatis, teknologi Virtual Surgical Planning (VSP), serta realitas virtual (VR) untuk perencanaan bedah yang lebih akurat dan interaktif. Hasil evaluasi menunjukkan bahwa U-Net mendominasi dalam hal akurasi segmentasi dengan nilai Dice Similarity Coefficient (DSC) sebesar 92,96%, sementara Dense U-Net memiliki efisiensi komputasional terbaik dengan waktu pemrosesan lebih cepat (767 menit). Hasil segmentasi ini kemudian digunakan untuk pembuatan model 3D yang mendukung simulasi kondisi defek mandibula dan strategi rekonstruksi menggunakan segmen fibula. Subjek penelitian menunjukkan variasi kebutuhan segmen fibula, tergantung dari seberapa fatal kerusakan pada mandibula tersebut. Penelitian ini bertujuan untuk mengembangkan perangkat lunak Virtual Surgical Planning (VSP) berbasis algoritma otomatis yang dirancang untuk meningkatkan akurasi segmentasi 3D tulang mandibula pada citra DICOM, mengatasi tantangan utama berupa intensitas tepi yang tidak homogen. Salah satu tantangan utama dalam perencanaan bedah virtual (Virtual Surgical Planning, VSP) untuk rekonstruksi mandibula adalah proses segmentasi 3D tulang mandibula yang akurat. CASP. Selain itu, analisis waktu operasi menunjukkan bahwa simulasi virtual berbasis CASP secara konsisten mengurangi waktu operasi dibandingkan metode konvensional, dengan pengurangan rata-rata sebesar 215 menit atau 71,7%. Pengurangan waktu ini tidak hanya meningkatkan efisiensi prosedur, tetapi juga membantu mengurangi risiko komplikasi bedah yang terkait dengan durasi operasi yang lama.
=======================================================================================================================================
Three-dimensional model reconstruction from DICOM images is a crucial step in planning jaw and fibula reconstructive surgery. In this study, patient DICOM images were converted to Neuroimaging Informatics Technology Initiative (NIfTI) format as 3D representations, with DICOM image metadata transformed into NIfTI headers while preserving the original slice images to prevent resampling. The primary challenge in this research was the low quality or noise-containing DICOM images, which affected segmentation and reconstruction accuracy. As a solution, this study proposes an integrated approach combining U-Net, Res U-Net, and Dense U-Net-based deep learning technologies for automatic segmentation, Virtual Surgical Planning (VSP) technology, and virtual reality (VR) for more accurate and interactive surgical planning. Evaluation results demonstrated that U-Net dominated in terms of segmentation accuracy with a Dice Similarity Coefficient (DSC) of 92.96%, while Dense U-Net exhibited superior computational efficiency with faster processing time (767 minutes). These segmentation results were subsequently utilized to create 3D models supporting the simulation of mandibular defect conditions and reconstruction strategies using fibular segments. Research subjects demonstrated varying requirements for fibular segments, depending on the severity of mandibular damage. This research aims to develop Virtual Surgical Planning (VSP) software based on automated algorithms designed to enhance the accuracy of 3D mandibular bone segmentation in DICOM images, addressing the primary challenge of non-homogeneous edge intensities. One of the main challenges in Virtual Surgical Planning (VSP) for mandibular reconstruction is achieving accurate 3D mandibular bone segmentation. Furthermore, operative time analysis revealed that CASP-based virtual simulation consistently reduced operative time compared to conventional methods, with an average reduction of 215 minutes or 71.7%. This time reduction not only improves procedural efficiency but also helps mitigate surgical complications associated with extended operative durations.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Citra DICOM, Deep learning, Dense U-Net, Fibula, Mandibula, Realitas Virtual, Rekonstruksi, Res U-Net, Segmentasi, U-net, Virtual Surgical Planning ============================================================================================================================ Deep Learning, Dense U-Net, DICOM Image, Fibula, Mandible, Reconstruction, Res U-Net, Segmentation, U-Net, Virtual Reality, Virtual Surgical Planning. |
Subjects: | R Medicine > RD Surgery > RD130 Artificial organs; Prosthesis T Technology > T Technology (General) > T174.5 Technology--Risk assessment. T Technology > T Technology (General) > T385 Visualization--Technique T Technology > T Technology (General) > T57.5 Data Processing T Technology > T Technology (General) > T57.62 Simulation T Technology > T Technology (General) > T58.5 Information technology. IT--Auditing T Technology > T Technology (General) > T59.7 Human-machine systems. |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55101-(S2) Master Thesis |
Depositing User: | Mamba`ul Izzi |
Date Deposited: | 28 Jan 2025 02:48 |
Last Modified: | 28 Jan 2025 02:48 |
URI: | http://repository.its.ac.id/id/eprint/117003 |
Actions (login required)
View Item |